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AbstratWe study graph multioloring problems, motivated by the sheduling of dependent jobs onmultiple mahines. In multioloring problems, verties have lengths whih determine the numberof olors they must reeive, and the desired oloring an be either ontiguous (non-preemptiveshedule) or arbitrary (preemptive shedule). We onsider both the sum-of-ompletion timesmeasure, or the sum of the last olor assigned to eah vertex, as well as the more ommonmakespan measure, or the number of olors used.In this paper, we study two fundamental lasses of graphs: planar graphs and partial k-trees.For both lasses, we give a polynomial time approximation sheme (PTAS) for the multioloringsum, for both the preemptive and non-preemptive ases. On the other hand, we show theproblem to be strongly NP-hard on planar graphs, even in the unweighted ase, known as theSum Coloring problem. For non-preemptive multioloring sum of partial k-trees, we obtaina fully polynomial time approximation sheme. This is based on a pseudo-polynomial timealgorithm that holds for a general lass of ost funtions. Finally, we give a PTAS for themakespan of a preemptive multioloring of partial k-trees that uses only O(log n) preemptions.These results are based on several properties of multiolorings and tools for manipulatingthem, whih may be of more general appliability.
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1 IntrodutionIn multiproessor systems ertain resoures may not be shared onurrently by some sets of jobs.Sheduling dependent jobs on multiple mahines is modeled as a graph oloring problem, whenall jobs have the same (unit) exeution times, and as graph multioloring for arbitrary exeutiontimes. The verties of the graph represent the jobs and an edge in the graph between two vertiesrepresents a dependeny between the two orresponding jobs that forbids sheduling these jobs atthe same time.An instane to multioloring problems is a pair (G;x), where G = (V;E) is a graph, and x is avetor of olor requirements (or lengths) of the verties. For a given instane, we denote by n thenumber of verties, by p = maxv2V x(v) the maximum olor requirement. A multioloring of G isan assignment  : V ! 2N , suh that eah vertex v 2 V is assigned a set of x(v) distint olorsand adjaent verties reeive non-interseting sets of olors.A multioloring  is alled non-preemptive if the olors assigned to v are ontiguous, i.e. if forany v 2 V , (maxi2 (v) i) � (mini2 (v) i) + 1 = x(v). If arbitrary sets of olors are allowed, theoloring is preemptive. The preemptive version orresponds to the sheduling approah ommonlyused in modern operating systems [SG98℄, where jobs may be interrupted during their exeutionand resumed at a later time. The non-preemptive version aptures the exeution model adoptedin real-time systems where sheduled jobs must run to ompletion.One of the traditional optimization goals is to minimize the total number of olors assigned toG. In the setting of a job system, this is equivalent to �nding a shedule minimizing the time withinwhih all the jobs have been ompleted. Suh an optimization goal favors the system. However,from the point of view of the jobs themselves, another important goal is to minimize the averageompletion time of the jobs.We study multioloring graphs in both the preemptive and non-preemptive models, underboth the makespan and sum-of-ompletion times measures de�ned as follows. Denote by f (v) =maxi2 (v) i the largest olor assigned to v by multioloring  . The multisum of  on G isSMC(G; ) = Xv2V f (v) :Minimizing the makespan is simply minimizing maxvff (v)g. The problem of �nding a preemptive(non-preemptive) multioloring with minimum sum (makespan) is denoted p-sum (p-makespan),while the non-preemptive version is np-sum (np-makespan, respetively). When all the olor re-quirements are equal to 1, the makespan problem is simply the usual oloring problem, while thesum versions redue to the well-known sum oloring (SC) problem.The Sum Multioloring (SMC) problem has numerous appliations, inluding traÆ intersetionontrol [B92, BH94℄, session sheduling in loal-area networks [CCO93℄, ompiler design and VLSIrouting [NSS99℄.1.1 Related workThe p-makespan problem is also known as weighted oloring [GLS88℄ or minimum integer weightedoloring [X98℄. Gr�otshel, Lov�asz, and Shrijver [GLS88℄ gave a polynomial time algorithm onperfet graphs. For many lasses of perfet graphs, preemptive multioloring with the makespanobjetive an be translated to the ordinary oloring problem. A vertex v with olor-requirementx(v) is replaed by a lique C(v) of size x(v) (onneting a opy of v to a opy of u if u andv are onneted in G). This redution is polynomial if p is polynomial in n, but an often bedone impliitly for large values of p. In the ontext of makespan this redution preserves optimumsolution. Suh redution is possible for families of graphs losed under liqueing; e.g. hordal (andthus interval graphs). For a faster multioloring algorithm on hordal graphs see [H94℄.1



