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Abstra
tWe study graph multi
oloring problems, motivated by the s
heduling of dependent jobs onmultiple ma
hines. In multi
oloring problems, verti
es have lengths whi
h determine the numberof 
olors they must re
eive, and the desired 
oloring 
an be either 
ontiguous (non-preemptives
hedule) or arbitrary (preemptive s
hedule). We 
onsider both the sum-of-
ompletion timesmeasure, or the sum of the last 
olor assigned to ea
h vertex, as well as the more 
ommonmakespan measure, or the number of 
olors used.In this paper, we study two fundamental 
lasses of graphs: planar graphs and partial k-trees.For both 
lasses, we give a polynomial time approximation s
heme (PTAS) for the multi
oloringsum, for both the preemptive and non-preemptive 
ases. On the other hand, we show theproblem to be strongly NP-hard on planar graphs, even in the unweighted 
ase, known as theSum Coloring problem. For non-preemptive multi
oloring sum of partial k-trees, we obtaina fully polynomial time approximation s
heme. This is based on a pseudo-polynomial timealgorithm that holds for a general 
lass of 
ost fun
tions. Finally, we give a PTAS for themakespan of a preemptive multi
oloring of partial k-trees that uses only O(log n) preemptions.These results are based on several properties of multi
olorings and tools for manipulatingthem, whi
h may be of more general appli
ability.
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1 Introdu
tionIn multipro
essor systems 
ertain resour
es may not be shared 
on
urrently by some sets of jobs.S
heduling dependent jobs on multiple ma
hines is modeled as a graph 
oloring problem, whenall jobs have the same (unit) exe
ution times, and as graph multi
oloring for arbitrary exe
utiontimes. The verti
es of the graph represent the jobs and an edge in the graph between two verti
esrepresents a dependen
y between the two 
orresponding jobs that forbids s
heduling these jobs atthe same time.An instan
e to multi
oloring problems is a pair (G;x), where G = (V;E) is a graph, and x is ave
tor of 
olor requirements (or lengths) of the verti
es. For a given instan
e, we denote by n thenumber of verti
es, by p = maxv2V x(v) the maximum 
olor requirement. A multi
oloring of G isan assignment  : V ! 2N , su
h that ea
h vertex v 2 V is assigned a set of x(v) distin
t 
olorsand adja
ent verti
es re
eive non-interse
ting sets of 
olors.A multi
oloring  is 
alled non-preemptive if the 
olors assigned to v are 
ontiguous, i.e. if forany v 2 V , (maxi2 (v) i) � (mini2 (v) i) + 1 = x(v). If arbitrary sets of 
olors are allowed, the
oloring is preemptive. The preemptive version 
orresponds to the s
heduling approa
h 
ommonlyused in modern operating systems [SG98℄, where jobs may be interrupted during their exe
utionand resumed at a later time. The non-preemptive version 
aptures the exe
ution model adoptedin real-time systems where s
heduled jobs must run to 
ompletion.One of the traditional optimization goals is to minimize the total number of 
olors assigned toG. In the setting of a job system, this is equivalent to �nding a s
hedule minimizing the time withinwhi
h all the jobs have been 
ompleted. Su
h an optimization goal favors the system. However,from the point of view of the jobs themselves, another important goal is to minimize the average
ompletion time of the jobs.We study multi
oloring graphs in both the preemptive and non-preemptive models, underboth the makespan and sum-of-
ompletion times measures de�ned as follows. Denote by f (v) =maxi2 (v) i the largest 
olor assigned to v by multi
oloring  . The multisum of  on G isSMC(G; ) = Xv2V f (v) :Minimizing the makespan is simply minimizing maxvff (v)g. The problem of �nding a preemptive(non-preemptive) multi
oloring with minimum sum (makespan) is denoted p-sum (p-makespan),while the non-preemptive version is np-sum (np-makespan, respe
tively). When all the 
olor re-quirements are equal to 1, the makespan problem is simply the usual 
oloring problem, while thesum versions redu
e to the well-known sum 
oloring (SC) problem.The Sum Multi
oloring (SMC) problem has numerous appli
ations, in
luding traÆ
 interse
tion
ontrol [B92, BH94℄, session s
heduling in lo
al-area networks [CCO93℄, 
ompiler design and VLSIrouting [NSS99℄.1.1 Related workThe p-makespan problem is also known as weighted 
oloring [GLS88℄ or minimum integer weighted
oloring [X98℄. Gr�ots
hel, Lov�asz, and S
hrijver [GLS88℄ gave a polynomial time algorithm onperfe
t graphs. For many 
lasses of perfe
t graphs, preemptive multi
oloring with the makespanobje
tive 
an be translated to the ordinary 
oloring problem. A vertex v with 
olor-requirementx(v) is repla
ed by a 
lique C(v) of size x(v) (
onne
ting a 
opy of v to a 
opy of u if u andv are 
onne
ted in G). This redu
tion is polynomial if p is polynomial in n, but 
an often bedone impli
itly for large values of p. In the 
ontext of makespan this redu
tion preserves optimumsolution. Su
h redu
tion is possible for families of graphs 
losed under 
liqueing; e.g. 
hordal (andthus interval graphs). For a faster multi
oloring algorithm on 
hordal graphs see [H94℄.1



The p-makespan problem is NP-hard even when restri
ted to hexagon graphs (whi
h are planargraphs) [MR97℄, while a 4=3-approximation is known [NS97℄. The hexagon graphs are importantfor their use in 
ellular networks. The problem is polynomial solvable on outerplanar graphs [NS97℄,and trivial on bipartite graphs (
f. [NS97℄).Non-preemptive multi
oloring has been studied in several 
ontext. On interval graphs it 
or-responds to the Dynami
 Storage Allo
ation problem, for whi
h the best approximation known is5 [Ger96℄. On line graphs, it forms the basis of the Minimum File Transfer S
heduling problem,whi
h is approximable within 2.5 [Cof85℄.The sum 
oloring problem was �rst dire
tly studied in [KS89℄, followed by [KKK89℄. Re-
ent resear
h has 
on
entrated on �nding approximation algorithms and proving hardness results[BBH+98, BK98, HKS01℄. The paper [BBH+98℄ addressed general graphs, bounded degree graphs,and line graphs, and the paper [BK98℄ studied bipartite graphs. For partial k-trees, Jansen [J97℄gave a polynomial algorithm for the Optimal Chromati
 Cost Problem (OCCP) that generalizesthe sum 
oloring problem. See [HKS01℄ for a re
ent summary of known results.The paper most relevant to our study is [BHK+98℄, where the np-sum and p-sum problems arethoroughly studied and the following results presented, among others. A 
onstant fa
tor approxima-tion is given in the preemptive 
ase for graphs where the Maximum Independent Set (MIS) problemis polynomially solvable (e.g. perfe
t graphs), while an O(�)-approximation holds for graphs whereMIS is �-approximable. In the non-preemptive 
ase, an O(logn)-approximation is given for graphswhere MIS is polynomial solvable, whi
h translates to an O(� � log n)-approximation when MISis �-approximable. Further results are given for bipartite, bounded-degree, and line graphs. In[HK+99℄, eÆ
ient exa
t algorithms for np-sum are given for trees and paths, while a polynomialtime approximation s
heme (PTAS) is given for the preemptive 
ase. In [HKS01℄, 
onstant fa
torapproximation is given for np-sum on line graphs and k-
law free graphs.In [BBH+98℄ it was proven that if there exists an f(n)-approximation algorithm for the sum
oloring problem for a given hereditary 
lass of graphs, then there exists a g(n)-approximationalgorithm for Graph Coloring on the same 
lass of graphs, where g(n) = O(f(n) logn). If furtherf(n) = 
(n
) for some 
 > 0, then g(n) = O(f(n)). Based on the hardness result for the minimum
oloring problem, from [FK98℄, this indi
ates that the sum 
oloring problem 
annot be approxi-mated within n1��, for any � > 0, unless NP = ZPP [BBH+98, FK98℄. For bipartite graphs, thesum 
oloring problem is NP-hard to approximate within some fa
tor 
 > 1, unless P = NP [BK98℄.Clearly, these limitations 
arry over to the sum multi
oloring problems.1.2 Our resultsWe 
ontinue the line of work initiated in [BHK+98℄. A problem has a polynomial-time approxima-tion s
heme (PTAS) if it 
an be approximated in polynomial time within 1 + �, for any 
onstant� > 0. If in addition, the 
omplexity of the s
heme is polynomial in both n and 1=�, it has a fullypolynomial approximation s
heme (FPTAS).Partial k-trees: In Se
tion 3 we deal with multi
oloring problems on partial k-trees, graphswhose treewidth is bounded by k. We design a general algorithm CompSum for that goal,that outputs an optimum solution for np-makespan and np-sum on partial k-trees in timeO(n � (p � log n)k+1). Note that the algorithm is only pseudo-polynomial, namely does notrun in polynomial time for large p. The same algorithm solves p-sum and p-makespan onpartial k-trees in polynomial time when p is small (O(log n= log log n)).In Se
tion 4, we give PTASs for both p-makespan and p-sum, that hold for any p. Therespe
tive running times are nO(k2=�3) for the p-makespan problem, and nO(k2=�5) for thep-sum problem. These s
hemes satisfy the additional property that only O(log n) preemptions2



