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ABSTRACT
Each access point (AP) in a WiFi network must be assigned a chan-
nel for it to service users. There are only finitely many possible
channels that can be assigned. Moreover, neighboring access points
must use different channels so as to avoid interference. Currently
these channels are assigned by administrators who carefully con-
sider channel conflicts and network loads. Channel conflictsamong
APs operated by different entities are currently resolved in an ad
hoc manner or not resolved at all. We view the channel assignment
problem as a game, where the players are the service providers and
APs are acquired sequentially. We consider the price of anarchy
of this game, which is the ratio between the total coverage ofthe
APs in the worst Nash equilibrium of the game and what the total
coverage of the APs would be if the channel assignment were done
by a central authority. We provide bounds on the price of anarchy
depending on assumptions on the underlying network and the type
of bargaining allowed between service providers. The key tool in
the analysis is the identification of the Nash equilibria with the so-
lutions to a maximal coloring problem in an appropriate graph. We
relate the price of anarchy of these games to the approximation fac-
tor of local optimization algorithms for the maximumk-colorable
subgraph problem. We also study the speed of convergence in these
games.�Research partially supported by NSF ANI-0335244.yWork supported in part by NSF under grant CTC-0208535, by
ONR under grants N00014-00-1-03-41 and N00014-01-10-511,by
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program administered by the ONR under grant N00014-01-1-0795,
and by AFOSR under grant F49620-02-1-0101.
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1. INTRODUCTION
802.11 Wireless LANs, commonly known as WiFi, provide wire-

less network access to subscribers. They have been deployedin
public hotspots, ranging from airports to hotels to Starbucks cof-
fee shops. Fueled by the growing usage, service providers have
been planning to provide wireless network access that covers larger
areas. For example, Verizon has deployed WiFi for hundreds of
hotspots in New York City [21] and MeshNetworks Corporation
has been deploying city-wide WiFi networks to facilitate law en-
forcement and emergency response in cities such as Medford,Ore-
gon [16] .

To understand the issues of interest to us, we need to briefly
review some relevant details of 802.11 wireless LANs. (See [3]
for further details.) An 802.11 network consists of a set of access
points (APs). Each AP must be configured with a fixed transmis-
sion power. There is a constant number of possible transmission
powers to choose from. Users can then access the Internet by com-
municating with their provider’s APs using the 802.11 air inter-
face. Each AP must be assigned a channel (i.e., a frequency that it
transmits on) for it to service users. There are a small number of
non-interfering channels; for example, 802.11b and 802.11g each
have 3 such channels and 802.11a has 11. A user within an AP’s
coverage area then uses this channel to communicate with theAP.
Channel access between users of the same AP is arbitrated by a
media access control protocol (MAC). For example, in the DCF
model of the 802.11 MAC protocol, if a user determines that the
media is free, it sends a request to send (RTS) message; the AP
replies with a clear to send (CTS) message; users that receive this
message will defer media access on that channel for long enough to
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Figure 1: Potential interference between two APs.

guarantee that there is no interference with the user’s message. To
avoid interference in the wireless media between nearby APsand
their users, nearby APs must use different channels.

In more detail, we can associate with each APu two circular re-
gions around it (see Figure 1). The smaller circle, denotedRt(u),
representsu’s transmission range. All messages sent byu can be
correctly received by users inRt(u). The larger circle, denotedRs(u), representsu’s sensing range. In practice, the radius ofRs(u) is about twice that ofRt(u). The actual size ofRs(u)
andRt(u) depends on the transmission power used byu. AP u’s
transmissions will interfere with the transmission of APs or users
within Rs(u) if they share the same channel. To avoid such inter-
ference, the distanced(u; v) betweenu andv has to be greater thanRt(u)+Rt(v)+maxfRs(u); Rs(v)g. That is, if APsu andv are
greater thanRt(u)+Rt(v)+maxfRs(u); Rs(v)g apart, they can
transmit using the same channel, since then no user inv’s transmis-
sion range will be able to sense a message fromu or its users, and
vice versa. In Figure 1, user 1 of APu is within the sensing range
of user 2 of APv. When APu transmits to user 1, user 2, which
is outside of theu’s sensing range, may think the media is free. If
user 2 then transmits on the same channel asu, its transmission will
prevent user 1 from correctly decodingu’s transmission.