The p-makespan problem is NP-hard even when restrited to hexagon graphs (whih are planargraphs) [MR97℄, while a 4=3-approximation is known [NS97℄. The hexagon graphs are importantfor their use in ellular networks. The problem is polynomial solvable on outerplanar graphs [NS97℄,and trivial on bipartite graphs (f. [NS97℄).Non-preemptive multioloring has been studied in several ontext. On interval graphs it or-responds to the Dynami Storage Alloation problem, for whih the best approximation known is5 [Ger96℄. On line graphs, it forms the basis of the Minimum File Transfer Sheduling problem,whih is approximable within 2.5 [Cof85℄.The sum oloring problem was �rst diretly studied in [KS89℄, followed by [KKK89℄. Re-ent researh has onentrated on �nding approximation algorithms and proving hardness results[BBH+98, BK98, HKS01℄. The paper [BBH+98℄ addressed general graphs, bounded degree graphs,and line graphs, and the paper [BK98℄ studied bipartite graphs. For partial k-trees, Jansen [J97℄gave a polynomial algorithm for the Optimal Chromati Cost Problem (OCCP) that generalizesthe sum oloring problem. See [HKS01℄ for a reent summary of known results.The paper most relevant to our study is [BHK+98℄, where the np-sum and p-sum problems arethoroughly studied and the following results presented, among others. A onstant fator approxima-tion is given in the preemptive ase for graphs where the Maximum Independent Set (MIS) problemis polynomially solvable (e.g. perfet graphs), while an O(�)-approximation holds for graphs whereMIS is �-approximable. In the non-preemptive ase, an O(logn)-approximation is given for graphswhere MIS is polynomial solvable, whih translates to an O(� � log n)-approximation when MISis �-approximable. Further results are given for bipartite, bounded-degree, and line graphs. In[HK+99℄, eÆient exat algorithms for np-sum are given for trees and paths, while a polynomialtime approximation sheme (PTAS) is given for the preemptive ase. In [HKS01℄, onstant fatorapproximation is given for np-sum on line graphs and k-law free graphs.In [BBH+98℄ it was proven that if there exists an f(n)-approximation algorithm for the sumoloring problem for a given hereditary lass of graphs, then there exists a g(n)-approximationalgorithm for Graph Coloring on the same lass of graphs, where g(n) = O(f(n) logn). If furtherf(n) = 
(n) for some  > 0, then g(n) = O(f(n)). Based on the hardness result for the minimumoloring problem, from [FK98℄, this indiates that the sum oloring problem annot be approxi-mated within n1��, for any � > 0, unless NP = ZPP [BBH+98, FK98℄. For bipartite graphs, thesum oloring problem is NP-hard to approximate within some fator  > 1, unless P = NP [BK98℄.Clearly, these limitations arry over to the sum multioloring problems.1.2 Our resultsWe ontinue the line of work initiated in [BHK+98℄. A problem has a polynomial-time approxima-tion sheme (PTAS) if it an be approximated in polynomial time within 1 + �, for any onstant� > 0. If in addition, the omplexity of the sheme is polynomial in both n and 1=�, it has a fullypolynomial approximation sheme (FPTAS).Partial k-trees: In Setion 3 we deal with multioloring problems on partial k-trees, graphswhose treewidth is bounded by k. We design a general algorithm CompSum for that goal,that outputs an optimum solution for np-makespan and np-sum on partial k-trees in timeO(n � (p � log n)k+1). Note that the algorithm is only pseudo-polynomial, namely does notrun in polynomial time for large p. The same algorithm solves p-sum and p-makespan onpartial k-trees in polynomial time when p is small (O(log n= log log n)).In Setion 4, we give PTASs for both p-makespan and p-sum, that hold for any p. Therespetive running times are nO(k2=�3) for the p-makespan problem, and nO(k2=�5) for thep-sum problem. These shemes satisfy the additional property that only O(log n) preemptions2