are used. These results are applied in the approximation of planar graphs. We also give anFPTAS for the non-preemptive 
ase, with a running time of O(n2k+3��(k+1)).Planar graphs: In Se
tion 5, we give PTASs for p-sum and np-sum on planar graphs. The runningtimes are nO(1=�5) in the preemptive 
ase, and n � exp(ln lnn + exp(O(��1 log ��1)2)) in thenon-preemptive 
ase. This also implies the �rst PTAS for the sum 
oloring problem. Thesealgorithms are 
omplemented with a mat
hing NP-hardness result for sum 
oloring.For both p-sum and np-sum, the previously best known bounds on planar graphs and partialk-trees were �xed 
onstant fa
tors [BHK+98℄.In order to establish our results, we have derived in Se
tion 2 a number of tools for analyzingand manipulating general multi
oloring instan
es, whi
h 
ould be useful for further resear
h:� Bounds on the number of 
olors used by any optimal (multisum) solution, and transformationsthat redu
e this number at a relatively small 
ost to the obje
tive fun
tion.� S
aling and rounding transformations, that allow redu
tions of the problems to instan
es withsmall 
olor requirements.� Partitions of the instan
es into subinstan
es of relatively uniform 
olor requirement. Thisinvolves a lemma that generalizes the Markov inequality and may be of independent interest.The preemptive and non-preemptive 
ases turn out to require di�erent treatments. Non-preemptiveness restri
ts the form of valid solutions, whi
h helps dramati
ally in designing eÆ
ientexa
t algorithms. On the other hand, approximation also be
omes more diÆ
ult due to these re-stri
tions. The added dimension of lengths of jobs, whose distribution 
an be arbitrary, introdu
esnew diÆ
ulties into the already hard problems of 
oloring graphs. Perhaps our main 
ontributionlies in the te
hniques of partitioning the multi
oloring instan
e, both \horizontally" into segmentsof the 
olor requirements (Se
tion 4) and \verti
ally" into subgraphs of similar length verti
es(Se
tion 5).2 Properties and tools for multi
oloringsMulti
olorings have 
ertain features and 
ompli
ations that distinguish them from (uni)
olorings.In unit-length instan
es, all verti
es are 
reated equal and need only a single value as a 
olor.In multi
oloring instan
es, verti
es not only need multiple value, but their requirements 
an bearbitrarily varied. Thus, greedy approa
hes, e.g., 
an fail quite dramati
ally, be
ause short jobs
annot a�ord to wait for intermediate jobs whi
h in turn 
annot wait for long jobs. What we needis a toolbox for managing and manipulating these weighted instan
es.After giving key de�nitions in Se
tion 2.1, we study in Subse
tion 2.2 the number of 
olorsneeded in optimal and approximate sum multi
olorings. This is 
ru
ial for limiting our sear
h forappropriate 
olorings.We then study how and to what extent we 
an redu
e the instan
es to ones with small 
olorrequirements. This is done via 
lassi
al approa
hes from s
heduling theory involving rounding ands
aling the 
olor requirements. As elsewhere in this paper, we have on top of the usual s
hedulinginstan
e a graph stru
ture that must be taken into a

ount.An orthogonal redu
tion te
hnique that we develop involves partitioning the vertex set a

ordingto the 
olor requirements. Ea
h set in the partition 
ontains nodes with 
olor requirements in agiven interval, and these intervals are 
arefully 
hosen so that, intuitively speaking, the average
olor requirement in ea
h set is mu
h lower than the smallest 
olor requirement in the followingset. Using s
aling, this allows us to redu
e the problem to that on instan
es with small maximum3




olor requirements, with 
on�den
e that the solutions for the small jobs will not unduly delay thelong jobs. The formation of this partition involves a generalization of Markov inequality, whi
hmay be interesting in its own right.2.1 NotationA multi
oloring instan
e I = (G;x) 
onsists of a graph G and 
olor requirements ve
tor x, but wemay also use G to refer to the instan
e. Let S(G) =Pv x(v) be the sum of the 
olor requirementsof the verti
es. More generally, for a set of numbers X, let S(X) denote Pxi2X xi. Let pmin denoteminv x(v) and re
all that p denotes the maximum 
olor requirement. Let �(G) = p=pmin denotethe ratio between the maximum and minimum 
olor requirements of verti
es in G. When all the
olor requirements x(v) are divisible by q, let I=q denote the instan
e resulting from dividing ea
hx(v) by q.The minimum multisum (or multi
oloring sum) of a graph G, denoted by pSMC(G), is the min-imum SMC(G; ) over all multi
olorings  . We denote the minimum 
ontiguous (non-preemptive)multisum of G by npSMC(G). The minimum number of 
olors in an ordinary uni-valued 
oloringof G (i.e. ignoring the 
olor requirements) is denoted by �(G). We denote by �(I) the minimummakespan, i.e. the number of 
olors required to preemptively multi
olor I = (G;x). We let OPT (G)denote the 
ost of the optimal solution, for the respe
tive problem at hand.Utilizing the relationship between 
oloring problems and s
heduling problems, we view ouralgorithms as pro
edures that 
olor in (syn
hronous) rounds. Ea
h round involves one time unit,and 
olors some independent set (whose verti
es have not been fully 
olored) by some 
olor.De�nition 2.1 When a vertex v is not 
olored in a given round, we say that the vertex is delayedby the independent set 
hosen in this round.In parti
ular, the �nish time f(v) equals x(v) plus the total delay of v.2.2 Bounding the number of 
olors neededWe 
an bound the number of 
olors used by any optimal sum multi
oloring. In this subse
tion,multi
olorings 
an be either preemptive or non-preemptive. We note that 
oloring the graph withminimum number of 
olors does not always help in solving even the SC problem. For instan
e,while bipartite graphs 
an be 
olored with two 
olors, there exist bipartite graphs (in fa
t, trees)for whi
h any optimal solution for the sum 
oloring problem uses 
(logn) 
olors [KS89℄. We showhere that this ratio bound is also tight in the multi
oloring 
ase.Lemma 2.1 (Color 
ount) At most n=2i verti
es remain to be 
ompleted after 2i�(G) rounds ofan optimal sum multi
oloring, for any i = 1; : : : ; log n.Proof. Suppose the 
laim fails, in whi
h 
ase let i0 be the smallest value for i for whi
h it fails.Then, at most n=2i0�1 verti
es remain after step X = 2(i0 � 1)�(G). The delay during the next2�(G) rounds is at least 2�(G) per vertex, or stri
tly more than 2�(G) � n=2i0 = �(G) � n=2i0�1 intotal.Consider the alternative 
oloring, that 
olors all verti
es not 
ompleted at stepX by �(G) 
olors.For that, we use an arbitrary minimum makespan 
oloring with 
olors X + 1; : : : ;X + �(G). Thedelay 
aused is at most �(G) per vertex, or �(G)n=2i0�1 in total. This 
ontradi
ts the assumptionthat the 
oloring above was optimal (namely, it is better to use in the last 2�(G) rounds this trivialalgorithm).It follows from Lemma 2.1 that an optimal sum multi
oloring uses at most p + 2�(G) log n
olors, sin
e after 2�(G) log n rounds, at most one vertex 
an remain.Corollary 2.2 An optimal sum multi
oloring uses at most p+ 2�(G) log n 
olors.4



Note that for O(1)-
olorable graphs, �(G) = O(p), even in the non-preemptive 
ase. Indeed,we 
an fully 
olor ea
h 
olor-
lass one after the other, getting at most O(p � �(G)) = O(p) delayper vertex.Remark: In the appendix, we will see that the 
olor-
ount lemma holds for a general familyof obje
tive fun
tions.Another 
orollary 
on
erns the number of 
olors in approximate solutions. Note that this is anexisten
e result.Lemma 2.3 There is a 1+ �-approximate solution for the sum multi
oloring problems that uses atmost O(�(G) log(k=�)) 
olors, on a k-
olorable graph.Proof. Let i = log(k=�). Use the �rst 2i�(G) 
olors of an optimal sum multi
oloring, followed by a�(G)-
oloring of the remaining verti
es. At most n=2i verti
es remained after the �rst 2i�(G) 
olors.Thus, the additional 
ost 
aused by the se
ond part is at most �(G)n=2i = ��(G)n=k � �S(G).The last inequality follows as �(G) � kp.Rounding and s
aling instan
esHere we present general methods for redu
ing p while paying a small pri
e in the approximationfa
tor. One of the main tool we use is the following s
aling lemma.Lemma 2.4 (Preemptive s
aling.) Let � > 0 and 
 = 
� be large enough. Let I = (G;x) bea multi
oloring instan
e where for ea
h v, x(v) is divisible by q and x(v)=q � 
 � lnn. Then, themakespan of I and I=q are related by�(I) � q � �(I=q) � (1 + �) � �(I): (1)Proof. The �rst inequality of (1) is veri�ed as follows. Use an optimum 
oloring of I=q for 
oloringI, by repeating q times ea
h 
olor 
lass of I=q. Observe that the number of 
olors used for ea
hvertex v is q �x(v)=q = x(v) as required. In addition, the total number of 
olors used is bounded byq ��(I=q), hen
e the inequality. We now prove the se
ond inequality using a probabilisti
 argument.Consider an optimum makespan solution OPT (I). We shall form a solution  for I=q. In
ludeea
h 
olor 
lass of OPT (I) into  with probability (1+ �2)=q (with �2 to be determined later). Theexpe
ted makespan (whi
h is the expe
ted number of independent sets sele
ted) is ((1+�2)=q)��(I).So, by Markov inequality (
f. [MR95℄), the makespan is at most ((1 + �2)(1 + �3)=q) � �(I), withprobability at least 1� 1=(1 + �3).For this solution to be legal for I=q, we need to show that ea
h vertex v gets at least x(v)=q
olors. We show that this holds with non-zero probability. The number of 
olors ea
h v gets is abinomial variable with mean (1 + �2) � x(v)=q � (1 + �2) � 
 � logn: For a binomial variable X withmean �, and for any Æ, 0 � Æ � 1, Cherno� bound (
f. [MR95℄) gives thatPr(X < (1� Æ)�) � exp(�Æ2 � �=2):By 
hoosing 
 = 4(1+ �2)=�22, we bound the probability that v re
eives fewer than x(v)=q 
olors by1=n2. Hen
e, with probability at least 1� 1=(1 + �3)� 1=n, all verti
es get their required numberof 
olors, and simultaneously the makespan is at most (1 + �3) � (1 + �2) � �(I)=q. Therefore, thereexists a 
oloring of I=q a
hieving these properties.Sele
t �2 and �3 so that (1 + �2)(1 + �3) = (1 + �). We then form a 
oloring for I by repeatingq times ea
h 
olor 
lass of the 
oloring for I=q. The resulting makespan is at most (1 + �)�(I),yielding Inequality (1). 5