Currently, APs are statically configured with a channel by ad-
ministrators who carefully consider channel conflicts and network
loads. Channel conflicts among different entities are resolved in
an ad hoc manner or not resolved at all. We model the channel
assignment problem as a game, where the players are the service
providers. APs are set up or acquired by service providers sequen-
tially. When an AP is set up or acquired, a channel must be chosen
that does not interfere with the channels chosen for APs thatwere
previously set up; if there is no such channel, the AP cannot be
used.1 The order that the APs are set up is determined exogenously
(that is, by some agency outside the game, not the service providers
themselves) and is arbitrary. For example, service provider 1 might
set up 5 APs before service provider 2 sets up any. We assume
that when a service provider sets up an AP, it knows about the APs
that have already been set up and might interfere with it, butwe do
not make any assumptions about what the service providers know
about other APs that have already been set up. For simplicity, we
also assume that when a service provider sets up an AP, it does
not know what APs will become available in the future. The only1We are implicitly assuming here providers follow the “social rule”
of not assigning a channel to an AP if it interferes with the channel
already assigned to another AP. This social rule can easily be im-
posed and enforced by a government agency such as the FCC. If we
do not make this assumption, then we must define the utility toa
service provider of owning an AP whose communications interfere
with those of another AP, and discuss how providers bargain over
spectrum allocation in this case.

information it has is the APs that currently exist. For example, sup-
pose that there is only one service provider and there are 3 APs,v1, v2, andv3, which are placed so thatv2 interferes with each ofv1 andv3, butv1 andv3 do not interfere with each other. If there
is only one color andv2 is acquired first, then the provider should
choose not to give it a channel, since that will prevent it from giv-
ing a channel tov1 andv3. But, for simplicity, we assume that the
service provider must choose a channel forv2 as soon as it is set
up.

The utilities of the service providers depend on how many users
they can serve. We assume that there is a commonly known distri-
bution of users. The utility to a service provider of settingup an
AP u that is assigned a channel is the expected number of users
in Rt(u); if AP u is not assigned a channel, then its utility to the
service provider is 0. The utility of a provider at the end of agame
is just the sum of the utilities of the APs that it sets up.

A socially optimalassignment is one where the maximum num-
ber of users can be served. We would expect that a central authority
would assign channels in a way that leads to a socially optimal as-
signment. Of course, there is no reason to believe that the socially
optimal assignment is the one that arises in this game. Our interest
is in seeing how far away we are from this assignment. In the lan-
guage of Koutsoupias and Papadimitriou [14], we are interested in
investigating theprice of anarchy.

We can represent the game using a labeled graphG = (V;E),
where the vertices inV are the APs, and two verticesu andv are
joined by an edge if they potentially interfere, i.e., ifd(u; v) �Rt(u) + Rt(v) + maxfRs(u); Rs(v)g. Each vertex also has a
label, which represents the utility of the AP associated with that
vertex being assigned a channel.G is called theinterference graph
induced by the game.

There is obviously a close connection between assigning chan-
nels to vertices and coloring the induced interference graph. Sup-
pose that there arek channels. Consider ak-coloring of the graph,
i.e., an association of some vertices to colors such that twoadjacent
edges are labeled with different colors. Clearly this corresponds to
a feasible assignment of channels to APs. All APs that are as-
signed colors can safely communicate on the channel associated to
the color without interference. The APs that are assigned a chan-
nel in a Nash equilibrium of the game correspond to a maximal
subset of vertices that has been colored withk colors. Amaximalk-colored subsetof the induced graph is defined to be a subset of
nodes with a specific coloring such that no additional nodes can
be colored.2 If there are any other vertices in the graph that can
be colored, then the corresponding AP should have been assigned a
channel. Conversely, given a maximalk-colored subset of the inter-
ference graph, there is a Nash equilibrium of the game where these
are precisely the APs that are assigned a channel. In particular, this
will be the case if the APs in the maximal set are set up before any
other APs are set up. Thus, there is a 1-1 correspondence between
maximalk-colored subsets of the graph and Nash equilibria of the
game. Moreover, a socially optimal assignment correspondsto a
maximalk-colored subset of maximum weight (that is, a maximalk-coloring where the sum of the weights of the vertices that are
colored is maximum). Thus, the price of anarchy is simply thera-
tio of the total weight of a maximalk-coloring of minimum weight
to thek-coloring of maximum weight. Given the close connection
betweenk-colorings and Nash equilibria, we speak in the rest of2Note the distinction between maximalk-colored subgraph and
maximalk-colorable subgraph. A maximalk-colorable subgraph
is a subset of nodes that can be colored withk colors such that
the subset is not a proper subset of anotherk-colorable subgraph.
Whenk = 1, the two definitions are identical.



the paper often of “vertices” and “colors” rather than “APs”and
“channels”.

It is not hard to show by example that, in the general case, the
coverage of the APs in the network that results after channels are
chosen can be arbitrarily far from socially optimal; that is, the price
of anarchy is unbounded. However, we can do better if we assume
that users are uniformly distributed and all APs must use thesame
transmission power. The interference graphG is then aunit disk
graph: two verticesu andv are joined by an edge iffd(u; v) �2Rt + Rs, whereRt andRs are the common transmission and
sensing ranges, respectively, of all APs. (We are implicitly taking2Rt + Rs to be the “unit” here.) (We remark that the interference
graph for 802.11 wireless networks is often modeled as a unitdisk
graph [3].) Moreover, the utility of a provider is proportional to
the number of APs it sets up which are assigned a channel. In this
case, we can show that the price of anarchy is at least 5 and at most5 + max(0; (k � 5)=k), wherek is the number of channels. In
particular, it follows that if there are at most 5 channels, then the
price of anarchy is 5.