are used. These results are applied in the approximation of planar graphs. We also give anFPTAS for the non-preemptive ase, with a running time of O(n2k+3��(k+1)).Planar graphs: In Setion 5, we give PTASs for p-sum and np-sum on planar graphs. The runningtimes are nO(1=�5) in the preemptive ase, and n � exp(ln lnn + exp(O(��1 log ��1)2)) in thenon-preemptive ase. This also implies the �rst PTAS for the sum oloring problem. Thesealgorithms are omplemented with a mathing NP-hardness result for sum oloring.For both p-sum and np-sum, the previously best known bounds on planar graphs and partialk-trees were �xed onstant fators [BHK+98℄.In order to establish our results, we have derived in Setion 2 a number of tools for analyzingand manipulating general multioloring instanes, whih ould be useful for further researh:� Bounds on the number of olors used by any optimal (multisum) solution, and transformationsthat redue this number at a relatively small ost to the objetive funtion.� Saling and rounding transformations, that allow redutions of the problems to instanes withsmall olor requirements.� Partitions of the instanes into subinstanes of relatively uniform olor requirement. Thisinvolves a lemma that generalizes the Markov inequality and may be of independent interest.The preemptive and non-preemptive ases turn out to require di�erent treatments. Non-preemptiveness restrits the form of valid solutions, whih helps dramatially in designing eÆientexat algorithms. On the other hand, approximation also beomes more diÆult due to these re-stritions. The added dimension of lengths of jobs, whose distribution an be arbitrary, introduesnew diÆulties into the already hard problems of oloring graphs. Perhaps our main ontributionlies in the tehniques of partitioning the multioloring instane, both \horizontally" into segmentsof the olor requirements (Setion 4) and \vertially" into subgraphs of similar length verties(Setion 5).2 Properties and tools for multioloringsMultiolorings have ertain features and ompliations that distinguish them from (uni)olorings.In unit-length instanes, all verties are reated equal and need only a single value as a olor.In multioloring instanes, verties not only need multiple value, but their requirements an bearbitrarily varied. Thus, greedy approahes, e.g., an fail quite dramatially, beause short jobsannot a�ord to wait for intermediate jobs whih in turn annot wait for long jobs. What we needis a toolbox for managing and manipulating these weighted instanes.After giving key de�nitions in Setion 2.1, we study in Subsetion 2.2 the number of olorsneeded in optimal and approximate sum multiolorings. This is ruial for limiting our searh forappropriate olorings.We then study how and to what extent we an redue the instanes to ones with small olorrequirements. This is done via lassial approahes from sheduling theory involving rounding andsaling the olor requirements. As elsewhere in this paper, we have on top of the usual shedulinginstane a graph struture that must be taken into aount.An orthogonal redution tehnique that we develop involves partitioning the vertex set aordingto the olor requirements. Eah set in the partition ontains nodes with olor requirements in agiven interval, and these intervals are arefully hosen so that, intuitively speaking, the averageolor requirement in eah set is muh lower than the smallest olor requirement in the followingset. Using saling, this allows us to redue the problem to that on instanes with small maximum3



olor requirements, with on�dene that the solutions for the small jobs will not unduly delay thelong jobs. The formation of this partition involves a generalization of Markov inequality, whihmay be interesting in its own right.2.1 NotationA multioloring instane I = (G;x) onsists of a graph G and olor requirements vetor x, but wemay also use G to refer to the instane. Let S(G) =Pv x(v) be the sum of the olor requirementsof the verties. More generally, for a set of numbers X, let S(X) denote Pxi2X xi. Let pmin denoteminv x(v) and reall that p denotes the maximum olor requirement. Let �(G) = p=pmin denotethe ratio between the maximum and minimum olor requirements of verties in G. When all theolor requirements x(v) are divisible by q, let I=q denote the instane resulting from dividing eahx(v) by q.The minimum multisum (or multioloring sum) of a graph G, denoted by pSMC(G), is the min-imum SMC(G; ) over all multiolorings  . We denote the minimum ontiguous (non-preemptive)multisum of G by npSMC(G). The minimum number of olors in an ordinary uni-valued oloringof G (i.e. ignoring the olor requirements) is denoted by �(G). We denote by �(I) the minimummakespan, i.e. the number of olors required to preemptively multiolor I = (G;x). We let OPT (G)denote the ost of the optimal solution, for the respetive problem at hand.Utilizing the relationship between oloring problems and sheduling problems, we view ouralgorithms as proedures that olor in (synhronous) rounds. Eah round involves one time unit,and olors some independent set (whose verties have not been fully olored) by some olor.De�nition 2.1 When a vertex v is not olored in a given round, we say that the vertex is delayedby the independent set hosen in this round.In partiular, the �nish time f(v) equals x(v) plus the total delay of v.2.2 Bounding the number of olors neededWe an bound the number of olors used by any optimal sum multioloring. In this subsetion,multiolorings an be either preemptive or non-preemptive. We note that oloring the graph withminimum number of olors does not always help in solving even the SC problem. For instane,while bipartite graphs an be olored with two olors, there exist bipartite graphs (in fat, trees)for whih any optimal solution for the sum oloring problem uses 
(logn) olors [KS89℄. We showhere that this ratio bound is also tight in the multioloring ase.Lemma 2.1 (Color ount) At most n=2i verties remain to be ompleted after 2i�(G) rounds ofan optimal sum multioloring, for any i = 1; : : : ; log n.Proof. Suppose the laim fails, in whih ase let i0 be the smallest value for i for whih it fails.Then, at most n=2i0�1 verties remain after step X = 2(i0 � 1)�(G). The delay during the next2�(G) rounds is at least 2�(G) per vertex, or stritly more than 2�(G) � n=2i0 = �(G) � n=2i0�1 intotal.Consider the alternative oloring, that olors all verties not ompleted at stepX by �(G) olors.For that, we use an arbitrary minimum makespan oloring with olors X + 1; : : : ;X + �(G). Thedelay aused is at most �(G) per vertex, or �(G)n=2i0�1 in total. This ontradits the assumptionthat the oloring above was optimal (namely, it is better to use in the last 2�(G) rounds this trivialalgorithm).It follows from Lemma 2.1 that an optimal sum multioloring uses at most p + 2�(G) log nolors, sine after 2�(G) log n rounds, at most one vertex an remain.Corollary 2.2 An optimal sum multioloring uses at most p+ 2�(G) log n olors.4



Note that for O(1)-olorable graphs, �(G) = O(p), even in the non-preemptive ase. Indeed,we an fully olor eah olor-lass one after the other, getting at most O(p � �(G)) = O(p) delayper vertex.Remark: In the appendix, we will see that the olor-ount lemma holds for a general familyof objetive funtions.Another orollary onerns the number of olors in approximate solutions. Note that this is anexistene result.Lemma 2.3 There is a 1+ �-approximate solution for the sum multioloring problems that uses atmost O(�(G) log(k=�)) olors, on a k-olorable graph.Proof. Let i = log(k=�). Use the �rst 2i�(G) olors of an optimal sum multioloring, followed by a�(G)-oloring of the remaining verties. At most n=2i verties remained after the �rst 2i�(G) olors.Thus, the additional ost aused by the seond part is at most �(G)n=2i = ��(G)n=k � �S(G).The last inequality follows as �(G) � kp.Rounding and saling instanesHere we present general methods for reduing p while paying a small prie in the approximationfator. One of the main tool we use is the following saling lemma.Lemma 2.4 (Preemptive saling.) Let � > 0 and  = � be large enough. Let I = (G;x) bea multioloring instane where for eah v, x(v) is divisible by q and x(v)=q �  � lnn. Then, themakespan of I and I=q are related by�(I) � q � �(I=q) � (1 + �) � �(I): (1)Proof. The �rst inequality of (1) is veri�ed as follows. Use an optimum oloring of I=q for oloringI, by repeating q times eah olor lass of I=q. Observe that the number of olors used for eahvertex v is q �x(v)=q = x(v) as required. In addition, the total number of olors used is bounded byq ��(I=q), hene the inequality. We now prove the seond inequality using a probabilisti argument.Consider an optimum makespan solution OPT (I). We shall form a solution  for I=q. Inludeeah olor lass of OPT (I) into  with probability (1+ �2)=q (with �2 to be determined later). Theexpeted makespan (whih is the expeted number of independent sets