A modi�
ation of this lemma yields a similar bound for the preemptive multisum. This involvesbounding separately for every vertex the probability that the �nish time in the 
oloring of vertexI=q is greater than (1 + �)=q times its �nish time in the optimal sum 
oloring of I.Corollary 2.5 Let � > 0 and 
 = 
� be large enough. Let I = (G;x) be a multi
oloring instan
ewhere for ea
h v, x(v) is divisible by q and x(v)=q � 
 � lnn. Then, the multisums of I and I=q arerelated by pSMC(I) � q � pSMC(I=q) � (1 + �) � pSMC(I): (2)An important 
onsequen
e of the above lemma when minimizing the preemptive makespan isthat at a small pri
e, we may assume p is only logarithmi
 in n.Lemma 2.6 (Logarithmi
 length) Consider the p-makespan problem in k-
olorable graphs. Forany � it is possible to redu
e the instan
e I to an instan
e �I so that:1. The maximum 
olor requirement in �I is �p = O(1=�3 � logn).2. A �-ratio solution  to �I 
an be transformed into a �(1 + �)-ratio solution of I.3. The number of preemptions in the �nal transformed solution for I is logarithmi
 in n.Proof. Let 
0 be a 
onstant larger than both 2k and 
�=2 of Lemma 2.4. Let ! = blg p
+ 1 denotethe number of bits needed to represent p, and let � = dlg(
0=�) + log log n+ 1e. Let q = 2!��. Weshall partition the 
olor requirements x into two parts x0 and x00, yielding instan
es I 0 = (G;x0)and I 00 = (G;x00) su
h that x(v) = x0(v) + x00(v). More spe
i�
ally, x0 is derived by zeroing in xthe ! � � less signi�
ant bits, and x00 = x modulo 2!�� represents the less signi�
ant bits in x.Intuitively, it does not 
ause a large delay to s
hedule x00 �rst so that only 
olor requirements x0remain. This follows as x00 is small relative to x0. Now, note that x0 are all divisible by 2!��. Wethen use Lemma 2.4 to s
ale down the x0 into � bits numbers and solve it and derive a solution forx. Observe that 2! � 2p, and thus q = 2!�� � �2!=(2
0 logn) � �p=(
0 logn). Consider theinstan
e �I = I 0=q with 
olor requirements x0 divided by q. Given a solution  for �I, a solution toI is 
omposed as follows. I 00 is s
heduled non-preemptively by any graph k-
oloring of G. Later,we take the s
hedule of  and repeat ea
h independent set q times. As it is easily seen that theresulting s
hedule is feasible for I the redu
tion is 
ompleted.We now show the required properties. By the S
aling Inequality (1), the makespan of theresulting s
hedule of I 0 is bounded by q ��(I 0=q) � (1+ �=2)�(I 0): Also, if 
0 � 2k, the makespan ofthe k-
oloring of I 00 is at most kp�=
0 < (�=2)p < (�=2)�(I). Thus, the makespan of the 
ombineds
hedule of I is at most a 1+ � fa
tor from optimal. The length �p of the longest task in �I is at most2� = O(
0=� � logn). Sin
e the graph is k-
olorable, �(�I) � �pk = O(log n). Finally, the number ofpreemptions used in the redu
tion overall is at most �pk + k = O(
0=� � logn).Thus, when seeking an approximate preemptive makespan multi-
oloring of a graph, one 
anas a �rst step make p logarithmi
 in n at a very small 
ost. We believe that this redu
tion may beof independent interest. It will be used in Se
tion 4 on partial k-trees.For the p-sum problem, su
h a logarithmi
 redu
tion is not in sight. We prove a weaker resultthat transforms p to a value polynomial in n at a low 
ost.Lemma 2.7 (Linear lengths) In the p-sum problem on O(1)-
olorable graphs, one may assumethat p = O(n=�) at the 
ost of in
reasing the 
ost of the solution by at most a 1 + � fa
tor.
6



Proof. Let �1 be a number to be determined later. Choose j su
h that dn=�1e � bp=2j
 � 2�dn=�1e,and put x0 = bx=2j
. The number x0 gives (roughly) the log(n=�1) most signi�
ant bits in x. The\small part" of the 
olor requirements xs = x� x0 � 2j sum to at most O(�1 � p). This follows sin
epxs � n2�1 ; (3)for any x.Now the s
hedule is des
ribed. Let Is be the instan
e indu
ed by the 
olor requirements x�x0 �2j .Choose a minimum 
oloring of G, and s
hedule �rst Is non-preemptively one 
olor-
lass after theother. We separate the 
ost in
urred into two parts: The sum of the 
olor 
ontribution of thesmall numbers, and the delay in
i
ted on the large numbers. Regarding the 
olor-sum of the smallnumbers, it follows from Inequality (3) that sin
e the graph is O(1)-
olorable, this 
ost (whi
h isbounded by O(1) times the sum of the small numbers) is at most O(�1 � p) = O(�1 � S). In addition,this 
oloring of the small numbers gives a delay for the large part of the numbers. The numberof 
olors used in 
oloring the small numbers is bounded by (an order of) the maximum 
olor-requirement in the small part of the numbers. By Inequality (3) this is bounded by O(�1 � p=n) =O(�1 � S=n) in
urring an O(�1 � S) delay for the remaining verti
es. Now, removing the zeros fromthe remaining (\large") numbers, we get an instan
e with 
olor requirements x0 with maximumof O(1=�1 � n). We now solve this instan
e with the assumed algorithm, and take q 
opies of ea
hresulting set. Now, with an appropriate 
hoi
e of �1, we get by Corollary (2.5) that only a (1 + �)in
rease in the 
ost is in
urred.It is interesting to note that this means that our approximation will hold even when 
olor require-ments are super-polynomial and optimal solutions may not be polynomial representable. Also, forgeneral graphs, a similar argument follows with p = O(n � �(G)).In the non-preemptive 
ase, s
aling 
an be done without error.Lemma 2.8 (Exa
t non-preemptive s
aling) Let I = (G;x) be a non-preemptive multi
olor-ing instan
e where for ea
h v, x(v) is divisible by q. Then,q � npSMC(I=q) = npSMC(I): (4)Proof. Let  �(I) be an optimal np-sum 
oloring of I, and let Ci be the set of verti
es 
oloredwith 
olor i. By indu
tion, the �nish time of any vertex in  �(I) is a multiple of q. Now, 
onsiderthe 
oloring  formed by every q-th 
olor of  �,  = Cq; C2q; : : :. Then,  is a proper 
oloring ofI=q. Hen
e, npSMC(I=q) � npSMC(I)=q. On the other hand, given a 
oloring of I=q, we 
an form a
oloring of I by repeating ea
h 
olor q times. Thus, npSMC(I) � q � npSMC(I=q).Rounding non-preemptive instan
es The non-preemptive 
ase is easier to round-and-s
ale,as we 
an redu
e the minimum length down to a 
onstant while paying only a slight overheadfa
tor. Let I=q = (G;x0) be the instan
e obtained by x0(v) = bx(v)=q
: Re
all that pmin denotesminv x(v).Lemma 2.9 (Non-preemptive rounding) Let I = (G;x) be a multi
oloring instan
e, and � > 0given. Suppose pmin � 3=� and suppose we 
an approximate np-sum on I=q within ratio �, wheneverq = O(�pmin). Then, we 
an approximate np-sum on I within ratio (1 + �)�.Proof. Let �1 to be determined, and let q = d�1pmine. Let x0(v) = bx(v)=q
 and let I=q = (G;x0)be the 
orresponding instan
e. Given a multi
oloring  0 of I=q, form a s
hedule  00 by repeatingea
h 
olor of I=q q times. Observe that ea
h x0(v) � 1=�1, for ea
h vertex v. Note that q � x0(v) �x(v)� (q � 1) � (1� �1)x(v). 7



Let t = b(1 � �1)=�1
. We �nally form a s
hedule  , by repeating on
e every 2t-th 
olor 
lassof  00, i.e. if  00 
onsists of the sequen
e of independent sets C1; C2; : : : ;, then  
onsists of all ofthese sets, along with double o

urren
es of the sets Ci�2t, i = 1; 2; : : :. Sin
e ea
h job is of lengthat least t, the number of 
olors they re
eive is multiplied by 1 + 1=t. Hen
e,  (v) 
ontains at leastqx0(v)(1 + 1=t) � (1� �1)x(v)(1 + 1=t) � x(v)
olors.The �nish time of v in  is at most (1 + 2=t) 00(v) = (1 + 2=t)q 0(v). Then, the multisum of 00 is at most (1 + 2=t)qOPT (I=q) � (1 + 2=t)OPT (I):Set � = 2=t = 2b(1� �1)=�1
 satis�es the lemma.We shall be using this lemma for partial k-trees when the ratio of maximum to minimum 
olorrequirement is relatively small.2.3 Partitioning into subgraphs of relatively uniform 
olor requirementThe main te
hnique introdu
ed here involves splitting the instan
e into subgraphs in whi
h allverti
es have similar 
olor requirements.Call a 
lass G of graphs hereditary if any indu
ed subgraph of a member of the 
lass is also amember. Let SMC refer to either p-sum or np-sum. Re
all that �(G) denotes the ratio p=pmin.Theorem 2.10 Let n, q = q(n) and � be given. Suppose that for any G in a hereditary 
lass Gthat has at most n verti
es and has �(G) � q, we 
an approximate SMC within a fa
tor 1 + �(n)using � �p(G) 
olors in time t(n). Then, we 
an approximate SMC on any graph in G within a fa
tor1 + �(n) + �=pln q using at most 2� � p(G) 
olors in O(t(n)) time.We shall later see how to approximate np-sum eÆ
iently on planar graphs with � relativelysmall. That, 
ombined with the above theorem, then yields a PTAS for np-sum on planar graphs.We �rst prove two lemmas.Markov inequality shows that at most 1=` fra
tion of the elements of a set X = fx1; x2; : : : ; xngof non-negative numbers are greater than ` times the average value x (
f. [MR95℄). De�ne g(x) tobe the number of xi greater than or equal to x, i.e. g(x) = jfxi : xi � xgj. Then, Markov inequality
orresponds to g(` � x) � 1̀xn:Rewriting t = `n, and x = S(X)=n, it 
orresponds tog(t) � S(X)t ;whi
h holds for every t � 0. It is easy to show it to be tight for any �xed value of t but notfor multiple values of t simultaneously. We show that if we are free to 
hoose t from a range ofvalues, the resulting bound on the tail is improved by a logarithmi
 fa
tor. We state this �rst foran arbitrary fun
tion f .Lemma 2.11 Let r and s be real numbers, s < r, and let f be a fun
tion de�ned on [s; r℄. Then,for some t 2 [s; r℄, tf(t) � 1ln(r=s) Z rs f(x)dx:
8