Because providers are forced to assign a channel to an AP as
soon as it is set up, a provider may be able to do better just by
changing the assignment to APs it controls. (This is alreadyclear
from the example given above where one provider controlsv1, v2,
andv3.) It certainly seems reasonable to allow providers to change
the channel assignments of APs that it controls. We assume that this
is always possible in the remainder of the paper. Service providers
may also be able to negotiate changes to assignments of vertices
they control that are mutually advantageous. We are particularly
interested in what we callk-buyer–m-seller bargains, where them sellers uncolor certain vertices in exchange for payment from k
buyers. (Some of the buyers may also be sellers.) The types ofbar-
gains we consider improve the total weight of the colored vertices
(otherwise the changes will not be of benefit to both buyers and
sellers). We are interested in the question of how close bargaining
can bring us to a socially optimal assignment. In general, weex-
pect it to be hard to negotiate arrangements involving many buyers
and sellers. (By way of analogy, in sports, player trades typically
involve two teams; trades involving more than two teams are quite
rare.) We start an investigation of this issue in this paper by exam-
ining two limited types of bargaining situations, that we expect can
be implemented relatively easily in practice.� The first is a generalization of the situation described initially

with APsv1, v2, andv3. If v2 is colored (i.e., has a channel
assigned),v1 andv3 are not,v1 andv3 could be colored ifv2 were not colored, and the sum of the weights ofv1 andv3 is greater than the weight ofv2, then we assume that the
providers that own APsv1 andv3 can always offer the owner
of v2 sufficient utility (in terms of, say, money) so thatv2 is
uncolored, while still themselves coming out ahead.3 We do
not go into the details of exactly what the offers are. All that
matters is that, in equilibrium, the exchange will be made
(i.e., v2 will be uncolored andv1 andv3 colored). We call
this alocal 2-buyer–1-seller bargain.� The second occurs if an AP is uncolored but its weight is
greater than the sum of weights of all its neighbors of a par-
ticular color. In this case, we assume that the owner of that
AP can offer the owners of the interfering APs sufficient util-
ity so that the interfering APs will be uncolored. Again, we
do not go into the details of exactly what the offers are. We3For this to be true, we must assume that the utility of money isthe

same for all players.

call this local 1-buyer–multiple-seller bargain. Note that al-
though many sellers may be involved, this really is a col-
lection of 2-way arrangement, since the buyer can negotiate
separately with each of the sellers.

By allowing such bargains, we are effectively excluding certain
Nash equilibria; thus, the price of anarchy may go down. We show
that if local 2-buyer–1-seller bargains are allowed, then in the case
that users are uniformly distributed and the power of all APsis the
same, the price of anarchy is at most3 + max(0; 1 � 3=k) and
at least 3. Moreover, if users are not uniformly distributedand the
transmission power of APs is the same, then if a 1 buyer – mul-
tiple seller bargains are allowed, the price of anarchy is atmost5 +max(0; (k � 5)=k) and at least5.

In all these results, we assumed that the power with which an AP
transmits is fixed, and not under the control of the service provider.
If the service provider can choose the transmission power from
among a finite set of possible transmission powers, we know that
the price of anarchy is still unbounded, but if we allow local1-
buyer–m-seller bargains, the price of anarchy is at most 9 and at
least7=(1 + �) if users are distributed uniformly. However, the
price of anarchy is still unbounded for local 1-buyer–m-seller bar-
gains if users are not distributed uniformly. Interestingly, bargains
covering constant-sized geometric regions do give us a bounded
price of anarchy.

We also consider the speed of convergence to a Nash equilibrium
in different variants of spectrum sharing games. We prove that in
some special cases players converge to a Nash equilibrium after
polynomial number of steps. But in the general case, we show that
there exists an exponentially long path of improvements to aNash
equilibrium.

The rest of the paper is organized as follows: In Section 2, wede-
fine formally the relevantk-colorability problems and apply some
standard results from the literature onk-colorability to spectrum
sharing. In Section 3, we prove our main results on the price of
anarchy. In Section 4, we examine how long it can take to converge
to a Nash equilibrium. We discuss related works in Section 5,and
conclude in Section 6.

2. GRAPH-THEORETIC PRELIMINARIES
As we observed in the introduction, there is a close connection

between our spectrum-sharing game andk-colorability. We for-
mally define thek-colorability problem here, review some standard
results on the problem, and show how they apply to the spectrum-
sharing game.

DEFINITION 2.1. Given graphG = (V;E), themaximum in-
ducedk-colorable subgraphMax k-CIS problemis that of finding
a k-colorable subgraph ofG with maximum number of vertices.
(Recall that a graph isk-colorable if it is possible to color the
nodes in such a way that no two adjacent vertices are colored with
the same color.) If for each vertex of the graphG, we are given a
weightw(v), thenweighted Max k-CIS is the problem of finding ak-colorable induced subgraph whose total weight is maximum.