Proof. Let t be the value x in the interval [s; r℄ that minimizes xf(x). Then,Z rs f(x)dx = Z rs xf(x) � 1xdx � tf(t) Z rs 1xdx = tf(t) ln(r=s): (5)A weaker version of the lemma gives perhaps the most indi
ative improvement on Markovinequality. It uses the fa
t that g is positive and integer-valued. Its bound 
an be shown to betight.Corollary 2.12 There is a t, s � t � r, su
h thatg(t) � 1ln(r=s) � S(X)t :Proof. De�ne the indi
ator fun
tions Ii(x) as 1 where x � xi and 0 elsewhere. Thus, g(x) =Pi Ii(x). Then, Z 10 g(x)dx =Xi Z 10 Ii(x)dx =Xi xi = S(X): (6)From Lemma 2.11 we have that tg(t) � 1ln(r=s) R10 g(x)dx = 1ln(r=s)S(X).We use Lemma 2.11 to partition the instan
e into 
ompa
t segments with good average weightproperties.Proposition 2.13 Let X = fx1; : : : ; xng be a set of non-negative reals, and let q be a naturalnumber. Then, there is a polynomial time algorithm that generates a sequen
e of integral breakpointsbi, i = 1; 2; : : :, with pq � bi+1=bi � q, su
h thatmXi=1 g(bi) � bi � 1lnpq S(X):Proof. Let b0 be the smallest xi value, and indu
tively let bi be the breakpoint obtained by theLemma 2.11 on the set Xi = fxj : xj � bi�1g with s = bi�1 � pq and r = bi�1 � q. Terminate thesequen
e on
e bi ex
eeds the maximum length p.Sin
e bi � bi�1pq, we have that bi � qi=2, and the loop terminates within 2 logq p iterations. Inea
h iteration, the ratio r=s is at least pq. By Lemma 2.11,bi � g(bi) � 1lnpq Z bi�1qbi�1pq g(x)dx:Note that bi � bi�1pq and thus the intervals [bi�1pq; bi�1q) are disjoint. Hen
e,Xi big(bi) � 1lnpq �Xi Z bi�1qbi�1pq g(x)dx � 1lnpq Z 10 g(x)dx = S(X)lnpq :The algorithm that �nds the bi partition 
an be easily implemented in linear time.Proof of Theorem 2.10.Our approximation algorithm for an arbitrary graph G in G is as follows:1. Find breakpoints b1; b2; : : : of the 
olor requirements x(v1); : : : ; x(vn) by Proposition 2.13 forthe given value of q.2. Partition G into subgraphs Gi, indu
ed by Vi = fv : bi�1 � x(v) < big, for whi
h �(Gi) � q.9



3. Solve instan
es (Gi; x) independently (by the algorithm assumed in Theorem 2.10) and s
hed-ule them in that order.The reason why we 
an s
hedule the subgraphs Gi in order is that we have ensured with our 
hoi
eof breakpoints that the smaller jobs don't delay the longer jobs mu
h.The 
ost of the multi
oloring is derived from two parts: the sum of the 
osts of the subproblems,and the delay 
osts in
urred by the 
olorings of the subproblems. We 
onsider separately the delay
aused by ea
h Gi. Namely, the total delay is broken into the delays 
aused by ea
h individualsubproblem. For ea
h subproblem, the delay o

urred is re
e
ted by the number of 
olors used inthis subproblem, times the number of yet un
olored verti
es (namely, the number of 
olors usedtimes the total number of verti
es in
luded in later problems whi
h are verti
es of higher lengths).The number of 
olors used in Gi is assumed to be O(� � bi), while g(bi) represents the number ofverti
es delayed. By Proposition 2.13, this 
ombined 
ost is thus O( �pln q � S(G)).The 
ost of subproblem i is, by assumption, at most (1 + �(n))OPT (Gi). Thus, the sum of the
osts of the subproblems, ex
luding the delay is Pi(1 + �(jGij))OPT (Gi) � (1 + �(n))OPT (G).The total 
ost of the 
oloring is thus at most (1 + �(n) +O( �pln q ))OPT (G). The total number of
olors used is at most Pi �bi � �P1i=0 p=qi = (1 + 1=(q � 1))� � p.3 Exa
t multi
olorings of partial k-treesIn this se
tion, we study exa
t algorithms for multi
oloring partial k-trees, parti
ularly for np-sum.We note that the results here hold for a fairly general type of a 
ost fun
tion or measure thatin
ludes makespan and multisum fun
tions. The de�nition of this family in its most general formis deferred to the appendix. The algorithm is des
ribed for the sum of 
ompletion time measure,while slight 
hanges give a solution for the makespan measure.The s
enario is as follows. We are given a family F of 
olorings, and we look for the best 
oloringin this family. A trivial example would be for the family F to 
ontain all possible 
olorings. Thismay, however, not be tra
table. Instead, F may 
ontain a family of 
oloring of some restri
tiveform where the best one is only an approximation of the optimum 
oloring. The family F must beuniformly well behaved in the sense that F must 
ontain a good approximation for any instan
e.Hen
e, F 
annot be too small.The algorithm CompSum we present below follows a path similar to [J97℄ and is des
ribed forthe sake of 
ompleteness. As we deal with graphs of �xed treewidth, whi
h are k + 1-
olorable,we may assume by Corollary 2.2 that the number of 
olors used by an optimal 
oloring is at most
 � p � logn, where 
 � 2k + 3. We assume without loss of generality that the graph 
ontains noisolated verti
es.Partial k-trees are graphs that 
an be represented by the following tree stru
ture. In a treede
omposition, we are given a 
olle
tion X of at most n = jV j subsets Xi � V of verti
es. Ea
hsubset Xi 
ontains at most k+1 verti
es. In addition, the subsets Xi are the verti
es in a supertree,T (X ; E) with the following properties.(I)Edge-
overing property: The subsets Xi 
over the edges of G, namely, for ea
h (v; u) 2 E,there exists a subset Xi 2 X su
h that v; u 2 Xi.(II)Conne
tivity: For every vertex v, the subtree indu
ed by the subsets Xj 
ontaining v is
onne
ted.The verti
es of the partial k-tree 
orrespond to the nodes of the supertree, and two verti
es areadja
ent if they are both 
ontained in some set Xi. Trees are partial 1-trees, where the edges form10



the sets Xi. Partial k-trees draw their usefulness from their sus
eptibility to dynami
 programmingsolutions. This uses the fa
t that it is possible to de
ompose the problem 
leanly: if we delete allk + 1 elements of a set Xi from the instan
e, we break the graph into disjoint 
omponents.It is well known (see, e.g., [J97℄) that a small modi�
ation in this tree stru
ture, allows to keepthe above properties and extend it with the following properties. It is possible to root T su
h that1. T is a binary tree.2. If supervertex Xi has a single 
hild Xj , then jjXij � jXj jj = 1 and Xi � Xj or Xj � Xi.3. If supervertex Xi has two 
hildren Xk and Xj , then Xi = Xk = Xj .The algorithm CompSum follows the prototypi
al dynami
 programming paradigm on trees.Ea
h node in the supertree involves up to k+1 verti
es in the graph. For every meaningful 
oloringof these verti
es, we 
ompute the 
ost of the 
heapest 
onsistent 
oloring of the subtree rootedat the node. The 
omputation pro
eeds bottom-up, with ea
h node depending only on values
omputed at its 
hildren.For every Xi, let Ti be the tree rooted by Xi, and let Ui = SXj2Ti Xj . Let gi : Xi ! 2Z+ , gi 2 Fbe a fun
tion that assigns x(v) 
olors to the verti
es v 2 Xi. Namely, gi is some multi
oloring ofthe set Xi. Denote by Rgi(v) this set of 
olors assigned to v by gi.De�ne Mi(gi) to be the minimum SMC value of all multi
olorings �gi (in F) that extend gi to theverti
es in Ui. Formally, let Qi be the set of fun
tions �gi : Ui ! f1; : : : ; 
 � p � logng, �gi 2 F with�gi(v) = gi(v), for all v 2 Xi. DenoteMi(gi) = min�gi2QifSMC(Ui; �gi)g:These values are 
omputed in a bottom-up manner. In a leaf Xi we have for any fun
tion giMi(gi) = ( SMC(Xi; gi); if Rgi(v) \Rgi(u) = ; for all u; v 2 Xi s.t. (u; v) 2 E;1; otherwise.In what follows, we 
onsider only fun
tions gi that 
orrespond to legal 
olorings of Xi, namely,Rgi(v) \Rgi(u) = ; for all u; v 2 Xi & (u; v) 2 E:Now, 
onsider an internal nodeXi, with a single 
hildXj in the tree. Assume �rst that Xi � Xj.Let fvg = Xj nXi. Given a fun
tion gi, let Lgi be the set of legal 
olorings for Xj that are 
onsistentwith gi on Xi. (We show later that we 
an bound the 
ardinality of Lgi by a natural parameter ofthe family F .) In this 
ase, Mi(gi) = min�gi2LgifMj(�gi)g:Otherwise, we have Xj � Xi. Let fvg = Xi n Xj. In this 
ase, for a fun
tion gi giving values toXi, let �gi be the restri
tion of gi to Xj . By previous 
omputation, we know Mj(�gi); the optimumextension of Xj to Uj. Then Mi(gi) =Mj(�gi) + fgi(v):Namely, we add the �nish time given to v by gi to the minimum 
olor-sum over UjFinally, we have the 
ase of Xi with two 
hildren Xj and Xk. Note that by the Conne
tivityproperty, Uj \ Uk = Xi. Let gi be a fun
tion on Xi(= Xk = Xj). By previous 
omputation, weknow that values Mj(gi) and Mk(gi), the 
osts of the respe
tive fun
tions extending gi optimallyto respe
tively Uk and Uj. By adding these together, we have a

ounted for the 
ost of 
oloring allof Ui, but doubly 
ounted the �nish times of verti
es in Xi. Thus,Mi(gi) =Mj(gi) +Mk(gi)� Xv2Xi fgi(v):11



We note that by the edge-
overing property, all the �nite values Mt(gi) for the root Xt rep-resent legal 
olorings gi of all the verti
es of G. Hen
e the minimum multi
olor sum is given bymingifMt(gi)g. It is easy to 
ompute the a
tual minimum 
oloring from the above.The CompSum algorithm requires only slight 
hanges to �nd the optimum makespan of thepartial k-trees.Analysis The following parameter is used in measuring the running time of the pro
edure. Wedenote by D = D(F ; v) the number of di�erent 
olorings v has among the family F . Let D(F)denote maxvfD(F ; v)g. \Good" families F are ones with D(F) small.Let us now estimate the time 
omplexity. We need to 
ompute Mi(gi) for all the appropriatefun
tions gi. For a given fun
tion gi, the required time is O(k) per edge in the supertree. Thenumber of di�erent fun
tions gi on Xi is bounded by Dk+1, sin
e ea
h of the at most k+1 verti
esin Xi has at most D di�erent 
olorings. Sin
e the number of verti
es of T is bounded by n, theresulting 
omplexity is bounded by O(n � Dk+1).De�nition 3.1 A family F of 
olorings is sear
hable if, for ea
h vertex, the number of di�erent
olorings for v is polynomial and they 
an be generated in polynomial time.Theorem 3.1 Given a sear
hable family F , CompSum 
an �nd either the optimum multisum orthe optimum makespan in time O(nDk+1).Remark: The main problem with the above time 
omplexity is that the number D may be verylarge. In parti
ular, while we know that the number of non-redundant non-preemptive 
olorings ofa vertex are fewer than (2�(G) + 1)p, where �(G) denotes the 
hromati
 number of G, the numberof preemptive 
olorings may be as large as �p log np �, or exponential in p.3.1 Two 
orollariesOur �rst result is for np-sum on partial k-trees. In this 
ase, by Corollary 2.2, the number ofpossible 
olorings of a vertex v, D(v), is bounded by D = O(k � p � logn), sin
e we only need tospe
ify the �rst 
olor with the rest of the 
olors being 
onse
utive.Corollary 3.2 The np-sum and np-makespan problems admit an exa
t algorithm for partial k-treesthat runs in O(n � (kp log n)k+1) time.For the spe
ial 
ase of trees, i.e. 1-trees, np-sum 
an be solved in time O(np) and O(n2) [HK+99℄.It is not 
lear if an algorithm exists for partial k-trees that does not depend on p, but it is likelythat the polynomiality and log fa
tors 
ould be improved.In general, the situation in the preemptive 
ase seems harder, as great many 
olorings are possi-ble for a single vertex. However, 
onsider the 
ase of preemptive 
oloring when 
olor requirementsare small, whi
h may be a reasonable restri
tion. We know by Corollary 2.2 that the number of
olors used by an optimum solution for p-sum on partial k-trees is at most O(p � log n). For ea
hvertex we need to 
hoose up to p 
olors in the range 1; : : : ; O(p � log n). The number of di�erentpossible preemptive assignments of 
olors to a vertex v is �O(p�logn)p �. This is polynomial in n dueto the bound on p when p = O(logn= log log n). Hen
e, the following 
orollary.Corollary 3.3 The p-sum and p-makespan problems on partial k-trees admit polynomial solutionsin the 
ase p = O(logn= log log n), k �xed.4 Approximate multi
olorings of partial k-treesWe show in this se
tion that one 
an obtain near-optimal solutions to p-makespan on partial k-treeswith the additional property of using few preemptions. This leads to a good approximation of p-sum,12



that also uses few preemptions. First, we give a still better approximation for the non-preemptive
ase.4.1 FPTAS for np-sum on partial k-treesThe algorithm CompSum is polynomial only when p is polynomially bounded. We now shownp-sum 
an in general be approximated within a very small ratio. The same 
an be shown to holdfor np-makespan.Theorem 4.1 np-sum admits a fully-polynomial time approximation s
heme (FPTAS) on partial k-treesthat runs in (n=�)O(k) time.Proof. Let � be given and let q = b�p=n2
. We may assume that q � 1, as otherwise algorithmCompSum yields an exa
t solution in polynomial time by Corollary 3.2.The algorithm is as follows. Form a new instan
e I 0 = (G;x0) by rounding the 
olor requirementsof the input I = (G;x) upwards to the nearest multiple of q. Apply the algorithm CompSum onthe quotient instan
e I 0=q, and obtain an optimal solution to I 0=q. By Lemma 2.8, this also givesan optimal solution to I 0 formed by repeating ea
h 
olor q times.To analyze the same solution for I, let us �rst relate solutions of I 0 to those of I. Given asolution of I, we 
an form a solution of I 0 by repeating q times, for ea
h node v, some 
olor 
lass
ontaing v. The 
ombined delay 
aused by repeating a single 
olor 
lass is at most qn. In total,we must repeat (at most) n 
olor 
lasses, one per ea
h vertex. Thus, the total additional 
ost isbounded above by qn2. Hen
e,OPT (I) � OPT (I 0) � OPT (I) + qn2 � OPT (I) + �p � (1 + �)OPT (I):Thus, the solution produ
ed by our algorithm is within a fa
tor of 1 + � from optimal.The time 
omplexity of the method is polynomial in p=q � n2=�, amounting to O((n2��1 log n)k+1 =O(n2k+3��(k+1)).4.2 PTAS for p-makespan using O(logn) preemptionsPreemptions are a resour
e that may be desirable to 
onserve. From the point of view of a s
heduler,a preemption is likely to 
ost some overhead in 
hanging to and from an a
tive state. Limited useof preemptions is also preferable for our multisum approximations, in hindsight of our algorithms;in a sense, su
h 
olorings have low entropy.In our 
ase we 
an bound the number of rounds when some vertex turns a
tive, and refer tothis as the maximum number of preemptions per vertex.Theorem 4.2 The p-makespan problem on partial k-trees, k �xed, admits a PTAS that usesO(log n) preemptions per vertex and runs in time nO(k2=�3).The theorem follows immediately from Lemma 4.3 below along with Theorem 3.1. A family of
olorings will here be said to be universal if it depends only on n, p, and a given k-partition of then verti
es. Universal families do not depend on the a
tual stru
ture of the graph, nor on the 
olorrequirements.Lemma 4.3 There is a sear
hable universal family of multi
olorings F with D(F) polynomial inn, su
h that for any k-
olorable graph G, F in
ludes a 
oloring that approximates the makespan ofG by a 1 + � fa
tor. Additionally, the number of preemptions per vertex used by any 
oloring in Fis O(logn).Proof. We re
all the family in the proof of Lemma 2.6. The instan
e I is split into an instan
e I 00and an instan
e �I, where �I has �p = O(log n=�). A 
oloring of I 
orresponds to a non-preemptive
oloring of I 00 and after that a 
oloring of �I repeated q = 2!�� times (see the lemma). Now, 
ount13