It is well known that deciding if a graph isk-colorable is NP-
complete [8]. It follows that there is unlikely to be a polynomial
time algorithm for finding an optimal channel assignment, even if
one player owns all the APs. Indeed, it is hard to even approxi-
mate an optimal solution to theMax k-CIS problem. More pre-
cisely, recall that themaximum independent set problem(Max-IS)
is that of finding a set of vertices of maximum cardinality which
are pairwise nonadjacent. It is known that the problem of approxi-
mating theMax-IS to within a factor better than
(n1��) (that is,



the problem of finding a set of vertices in a graph withn vertices
which are independent and whose cardinality is within a factor bet-
ter than
(n1��) of a maximum independent set in the graph) is
NP-complete [11], and that the problem of finding an approxima-
tion to Max k-CIS is just as hard as that of finding an approxima-
tion to the maximum independent set, for any fixedk [12].

The situation is somewhat better for unit disk graphs (whichcor-
respond to the situation where all APs transmit with the sametrans-
mission power and users are uniformly distributed).

THEOREM 2.2. There is a1:582-approximation forMax k-CIS
in unit disk graphs.

The proof follows from two facts: (1) we can reduce the problem
of approximatingMax k-CIS to that of approximatingMax-IS and
(2) there is a polynomial-time approximation scheme forMIS in
unit disks [18]. Thus, even if some entity could assign channels,
and was trying to do so in a way that maximizes potential usage, the
best we can hope for even in the special case that all APs transmit
with the same power and users are uniformly distributed is toget
an assignment that is within a factor of roughly 1.5 of optimal.

3. THE PRICE OF ANARCHY
In this section, we prove that the price of anarchy is unbounded

in the basic spectrum-sharing game for arbitrary graphs, even if
players are computationally unbounded. We then show that the
price of anarchy is bounded in unit disk graphs. Finally, we con-
sider the extent to which allowing bargaining helps improvethe
price of anarchy.

Before proving these results, we prove a general result thatal-
lows us to reduce to games where there is only a single color/channel
available. This allows us to simplify a number of arguments.More-
over, since a 1-coloring is just an independent set, this allows to
apply results about theMax-IS problem. This result applies for
all types of bargaining we consider. The key observation here is
that the various types of bargains allowed impose constraints on the
structure of an optimal coloring. For example, if we consider the
weighted case and allow 1-buyer–multiple-seller bargains, then we
do not allow solutions where a vertex is uncolored but has greater
weight than all of its neighbors of a given color.

THEOREM 3.1. Suppose the price of anarchy if there is only
one channel for a spectrum-sharing game that allows a certain type
of bargaining is�. Then, for allk, the price of anarchy for the same
game withk channels is at most�+max(0; 1��=k) and at least�.

PROOF. For the lower bound, suppose thatG is an interference
graph where the price of anarchy is�0. Thus, there are maximal
independent subsetsX andY ofG such thatw(X) = �0w(Y ). We
construct a graph where, even withk colors, the price of anarchy
is �0. The idea is to replace each vertex inG with k copies of
that vertex at the same location. Then there is a Nash equilibrium
that involves coloring each of thek vertices that corresponds to a
vertex inX a different color, and similarly forY . Thus, the price of
anarchy in the game withk colors is still�0. Of course, we cannot
set upk APs on top of each other, but we can achieve the same
effect as follows. Suppose that we have a setting of APs that results
in the interference graphG. Note that there must be an� > 0 such
that if all distances are contracted by a factor of(1 � �), G would
still be the graph corresponding to the resulting placementof APs.
Now replace each AP by a cluster ofk APs on the circumference
of a circle of radius�=2 around the original AP, and we get the
required graph.

For the upper bound, letX consist of the colored vertices in a
Nash equilibrium to the given spectrum-sharing game, with color
classesX1; : : : ; Xk. Let Y be the vertices in a socially-optimal
solution, with color classesY1; : : : ; Yk. LetC = X \ Y , letY 0 =Y n C, and letY 0i = Y \ Yi, for i = 1; : : : ; k.

Observe that, for alli and j, theXj n Yi must a maximal in-
dependent subset in the subgraph ofG induced by the vertices(Xj n Yi) [ Y 0i . Clearly the vertices inXj are independent, since
they are all in the same color class. And if there are no edges from
some vertexy 2 Y 0i to all the vertices inXj n Yi, then there are no
edges fromy to any vertex inXj (since there are no vertices fromy
to any vertex inYi, since they are all in the same color class). Then
we can addy toX and color it with the same color as the vertices
in Xj , contradicting the maximality ofX. It follows thatjY 0i j � �jXj n Yij;
for otherwise the price of anarchy in the graphYi [ Xj with one
color is greater than�, a contradiction. Summing up overj, it
follows thatkjY 0i j � �jX n Yij. Summing up overi,kw(Y 0) � Xi �w(X n Yi) = �(kw(X)� w(C)):
Hence,w(Y ) = w(Y 0) + w(C) � �w(X) + (1� �=k)w(C)� (�+max(0; 1� �=k))w(X);
as desired.

We start by considering the basic spectrum game, without bar-
gaining. Our first result shows that, in general, the price ofanarchy
in this game is unbounded, even if all vertices have equal weight.

PROPOSITION 3.2. The price of anarchy is unbounded in the
basic spectrum-sharing game, no matter how many channels or
players there are, even if all vertices have equal weight.

PROOF. First suppose thatk = 1. Consider a star graph, where
the center vertex is connected ton other vertices. If the center ver-
tex appears first, then none of the other vertices can be colored. In
the optimal assignment, all the vertices other than the center vertex
are colored. Thus, the price of anarchy isn. The fact that the price
of anarchy is unbounded withk colors follows immediately from
Theorem 3.1.

Note that the star graph in Proposition 3.2 can be realized byas-
suming that the center vertexv transmits with high power, while
the remaining vertices transmit with low power. We can thinkof
the remaining APs as being placed on the circumference of a cir-
cle with centerv. It is then easy to distribute the users so that all
vertices have an equal number of users, and hence equal weight.

We can construct similar examples even if APs transmit with the
same power (although in that case we must look at the weighted
coloring problem, since APs have different utilities). However, we
cannot construct such an example if APs all transmit with thesame
power and users are uniformly distributed.

To prove the result, recall that a graph is� + 1-claw freeif no
vertex has more than� neighbors in the graph, none of which are
connected to each other. Unit disk graphs are known to be 6-claw
free (see e.g. [15]).

THEOREM 3.3. If all APs transmit with the same power and
users are uniformly distributed, then the price of anarchy of the
spectrum-sharing game is at most5 + max(0; 1 � 5=k) and at
least 5.



Figure 2: An interference graph for which the price of anarchy
is 3 with 2-buyer–1-seller bargaining.

PROOF. By Theorem 3.1, it suffices to show that the price of
anarchy is 5 if there is one channel. This follows from the well-
known observation that the size of a maximal independent setin
a 6-claw free graph is no more than a factor of 5 from the size of
the largest maximal independent set in a 6-claw free graph, and
a simple example showing that it can be 5, namely, a 6-claw free
graph consisting of 6 vertices: a central vertex connected to 5 other
vertices. The central vertex by itself is a maximal independent set,
as are the other 5 vertices.

It follows from Theorem 3.3 that fork � 5, we have a tight
bound of 5 on the price of anarchy in unit disk graphs.

We now consider what happens if we allow bargaining. Our first
result shows that if all APs transmit with uniform power, users are
uniformly distributed, and we allow 2-buyer–1-seller bargaining,
then the price of anarchy drops to at most 4.

THEOREM 3.4. If all APs transmit with the same power, users
are uniformly distributed, and 2 buyer–1 seller bargains are al-
lowed, then the price of anarchy of the spectrum-sharing game is
at most3 +max(0; 1� 3=k) and at least3.

PROOF. For the upper bound, it suffices by Theorem 3.1 to show
that the price of anarchy is 3 if there is one channel. This follows
from the analysis of local optimization for independent setin 6-
claw free graphs of [13] (see also [10]).

The lower bound is attained by the construction of Fig. 2. The
9 dark circles correspond to vertices in a maximal independent set,
while the 27 light circles correspond to the optimal solution. Note
that the set of 9 dark circles is stable with respect to 2-buyer–1-
seller bargains, since two vertices have to be removed from the
maximal independent set (i.e., uncolored) before any new vertex
can be added.

When users are not uniformly distributed, then the price of anar-
chy for the simple spectrum sharing game is not bounded, evenif all
APs transmit with the same power and we allow 2-buyer–1-seller
bargaining. Indeed, we can show that the price of anarchy is un-
bounded unless bargains involve at leastmin(p; � ) sellers, wherep
is the number of players and the interference graph is(� +1)-claw
free.

PROPOSITION 3.5. If APs transmit with the same power but
users may not be uniformly distributed, then the price of anarchy
is unbounded unless bargains involve at leastmin(p; � ) sellers,
wherep is the number of players and the interference graph is(� + 1)-claw free.
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Figure 3: A family of interference graphs with unbounded
price of anarchy.

PROOF. By Theorem 3.1, we can assume without loss of gen-
erality that there is only one channel. Consider a star with acen-
ter vertex of large weight and� leaves of small weight that oc-
cupy a channel. The large-weight vertex cannot be bought unless
all � non-adjacent neighbors will be sold. The bound follows if
we assume that each of the vertices is controlled by a different
player.

However, as we now show, if we allow 1-buyer–multiple-seller
bargains, then the price of anarchy is bounded, even in the weighted
case, provided that APs transmit with the same power.

THEOREM 3.6. If APs transmit with the same power and 1-
buyer–multiple-seller bargains are allowed, then the price of anar-
chy of the spectrum-sharing game is at most5 +max(0; 1� 5=k)
and at least5.