the number of possible 
olorings of a vertex v. Re
all that the maximum 
olor-requirement in I 00 isbounded by kp�=
 < (�=2)p. Further, I 00 is 
olored non-preemptively one 
olor 
lass after the other.Hen
e, we 
an assign in advan
e p�=
 �xed (disjoint) 
olors to ea
h 
olor-
lass (independent of theinstan
e). Hen
e, for the �rst (roughly) �=2�(I) 
olors the 
oloring is independent of the instan
e(depends only on k and p) and is of one of (only) k types. What determines D is thus the 
oloringof �I. Now, D(F ; v) �  �p � k�p ! � 2�pk = nO(k
=�1) = nO(k=�3):Taking q 
onse
utive 
opies of ea
h 
olor does not a�e
t this bound.It may seem somewhat surprising that su
h a universal 
oloring 
an approximate simultaneouslyall the multi
oloring instan
es. It should be 
lear from the proof that the di�erent 
olorings of agiven vertex 
an be 
omputed eÆ
iently.4.3 PTAS for p-sum using O(logn) preemptionsWe now give a PTAS for the sum measure, building on the makespan result.Theorem 4.4 The p-sum problem on partial k-trees admits a PTAS using O(log n) preemptionsper vertex with a running time of nO(k2=�5).This theorem follows immediately from the following lemma. The existen
e of a family with Dpolynomial means that we 
an use CompSum to �nd the desired 
oloring.Lemma 4.5 There is a sear
hable universal family of multi
olorings F with D polynomial in n,su
h that for any k-
olorable graph G, F in
ludes a s
hedule that approximates p-sum(G) within1 + �. Additionally, ea
h 
oloring in F has O(log n) preemptions per vertex.We show this by transforming an optimum p-sum solution to an approximate solution with thedesired restri
ted stru
ture that 
olorings in F have. The exa
t s
hedule is divided into segments,and ea
h segment 
onsidered as a makespan instan
e, for whi
h we use the restri
ted approximatesolutions of Lemma 4.3. We also want to ensure that the 
oloring of ea
h vertex is limited toa 
ompa
t interval. Thus, we delete all very small and very large 
olors assigned to the vertex,and s
hedule them in small blo
ks in between the intermediate segments. This will ensure thatonly 
onstant number of segments are a
tive for any given vertex, and therefore there is a 1 + �-approximate sear
hable family of 
olorings for the graph.Proof. Let �4 and �5 be small values to be 
hosen later, and let �0 = �5=k. Partition the 
olorsf1; 2; : : :g into geometri
ally in
reasing segments, where the length di of the i-th segment Li isdi = (1 + �4)i (ignoring round-o�). The set M(v) = f(�0=2)x(v); : : : ; (2=�0)x(v)g is the area of the
olor spa
e to whi
h we want to 
on�ne the 
oloring of v. Let  � be an optimal p-sum s
hedule ofG. Let x0(v) = j �(v) nM(v)j, and xi(v) = j �(v) \ Li \M(v)j. Thus, we obtain instan
es (G;x0)and (G;xi), i = 1; 2; : : :, that partition the instan
e (G;x). Namely, x(v) = x0(v) +Pi xi(v).Our 
oloring  will 
onsist of segments, ea
h 
ontaining a main blo
k for treating xi and kround-robin blo
ks for the remaining 
olor requirements x0. The size of the main blo
k is (1+ �5)di,and the size of ea
h of the k round-robin blo
ks is �0di, for a total segment size of (1 + 2�5)di. Thestarting point of segment i is therefore zi = (1 + 2�5)Pi�1j=1 dj = (1 + 2�5) (1+�4)i2+�4 .Sin
e (G;xi) 
ould be 
olored properly in di = (1 + �4)i 
olors, we 
an obtain by Lemma 4.3 as
hedule  i of (G;xi) with makespan at most (1 + �5)di, whi
h we use in the main blo
k.At most one of the k sets of round-robin blo
ks is used for any given vertex v. For that purpose,we make use of a k-
oloring of G, � : V ! f0; 1; : : : ; k�1g. For ea
h vertex v, and for ea
h segmenti, exa
tly one (more pre
isely, the one indexed by �(v)) of the round-robin blo
ks is used to satisfythe x0(v) requirements. 14



Let a = minifLi 6= ;g = log1+�4(�0=2)x(v) be the index of the smallest segment with a non-empty main blo
k. Similarly, let b = maxifLi 6= ;g be the index of the largest su
h segment.The set of 
olors assigned to v 
an be spe
i�ed pre
isely as follows. For a set S of integers andinteger t, de�ne the set [S + t℄ = fx+ t : x 2 Sg. Then, (v) = b[i=a[ i(v) + zi℄ [ [f1; 2; : : : ; �0dig+ (zi + (1 + �5)di +�(v)�0di)℄:The round-robin blo
k is o�set by zi, the beginning of segment i, (1 + �5)di, the size of the mainblo
k, and �(v)�0di, the 
ombined size of the previous round-robin blo
ks.
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543Figure 1: Transformation of  �(v) to  (v)We illustrate the 
onstru
tion in Figure 1 for a 2-
olorable graph. The upper blo
k shows  �(v)
ut into segments Li. Here, a = 3 and b = 5, so segments L3 through L5 are transformed into mainblo
ks  3(v) through  5(v) in  (v). The se
ond of two round-robin blo
ks are used in segments 3through 5 for satisfying x0(v), whi
h here amounts to the the 
olors used in L1 and L2.We �rst verify that this forms a valid 
oloring of (G;x). The 
oloring is proper for ea
h  i,and thus for the 
orresponding parts of  (v). Also, two verti
es u and v use the same round-robinsegment, then it must be that �(u) = �(v), so they are non-adja
ent and their 
olorings do not
on
i
t.We now argue that the round-robin blo
ks used 
over the remaining 
olor requirements x0(v).We may allo
ate more 
olors than ne
essary, but that does not hurt. Observe that the round-robin blo
ks available to v are a �0 fra
tion of the size of the 
orresponding main blo
ks. Thevalue x0(v) is 
omposed of two parts: values of  �(v) less than (�0=2)x(v) and those greater than(2=�0)x(v). Consider �rst the small values. Let r be the smallest number su
h that Pqi=1 di � x(v),i.e. r = dlog1+�4 x(v)e. The round-robin segments allo
ated to v in segments 1; 2; : : : ; r then 
ontainspa
e for �0x(v) elements. Thus, the segments a; a + 1; : : : ; r 
ontain spa
e for at least (�0=2)x(v)elements, sin
e Pri=1 di � 2Pa�1i=1 di. Therefore, sin
e b � r, the small values do not delay the
oloring of v in  , independent of how v was 
olored by  �,Consider now the 
ase when x0(v) 
ontained some large values of  0. Thus, the index of thelargest segment 
ontaining a non-empty main blo
k is b = log1+�4(2=�0)x(v). Then, the round-robin blo
ks available to v in segments 1; 2; : : : ; b 
ontain spa
e for 2x(v) elements. Hen
e, those insegments a; a+ 1; : : : ; b 
ontain spa
e for at least x(v) elements.The �nish time of a vertex v in  (v) depends on two fa
tors: its �nal segment in  �(v), andits lo
ation within that segment of  (v). The segments expand from  �(v) to  (v) by a fa
tor of1 + 2�5. The 
olors that a vertex re
eives within a segment is beyond our 
ontrol, as the segmentsare handled as makespan instan
es where only the maximum number of 
olors used is relevant. Thismay delay the vertex by what amounts the full size of the last segment in whi
h it was 
olored, or�4x(v). Hen
e, f (v) is bounded above by (1 + 2�5 + �4)f �(v).We 
hoose �4 = �5 = �=3 to ensuref (v) � (1 + �)f �(v). 15



The number of segments used, b�a+1, is at most log1+�4(2=�0) x(v)�0x(v) = log1+�4(2=�0)2, whi
h isO(1=� � log 1=�). In ea
h of these segments a vertex v has O(1=�3 � logn) preemptions, by Lemma 4.3.Hen
e, the total number of preemptions for ea
h vertex is O(1=�4 � log 1=� � log n). Let F denotethe family of all possible legal 
olorings in the above restri
ted form. Thus, in a way similar toLemma 4.3, D(F ; v) is polynomially bounded in n.5 Sum multi
oloring planar graphsWe give a PTAS for both preemptive and non-preemptive 
ases on planar graphs, starting withthe easier preemptive 
ase. For this, we rely heavily on the result obtained in the previous se
tionfor partial k-trees. We mat
h them with an NP-hardness result for the unit-length Sum Coloringproblem.The results hold also for other 
lasses of graphs that are 
onstant 
olorable and 
an be parti-tioned into partial k-trees, su
h as K3;3-free graphs [C98℄.5.1 NP-hardness of sum 
oloring planar graphsIt is 
lear that p-makespan and np-makespan are NP-hard on planar graphs, as they extend theNP-hard minimum 
oloring problem on planar graphs (
f. [GJ79℄). We prove that already thesum-
oloring problem, SC, is NP-
omplete for planar graphs.Theorem 5.1 The SC problem and SMC problem are NP-
omplete on planar graphs.
lll1 2 3

x

y z
u vFigure 2: Gadget for the edge uv.The redu
tion is from the maximum independent set (MIS) problem on planar graphs, whi
his NP-
omplete (
f. [GJ79℄). Given a planar graph G(V;E), we 
onstru
t a graph ~G( ~V ; ~E) byrepla
ing ea
h edge of G by the gadget shown in Fig. 2. For edge e = uv in G we add to ~Gthe verti
es xe; ye; ze; l1e ; l2e ; l3e and the edges xeye; xeze; yeze; xel1e ; xel2e ; xel3e as well as uye and vze.Clearly ~G is planar when G is planar.Let �(G) be the size of the maximum independent set in G. Theorem 5.1 follows from thefollowing lemma.Lemma 5.2 SC( ~G) = 9 � jEj+ 2 � jV j � �(G).Proof. We �rst show the upper bound by 
onstru
ting a 
oloring for ~G given a maximum indepen-dent set I� of G. Color the verti
es of I� with 1 and other verti
es 
oming from G with 2. Colorthe gadget of ea
h edge uv as follows. Color x with 2, and the leaves li with 1. If u is 
olored 1,16