PROOF. This follows from Theorem 3.1, using a bound on sim-
ple weighted local improvements for maximum independent sets
in 6-claw free graphs [2]. The key point is that the “local improve-
ments” of [2] correspond to the result of a 1-player–multiple-seller
bargain.

The requirement that APs transmit with the same power is criti-
cal in Theorem 3.6.

PROPOSITION 3.7. In the general case (where APs transmit with
different powers and users are not uniformly distributed),then the
price of anarchy of the spectrum sharing game is unbounded, even
if multiple-buyer–multiple-seller bargains are allowed.

PROOF. Consider a spectrum-sharing game with bargains in-
volving up to t buyers and arbitrary number of sellers. Letp be
a large value. Consider a graph consisting of vertexv of weightp � t and transmission power corresponding to a circle of radiusp;
verticesv1; : : : ; v5p each of weightp and transmission power cor-
responding to a circle of radius 1; and verticesv01; : : : ; v05p, each
of weight 1 corresponding to a circle of radius 1. The situation is
illustrated in Figure 3. Note that the setLOPT = fv; v01; : : : ; v05pg
is a maximal independent set, and has weight5p + pt. On the
other hand, the setOPT = fv1; : : : ; v5pg is an independent set of
weight5p2. Further note thatLOPT cannot be improved with any
bargain involving less thatt sellers. Hence, the price of anarchy
for this instance isp=(1 + t=5). By settingp large enough, we get
an unbounded ratio. Furthermore, this example involves only two
different weights and two different transmission powers.

What happens if we allow more general bargains? As we now
show, with sufficiently general bargains, we drive the priceof an-
archy arbitrarily close to 1. However, the bargains may involve ar-
bitrarily many players, which would makes the coordinationcom-
plexity unreasonable.



For a setX of vertices, letw(X) denote the sum
Pu2X w(u)

of the weights of the vertices inX.

THEOREM 3.8. Suppose that distances have been normalized
so that, for any pair of nodesu, v, we haveRt(u) + Rt(v) +maxfRs(u); Rs(v)g � 1. Thus, two verticesu, v such thatd(u; v)> 1 do not have an edge between them in the interference graph.
Further suppose that bargains involving arbitrary sets of vertices
within distance

p2d are allowed. Then the price of anarchy in the
spectrum-sharing game is at mostd2=(d� 1)2.

PROOF. Consider a network with induced interference graphG.
Suppose without loss of generality that there is one channel. LetLOPT consist of the vertices in a maximal independent subset ofG
(recall that a maximal 1-colored set is just a maximal independent
set) after generalized bargaining, and letOPT be the vertices in a
socially optimal independent set.

Consider ad�d rectangleRwith integer coordinates that is half-
closed in both directions (i.e., it contains all vertices inits interior
and on its right or top boundaries, but not the vertices on itsbottom
and left boundaries). All vertices withinR are of distance at mostp2d. LetR0 be the inner(d� 1)� (d� 1) rectangle obtained by
removing a unit-length strip from each side ofR. This separation
ensures that no node withinR0 interferes with nodes outsideR.
Since no generalized bargains are possible,w(OPT \R0) � w(LOPT \ R);
otherwise, it would be profitable to buy(OPT\R0)n(LOPT\R)
and sell(LOPT \ R) n (OPT \ R0). If we sum over all possibled-by-d rectangles with integer coordinates, we count each node inOPT exactly(d � 1)2 times but each node inLOPT exactlyd2
times. Thus, (d� 1)2w(OPT) � d2w(LOPT);
as desired.

If we assume that ownership is relatively local, so that all the
APs within a distanced of each other are owned by a relatively
small set of APs, this says that we can get a relatively small price
of anarchy. Obviously, asd gets larger, the number of players likely
to be involved will increase.

We next consider what happens if users are allowed to choose
the transmission power of an AP. That is, when an AP becomes
available, a user chooses a channel for it (if one is available) and
a transmission power, subject to not interfering with otherchan-
nels. We then allow the same bargaining procedures (and, as usual,
allow players to make arbitrary changes among the APs that they
control). Essentially the same example as in the proof of Proposi-
tion 3.5 shows that we need to allow multiple sellers in orderto get
a bounded price of anarchy in this case.

PROPOSITION 3.9. Even if users are distributed uniformly, in
the spectrum-sharing game with power control, the price of anar-
chy is unbounded unless bargains involve at leastmin(p; � ) sell-
ers, wherep is the number of players and the interference graph is(� + 1)-claw free.

Our next result shows that if we allow multiple sellers, thenwe
do in fact get a bounded price of anarchy.

THEOREM 3.10. If users are distributed uniformly and 1-buyer–
multiple seller bargains are allowed, then the price of anarchy of
the spectrum-sharing game with power control is at most 9 andat
least7� �, for any� > 0.

PROOF. As usual, we can assume without loss of generality that
there is one channel. Given a network with induced interference
graphG, let LOPT consist of the vertices in a maximal indepen-
dent subset ofG after 1-buyer–multiple-seller bargaining, and letOPT be the vertices in an independent set of greatest weight af-
ter bargaining. We divide the vertices inOPT into two groups. A
vertex inOPT is small if it interferes with at least one vertex of
greater weight inLOPT; otherwise it islarge. These two groups
are denoted asS(OPT ) andL(OPT ) respectively.

We prove this theorem using the following geometric lemma.

LEMMA 3.11. Letu be an AP in LOPT with transmission range
circle C. LetNS (NL) be the set of neighbors ofu in S(OPT )
(L(OPT )). Then the sum of the weights of nodes inNS is at most9� jNLj times the weight ofu.

PROOF. Let� be the ratio between the sensing and transmission
range radii, and let� = 1 + �=2. We construct a setS of circles.
Around each small nodev in NS , draw a circle of radiusRt(v) +Rs(v)=2 = �Rt(v). For each large nodew in NL, draw a circle of
radius�Rt(u)with center at distance2Rt(u)+Rs(u) = 2�Rt(u)
from u along the line fromw to u.

We claim that none of these circles inS intersect. Suppose the
circles corresponding to nodesv andw intersect. We consider here
the case whenv is small andw is large; the other cases are similar.
Then, the distance fromv tow is bounded byd(v; w) < �Rt(v) + �Rt(u) + (d(w;u)� 2�Rt(u))= d(w; u) + �(Rt(v)�Rt(u))= (Rt(w) +Rs(w) +Rt(u)) + �(Rt(v)�Rt(u))= Rt(w) +Rs(w) +Rt(v) + �=2[Rt(v)�Rt(u)℄< Rt(w) +Rs(w) +Rt(v):
Then,v andw interfere, and cannot both be contained in OPT, a
contradiction.

All centers of circles inS are within distance2�Rt(u) from u,
and all the circles are therefore contained within a circle centered atu of radius3�Rt(u). This circle is(3�)2 times the area ofC. The
fraction of the area used by transmission range circles is atmost1=�2, or at most(3�=�)2 = 9 times the area ofC. Of that, the
circles inS that derive from nodes inNL contributejNLj to the
factor. Finally, recall that our assumption is that weight of a node
corresponds to the area of its transmission range circle.

A large nodeu in OPT is larger than all the circles it intersects
in LOPT. ¿From the local optimality of LOPT, for anyu in OPT,w(u) � w(N(u)). LetNL(u) be the set of large neighbors in OPT
of nodeu. Thus,w(L(OPT)) � Xu2L(OPT) Xv2N(u)w(v) � Xv2LOPT

jNL(v)jw(v):
For a small nodeu in OPT, let v = B(u) be some larger circle

in LOPT that interferes withC. From Lemma 3.11,Xu2OPT; B(u)=vw(u) � (9� jNL(v)j)w(v):
Thus, w(S(OPT) � Xv2LOPT

(9� jNL(v)j)w(v):
Adding together the two inequalities, and summing up over all
nodes in LOPT, we havew(OPT) � 9w(LOPT).

For the lower bound, we sketch an example where the ratio is
arbitrarily close to 7. Arrange two concentric circlesC0, CL of



radius1 and 1 + �, respectively. AroundC0, arrange 6 circlesC1; C2; : : : ; C6 of radius 1. The circlesC0; : : : ; C6 do not overlap,
but CL intersects them all. Hence, the price of anarchy for this
instance is7=(1 + �).
4. CONVERGENCE TO NASH EQUILIBRIA

We have assumed that the order that APs are set is determined
exogenously. Clearly, if there aren APs altogether, there will be
at mostn steps before they are all set up. But now suppose that
bargaining moves are interspersed with the setting up of APs. How
many steps will it take before all the APs are set up and we reach a
local optimum, so that no further bargaining can improve thesitua-
tion? In this section, we address that question. For the purposes of
this section, we call a bargaining move or coloring of a new vertex
a local improvement, since it improves the payoff for at least one
agent and does not make any other agent worse off.

This question is particularly easy to answer in the unweighted
case, where all APs transmit with the same power and users are
uniformly distributed. In that case, each local improvement in-
creases the number of colored vertices by at least one, thus after
at mostn local improvements, the resulting color assignment is a
Nash equilibrium. In the weighted case, the same argument shows
that the number of local improvements is finite. In fact, we can
easily prove the following:

PROPOSITION 4.1. In the weighted spectrum sharing game, play-
ers will converge to a local optimum after finitely many localim-
provements, no matter what kind of bargains are allowed. Further-
more, if all weights are integers bounded by a polynomial in the
number of vertices, then players will converge to a local optimum
after a polynomial number of local improvements.

PROOF. Each local improvement increases the value of the color
assignment, and there are only finitely many color assignments,
thus the number of possible improvements is finite. If all weights
are integers and are polynomial in the number of vertices, then the
total weight of colored vertices is also polynomial in the number of
vertices. After each local improvement, the total weight increases
by at least one. thus players converge to a local optimum after
polynomial number of local improvements.