then by the 
hoi
e we made v is not 
olored 1. Color y with 3 and z with 1; otherwise, 
olor y with1 and z with 3. This forms a valid 
oloring of ~G where the 
ost of 
oloring ea
h edge-gadget is 9,and the 
ost of 
oloring the verti
es of G is 2jV j � �(G).We now argue a mat
hing lower bound on SC( ~G), 
laiming that the 
oloring 
onstru
ted aboveis in a sense 
anoni
al. Let  � be an optimal sum 
oloring of ~G. We 
laim that verti
es of G
olored with 1 in  � must form an independent set in G. Assuming that 
laim, the minimum 
ostof 
oloring the verti
es of G is 2jV j ��(G). Sin
e the the minimum 
ost of 
oloring ea
h gadget is9, the minimum 
ost of 
oloring ~G is at least 9jEj+2jV j��(G). Note that u and v are themselvesnot part of the gadget for the edge uv.To prove the 
laim, suppose for the sake of obtaining a 
ontradi
tion that for some edge uv in~G, both u and v are 
olored 1 in  �. We then form another 
oloring  0 of ~G by 
hanging the 
olor ofu to 2, and re
oloring the gadget of ea
h in
ident edge uv0 as needed. Namely, the leaf nodes of thegadgets are 
olored 1, x-nodes 2, y-nodes 1, and z-nodes 3 (unless v0 was 
olored 3, in whi
h 
asewe 
olor z with 2 and x with 3). It 
an be veri�ed that the re
oloring never in
reases the 
ost of agadget. If both u and v0 were 
olored 1, then the 
ost of 
oloring the gadget 
ompatibly was at least12 (as the \triangle" xe; ye; ze has 
olors 2, 3, and 4 or larger 
olors, sin
e 
olor 1 is prohibited).Our transformation thus de
reased the 
ost of the gadget by at least 3, while in
reasing the 
ostof u by only 1. Hen
e, we have obtained a 
oloring of lower 
ost, whi
h is a 
ontradi
tion. Hen
e,the 
laim and the lemma follow.The lemma implies a linear relationship between the approximability of MIS and SC on planargraphs. This uses the fa
t that for a planar graph G, �(G) � jV j=4 and that by Euler's theorem,jEj � 3jV j (see [H69℄).Corollary 5.3 Let f(n) be a monotone non-in
reasing fun
tion. If SC 
an be approximated onplanar graphs in polynomial time within a ratio of 1 + f(n), then MIS 
an be approximated onplanar graphs in polynomial time within a ratio of 1 + 30f(n).Proof. Assume that we are given a pro
edure A that 
an approximate the SC problem within1+f(n). Let G be a graph for whi
h we want to approximate the size of the maximum independentset. Consider the graph ~G de�ned above. Let  � be the minimum sum 
oloring for ~G. ByLemma 5.2, we may assume that this 
oloring assigns 
olor 1 to a maximum independent set andthat it 
ompletes the 
oloring as des
ribed in the proof of Lemma 5.2. Let IA denote the verti
es
olored 1 by A. Observe that SC( ~G) = SC( �) = 9 � jEj + 2 � jV j � �(G). By our assumption,9 � jEj+ 2 � jV j � jIAj � (1 + f(n)) � (9 � jEj+ 2 � jV j � �(G)): Rearranging the terms, we getjIAj � f(n)(9jEj+ 2jV j) + (1 + f(n))�(G) � 29f(n)jV j+ (1 + f(n))� � (1 + 30f(n))�(G):The 
laim now follows.5.2 PTAS for p-sumThe following well-known de
omposition lemma of Baker [B94℄ will be used for both np-sum as wellas p-sum.A 
lass of plane graphs are outerplanar if all verti
es are on the exterior fa
e. More generally,the 
lass of t-outerplanar graphs(
f. [B94℄) are de�ned to be the outerplanar graphs when t = 1,and indu
tively, when t > 1, graphs su
h that the graph indu
ed by verti
es not on the exteriorfa
e is t � 1-outerplanar. The only property of t-outerplanar graphs that is relevant here is thatthey are of treewidth at most 3t� 1 [B98℄. The weight of a graph is the sum of the weights of theverti
es. We view 
olor requirements as vertex weights.Lemma 5.4 (Planar de
omposition) Let G be a planar graph, and t be a positive integer. ThenG 
an be de
omposed into two vertex-disjoint graphs: Gb, whi
h is t-outerplanar, and Ga, whi
h isouterplanar with at most 2n=t verti
es and at most 2S(G)=t weight.17



We brie
y re
all how this de
omposition is done. Given a planar embedding of the graph, letL0 be the set of verti
es on the exterior fa
e, and indu
tively let Li be the exterior verti
es of thegraphs indu
ed by V (G)� [i�1j=0Lj , i = 1; : : : ; t.For a given j, 0 � j < t, let Uj = [i=0Lit+j . Namely, Uj 
onsists of all the layers whoseindex is 
ongruent to j modulo t. By a simple averaging argument, there must be some value j,0 � j < t+ 1 su
h that jUj j � 2n=t and S(Uj) � 2S(G)=t (be
ause fewer than k=2 of the Uj failon either one of these two properties). For this value of j, let Va = Uj, let Vb = V � Va, and let Ga(Gb) be the graph indu
ed by Va (Vb). Then Ga 
onsists of disjoint outerplanar graphs, and thus isouterplanar, and similarly Gb 
onsists of disjoint t-outerplanar graphs, and thus is t-outerplanar.The following lemma relates approximations of planar graphs to those of partial k-trees.Lemma 5.5 A �-approximation for p-sum on partial k-trees for any �xed k, implies a �(1 + �)-approximation for planar graphs, for any � > 0.Proof. Let t be a 
onstant to be determined. De
ompose G into G1 andG2, withG1 t2-outerplanar,and G2 outerplanar, following Lemma 5.4. Then, S(G2) � 2S(G)=t2. Use the assumed approxima-tion of p-sum on partial k-trees to get solutions  1 and  2 whose sums are bounded by � �OPT (G1)and � �OPT (G2). Then, use a biased round-robin as follows: after ea
h group of t� 1 
olor 
lassesof  1, insert the next 
olor 
lass of  2. Clearly, the �nish times of ea
h of the verti
es in G1 ismultiplied by at most 1 + 1=t, and that of a vertex in G2 by t. Note, that sin
e G2 is 4-
olorable,OPT (G2) � 4S(G2). Hen
e, the four-
olorability of G2 gives thatOPT (G2) � 4S(G2) � 8OPT (G)=t2:Therefore, the 
ost of the sum 
oloring of G is bounded above by�((1 + 1=t)OPT (G1) + t �OPT (G2)) � �(1 + 9=t) � OPT (G):Choosing t = 1=9� yields the lemma.The following theorem now follows from Lemma 5.5 and Theorem 4.4.Theorem 5.6 The p-sum problem on planar graphs admits a PTAS whose running time is nO(1=�5).5.3 PTAS for np-sumWe now turn to the non-preemptive 
ase. Given Theorem 2.10, the missing link is in solving planargraphs with small ratios �(G) between maximum and minimum 
olor requirements. First, we needa variation on the number of 
olors used. Let OPT (G) be an optimal multi
oloring sum of G.Corollary 5.7 At most OPT (G)=(
 � p) verti
es remain to be 
ompleted in an optimal sum multi-
oloring of G by step p+ 2�(G) lg 
, for any positive 
 > 1.Proof. By step p, at most OPT (G)=p verti
es remain to be 
ompleted (for otherwise the delayis more than the optimum). By Lemma 2.1, after additional 2�(G) lg 
 rounds, the number ofremaining verti
es is down to at most OPT (G)=(
p).Lemma 5.8 (Compa
t lengths) Let (G;x) be a planar instan
e with �(G) = O(log n=(log log n)3),and let � = �(n). Then, np-sum(G) admits a 1+ �-approximation using O(p � log ��1) 
olors in time(log n)O(�(G)��1 log ��1)n.Proof. Let h = h(n) be determined later, and let d = d(n) = hp=(OPT (G)=n) and b = b(n) =1 + 8 lg h. Note that d = hpOPT (G)=n � hpS(G)=n � hppmin = h�(G):We apply the following approa
h. 18



1. Partition V via Lemma 5.4 into V1 and V2, where V1 indu
es a d-outerplanar graph G1 whilejV2j � 2n=d.2. Sum multi
olor G1 nearly-optimally, using the rounding lemma 2.9 with CompSum on theredu
ed instan
e of maximum 
olor requirement �(G)=�. Use the �rst b � p = (1 + 8 log h)p
olors in this solution (dis
arding the remaining 
olor-
lasses), and let V̂ be the set of verti
esnot fully 
olored by these 
olors.3. Color V2 [ V̂ using a graph 4-
oloring algorithm, yielding a multi
oloring with at most 4p
olors.The 
ost of 
oloring V1, and thus that of 
oloring V1� V̂ , is at most (1+�)OPT . By Lemma 5.7,V̂ 
ontains at most OPT (G)=(hp) verti
es. Also, V2 
ontains at most n=d = OPT (G)=(hp) verti
es.Hen
e, the 
ost of 
oloring V2 [ V̂ is at most(b+ 4)p � 3OPT (G)=(hp) = 15 + 24 lg hh OPT (G):The 4p term here re
e
ts a bound on the 
ost per ea
h vertex in a four-
oloring, while the b � pterm re
e
ts the delay of V2 [ V̂ . Now set h to make the above expression at most �OPT . Thush = O(��1 � log ��1). Then, the total 
ost of the 
oloring is at most (1 + 2�)OPT .The 
omplexity of our algorithm depends primarily on CompSum. Re
all that d is at mosth � �(G), and without loss of generality ��1 = O(log n). By Corollary 3.2, the s
aled instan
e issolved in time (��1�(G) log n)O(d)n = (logn)O(h�(G))n = (log n)O(�(G)��1 log ��1)n:The number of 
olors used is (b+ 4)p = (5 + 8 lg h)p = O(p log ��1).Theorem 5.9 Let f� = ��1 log ��1. The np-sum problem on planar graphs admits a PTAS usingO(p � log ��1) 
olors whose running time is n � exp(ln lnn � exp(O(f2� ))).Proof. By Lemma 5.8, np-sum on short instan
es (with �(G) at most a given q) admits a 1 + �-approximation in time n � (log n)O(q�f�). The number of 
olors used is �p, for � = 
 log ��1 for some
onstant 
. Let q be su
h that �=pln q = �, or q = exp((
f�)2). Applying Theorem 2.10 we obtainan approximation of np-sum within a 1 + 2� fa
tor. The time 
omplexity isn � (log n)O(q�f�) = n � exp(ln lnn � O(exp((
f�)2) � f�)) = n � exp(ln lnn � exp(O(f�)2)):In parti
ular, we 
an obtain a 1 + pln lnn= ln ln lnn-approximation in sub-quadrati
 timen1+O(log log logn= log log n).For Sum Coloring, we obtain better tradeo�s, sin
e we 
an solve exa
tly partial k-trees fork = O(log n= log log n), by dire
tly applying the Compa
t Lengths Lemma 5.8.Theorem 5.10 SC on planar graphs admits a PTAS with running time of exp(O(ln lnn � f�)) � n.6 Open problemsOur resear
h leaves some open problems, of whi
h we mention one. The fa
t that p-makespan andnp-makespan are solvable on bipartite graphs easily yields a 2-approximation for these problems onplanar graphs. Further, an approximation better than 4=3 does not exist, unless P = NP . Whatthen is the approximation threshold of these problems on planar graphs? Can the redu
tion of themaximum 
olor to O(log n) help in designing an 4=3 + � approximation for any �?19
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ost fun
tionsWe 
onsider here a general 
lass of 
ost fun
tions, to whi
h the CompSum algorithm is extended.To 
onsider �rst some 
on
rete examples of 
ost fun
tions, one example is the sum of squares of
ompletion times, Pv f (v)2. This 
ould be viewed as the L2-metri
, with L1 being the multi
olorsum and L1 the makespan. Any Lp-metri
 
an be handled within our framework.Another example is the d(v)-
oloring problem whi
h 
omes with edge lengths d : E ! Z+and asks for an ordinary 
oloring where the 
olors of adja
ent verti
es are further 
onstrained tosatisfy jf (v) � f (w)j � d(vw). A non-preemptive multi
oloring instan
e 
orresponds roughly tothe 
ase where d(vw) = (x(v) + x(w))=2. Our algorithms handle this extension equally well, and
an both handle the sum obje
tive as well as minimizing the number of 
olors.Ea
h 
ost fun
tion C asso
iates a positive real number with ea
h legal multi
oloring. We needthe fun
tion C to be also de�ned for partial 
olorings, i.e., legal multi
olorings  of only a subsetS � V of the verti
es. In this 
ase, the value of the 
oloring is de�ned by the graph indu
ed byS. We denote this 
ost by C( ; S). The goal is to 
ompute a legal multi
oloring (of the entiregraph) with minimum C value. We show that CompSum 
an be generalized to the following familyof fun
tions.Let g1 and g2 be two multi
olorings of subsets A � V and B � V , respe
tively, with g1 andg2 agreeing on A \B. Then the extension fun
tion Gx(g1; g2) of g1 and g2 is the fun
tion 
oloringA [B a

ording to g1 and g2. The fun
tions we deal with obey the following properties.� Monotoni
ity property: A 
ost fun
tion is monotoni
 if it is preferable to 
olor as manyverti
es as possible with small 
olors. Formally, a 
ost fun
tion is monotoni
 if the followingholds. Say that we take a 
oloring  , and \move" a vertex v 
olored j, into a smaller 
olor
lass i, i < j, resulting in a new (legal) 
oloring  0. Then, C( 0) � C( ).� Composition property: A fun
tion obeys the Composition property if the following holds.Given A and B and a 
oloring g of A \ B, the optimum way of extending g to A [ B isby 
hoosing the optimum 
oloring gA of A among the 
olorings agreeing with g on A \ B,and similarly taking the optimum 
oloring gB of B agreeing with g on A \ B and 
hoosingGx(gA; gB). Further, if we have a 
oloring g of A, the optimum way to extend g to A [ Bis by 
hoosing an optimum 
oloring of B, among the 
olorings agreeing with g on A \ B.Finally, the 
ost of C(Gx(gA; gB); A [B) 
an be 
omputed in polynomial time from C(gA; A)and C(gB ; B).Beside the examples mentioned above, another previously studied monotoni
 
ost fun
tionappears in the Optimum Chromati
 Cost Problem (OCCP) (see [J97℄). OCCP generalizes the SumColoring problem in that the 
olor 
lasses 
ome equipped with a 
ost fun
tion 
 : Z+ ! Z+ andwe assign a single 
olor f(v) to ea
h vertex minimizing Pv2V 
(f(v)). Without loss of generality,22



we may assume that the 
olor 
osts are non-de
reasing. We 
an generalize this to multi
olorings,where the 
ost in
urred for vertex v is 
(f (v)).We �rst show that any monotoni
 
ost fun
tion C the optimum uses few 
olors on 
ertain graphs,that in
lude planar graphs and partial k-trees. We then derive a generalization of the CompSumalgorithm of Se
tion 3 to monotoni
 
ost fun
tions.A.1 Number of 
olorsThe following dis
ussion shows that on 
ertain graphs, the number of 
olors an optimum algorithm(under a monotoni
 
ost fun
tion) needs to optimally multi
olor the graph is \small". This appliesboth to the preemptive and non-preemptive 
ases. The following lemmas extend a similar lemmaof the work in [J97℄ that applies to the unweighted 
ase (with x(v) = 1 for all v). It is interestingto note that this lemma applies to a family of graphs that 
ontains among others planar graphsand partial k-trees: the family of indu
tive graphs.We say that a graph G(V;E) is t-indu
tive if for any subgraph G0(V 0; E0) of G, jE0j � t � jV 0j.Also, G is indu
tive, if there exist a 
onstant t su
h that G is t-indu
tive. In parti
ular, planargraphs are 5-indu
tive. Also partial k-trees are k-indu
tive sin
e any subgraph of a partial k-treeis also a partial k-tree.Lemma A.1 An optimal sum multi
oloring of an indu
tive graph (under a general monotoni
 
ostfun
tion) uses at most O(p � log n) 
olors.We prove the lemma in two 
laims below.Claim A.2 Let G be t-indu
tive, and let (Gi; xi) be the instan
e indu
ed by the 
olors i; i+1; : : : ofsome optimal preemptive solution, under a monotoni
 
ost fun
tion. Then, the number of verti
esin Gi0 is at most half that of Gi, when i0 = i+ (8t+ 2)p.Proof. It suÆ
es to 
onsider ea
h 
onne
ted 
omponent of Gi independently, thus for simpli
ityassume Gi is 
onne
ted. Let ni denote the number of verti
es of Gi. Let t be the largest integersu
h that ni+t � ni=2. In ea
h iteration, a vertex is either 
olored or adja
ent to a vertex that gets
olored, by maximality of the independent set 
olored. Thus, in ea
h iteration j = i; i+1; : : : ; i+ t,either at least ni=4 verti
es are 
olored or at least ni=4 verti
es are dominated by 
olored verti
es.There 
an be at most 4p iterations of the former type before the sum of the 
olor requirementsbe
omes zero. Let us now 
on
entrate on the latter type of iterations, ea
h involving at leastni=4 edges in
ident on 
olored verti
es. Ea
h edge (u; v) 
an dominate, or delay, a vertex atmost x(u) + x(v) � 2p times. Sin
e there are at most tni edges by indu
tiveness, total 
ountsof dominations is at most 2tpni. Hen
e, the number of su
h iterations is at most 8tp. Thus,t � (8t+ 2)p.We now prove a similar 
laim for the non-preemptive 
ase. Again we deal with a monotoni
 
ostfun
tion C and some optimum non-preemptive 
oloring under C. Note that in the non-preemptive
ase the 
olor-
lasses are not ne
essarily maximal. Hen
e, a di�erent proof is needed. However, wemay assume that for ea
h vertex v, there is no smaller 
olor-
lass in the optimum in whi
h we 
an(non-preemptively) insert v (and keep the 
oloring legal).Claim A.3 Ea
h O(p) iterations in an optimum solution on indu
tive graphs, halves the maximumsize of any 
onne
ted 
omponent remaining.Proof. Take a 
omponent with n0 verti
es, and 
onsider all following iterations having a sub-
omponent of at least n0=2 verti
es. Consider the �rst p iterations. Let N be the number ofverti
es 
hosen in one of these �rst p iterations. If a vertex v is 
hosen in one of these iterations,then v is deleted in at most 2 � p iterations (re
all that we are dealing with the non-preemptive 
asenow.) If v is not 
hosen in any of the �rst p iterations, it must have a neighbor 
hosen in one ofthese �rst p iterations. Thus, at time 2 � p a neighbor of v is deleted. This means that after 2 � p23



iterations, at least n0=2�N edges of the graph are deleted (the total number of verti
es is at leastn0=2, and an edge is deleted for ea
h non-
hosen vertex.) Sin
e maxfN;n0=2�Ng = 
(n) a proofsimilar to the proof of Claim A.2 gives the desired result.A.2 Adapting CompSum to deal with monotoni
 fun
tionsIt is now immediate to adapt CompSum for partial k-trees to deal with monotoni
 fun
tions. Again,for any supervertexXi, we letMi(g) denote the value of the best assignment of 
olors that extends gfromXi to Ui. As in the 
ase with multisum obje
tive, we need to 
omputeMi(g) going exhaustivelyover all possible fun
tions g. Again, we use the fa
t that few 
olors are used to bound the numberof fun
tions g to be 
onsidered. By the 
omposition property, we only need to \guess" (sear
hexhaustively) the 
oloring of the root in the optimum. On
e we get the \
orre
t" 
oloring g ofthe root we know from the 
omposition property that we get an optimum 
oloring of Ui extendingthe 
oloring optimally on the subtrees. The value of the optimal extensions is 
omputed by there
ursive 
al
ulation.We now verify the running time of the pro
edure. By Lemma A.1, the number of possible
olorings of Xi is O((p � log n)k). By the 
omposition property, the optimum 
oloring of Ti (thesubtree rooted at Xi) 
an be 
omputed in polynomial time P (n). It follows that in time O(P (n) �n � (p � log n)k) the optimum assignment C is 
omputed.As in Se
tion 3.1 two 
orollaries apply.Corollary A.4 The non-preemptive 
oloring problem under any monotoni
 
ost fun
tion admitsan exa
t algorithm in O(P (n) � n � (p � log n)k+1) time.Corollary A.5 The preemptive problem under any monotoni
 
ost fun
tion admits a polynomialsolution in the 
ase p = O(log n= log log n), k �xed.
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