The assumption that weights are integers bounded by a polyno-
mial in the number of vertices is critical in Proposition 4.1. If we
allow arbitrary weights, then we show that there is always anor-
der of local improvements that reaches a local optimum in a linear
number of steps, but in some graphs, there may also be orders that
take exponentially many steps.

THEOREM 4.2. Suppose that local improvements are of two kinds:
coloring a new vertex and changing the coloring via a 1-buyer
multiple-seller bargain. In the weighted spectrum sharinggame
on unit disk graphs, it may take exponentially many local improve-
ments to converge to a Nash equilibrium.

PROOF. Assumek = 1, i.e., the number of available colors
is one. Consider the graphG = (V;E), whereV = V1 \ V2,Vi = fvi;0; : : : ; vi;ng, w(v1;j) = 2j , andw(v2;j ) = 2j � �.
Vertexv2;j is connected tov1;j�2; v1;j�1; v1;j As we show in the
full paper, this graph is a unit disk graph. We start from the empty
coloring. The set of improvements is as follows. We start with an
empty coloring:

1. Color verticesv10 andv11.

2. Colorv22 and uncolorv10 andv11.

3. Colorv12 and uncolorv22.

4. Colorv23 and uncolorv12.

5. Colorv13 and uncolorv23.

6. Do items 1,2,3 again.

7. Colorv24 and uncolorv12 andv13.

8. Colorv14 and uncolorv24.

9. Colorv25 and uncolorv14.

10. Colorv15 and uncolorv25.

11. Do items 1 to 7 again.

Note that each of the above steps corresponds to coloring a new
vertex or a 1-buyer multiple-sellers bargaining. We continue the
above sequence by a similar pattern. Using induction, we caneasily
show that the number of local improvements is at least2n�1 for
graphG. We leave the details to the full paper.

Although, the number of local improvements to a Nash equilib-
rium can be exponential, it is worth noting that from an emptycol-
oring we can find a path of length at mostn of local improvements
to a Nash equilibrium. This can be done first ordering the vertices
in decreasing order by weight, and then coloring the vertices in a
greedy way, starting with the one of highest weight. After the col-
oring is completed, it is easy to see that no 1-buyer–multiple-seller
bargain can improve the situation.

5. RELATED WORKS
There are two bodies of work related to ours. The first is work

on the price of anarchy in other contexts. Large distributedsystems
such as the Internet often involve many economic agents. Game
theory suggests that, if they follow their own selfish interests in a
noncooperative manner, they will end up playing a Nash equilib-
rium. Koutsoupias and Papadimitriou [14] first proposed investi-
gating the price of anarchy, that is, how far a Nash equilibrium can
be from the socially optimal solution to the problem. They studied
the price of anarchy of a scheduling problem on parallel machines
with selfish jobs. Since their work, much progress has been made
in understanding the price of anarchy in many situations. See [4,
6, 9, 19, 22] for a representative sample of the papers on thistopic.

Our results are based on relating the Nash equilibrium of the
spectrum-sharing game and local optimization algorithms for max-
imum k-colorable subgraphs. Even-dar et al. [5] studied the con-
vergence time to Nash equilibria of a scheduling game by relating
that game to local optimization algorithms for the scheduling prob-
lem. See [7, 9, 17] for other work in this spirit.

The second body of relevant work is on spectrum-sharing mecha-
nisms. Efficient spectrum-sharing mechanisms have been proposed
by Aftab [1] and Satapathy and Peha [20]. Satapathy and Peha
proposed a spectrum-sharing etiquette for devices accessing the
free frequency band. Aftab [1] presented an artificial economy ap-
proach to the problem. Each vertex is assigned an artificial budget.
Nodes use this wealth intelligently to bid dynamically for the right
to transmit. These papers consider dynamic channel access.To the
best of our knowledge, we are the first to study spectrum sharing
in the static case, where a vertex (AP) holds a channel indefinitely
unless it releases the channel voluntarily. Our model seemsmore
appropriate for the large 802.11 networks that are being setup by
service providers.



6. CONCLUSIONS AND FUTURE WORK
Spectrum sharing is an inherently distributed problem, with no

central authority to coordinate and arbitrate channel allocation. It
is important that spectrum sharing be efficient, allowing asmany
users as possible to use the network. With this in mind, we have
modeled spectrum sharing as a game between providers, and ana-
lyzed the price of anarchy. We show that if we assume that providers
are able to use easily implementable bargaining procedures, the
price of anarchy is bounded by a constant if users are distributed
uniformly or every AP uses the same transmission power.

There are many avenues for future research. We intend to tighten
our upper and lower bounds on the price of anarchy. The conver-
gence issues are not completely resolved. In particular, wewould
like to find useful conditions that guarantee polynomial-time con-
vergence to a Nash equilibrium. In addition, we would like tofur-
ther investigate the general weighted power-control game where the
weight is not just a function of the area within transmissionrange.
We are also interested in investigating the effect on the price of
anarchy of allowing different types of bargaining procedures.
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