seleted) is ((1+�2)=q)��(I).So, by Markov inequality (f. [MR95℄), the makespan is at most ((1 + �2)(1 + �3)=q) � �(I), withprobability at least 1� 1=(1 + �3).For this solution to be legal for I=q, we need to show that eah vertex v gets at least x(v)=qolors. We show that this holds with non-zero probability. The number of olors eah v gets is abinomial variable with mean (1 + �2) � x(v)=q � (1 + �2) �  � logn: For a binomial variable X withmean �, and for any Æ, 0 � Æ � 1, Cherno� bound (f. [MR95℄) gives thatPr(X < (1� Æ)�) � exp(�Æ2 � �=2):By hoosing  = 4(1+ �2)=�22, we bound the probability that v reeives fewer than x(v)=q olors by1=n2. Hene, with probability at least 1� 1=(1 + �3)� 1=n, all verties get their required numberof olors, and simultaneously the makespan is at most (1 + �3) � (1 + �2) � �(I)=q. Therefore, thereexists a oloring of I=q ahieving these properties.Selet �2 and �3 so that (1 + �2)(1 + �3) = (1 + �). We then form a oloring for I by repeatingq times eah olor lass of the oloring for I=q. The resulting makespan is at most (1 + �)�(I),yielding Inequality (1). 5



A modi�ation of this lemma yields a similar bound for the preemptive multisum. This involvesbounding separately for every vertex the probability that the �nish time in the oloring of vertexI=q is greater than (1 + �)=q times its �nish time in the optimal sum oloring of I.Corollary 2.5 Let � > 0 and  = � be large enough. Let I = (G;x) be a multioloring instanewhere for eah v, x(v) is divisible by q and x(v)=q �  � lnn. Then, the multisums of I and I=q arerelated by pSMC(I) � q � pSMC(I=q) � (1 + �) � pSMC(I): (2)An important onsequene of the above lemma when minimizing the preemptive makespan isthat at a small prie, we may assume p is only logarithmi in n.Lemma 2.6 (Logarithmi length) Consider the p-makespan problem in k-olorable graphs. Forany � it is possible to redue the instane I to an instane �I so that:1. The maximum olor requirement in �I is �p = O(1=�3 � logn).2. A �-ratio solution  to �I an be transformed into a �(1 + �)-ratio solution of I.3. The number of preemptions in the �nal transformed solution for I is logarithmi in n.Proof. Let 0 be a onstant larger than both 2k and �=2 of Lemma 2.4. Let ! = blg p+ 1 denotethe number of bits needed to represent p, and let � = dlg(0=�) + log log n+ 1e. Let q = 2!��. Weshall partition the olor requirements x into two parts x0 and x00, yielding instanes I 0 = (G;x0)and I 00 = (G;x00) suh that x(v) = x0(v) + x00(v). More spei�ally, x0 is derived by zeroing in xthe ! � � less signi�ant bits, and x00 = x modulo 2!�� represents the less signi�ant bits in x.Intuitively, it does not ause a large delay to shedule x00 �rst so that only olor requirements x0remain. This follows as x00 is small relative to x0. Now, note that x0 are all divisible by 2!��. Wethen use Lemma 2.4 to sale down the x0 into � bits numbers and solve it and derive a solution forx. Observe that 2! � 2p, and thus q = 2!�� � �2!=(20 logn) � �p=(0 logn). Consider theinstane �I = I 0=q with olor requirements x0 divided by q. Given a solution  for �I, a solution toI is omposed as follows. I 00 is sheduled non-preemptively by any graph k-oloring of G. Later,we take the shedule of  and repeat eah independent set q times. As it is easily seen that theresulting shedule is feasible for I the redution is ompleted.We now show the required properties. By the Saling Inequality (1), the makespan of theresulting shedule of I 0 is bounded by q ��(I 0=q) � (1+ �=2)�(I 0): Also, if 0 � 2k, the makespan ofthe k-oloring of I 00 is at most kp�=0 < (�=2)p < (�=2)�(I). Thus, the makespan of the ombinedshedule of I is at most a 1+ � fator from optimal. The length �p of the longest task in �I is at most2� = O(0=� � logn). Sine the graph is k-olorable, �(�I) � �pk = O(log n). Finally, the number ofpreemptions used in the redution overall is at most �pk + k = O(0=� � logn).Thus, when seeking an approximate preemptive makespan multi-oloring of a graph, one anas a �rst step make p logarithmi in n at a very small ost. We believe that this redution may beof independent interest. It will be used in Setion 4 on partial k-trees.For the p-sum problem, suh a logarithmi redution is not in sight. We prove a weaker resultthat transforms p to a value polynomial in n at a low ost.Lemma 2.7 (Linear lengths) In the p-sum problem on O(1)-olorable graphs, one may assumethat p = O(n=�) at the ost of inreasing the ost of the solution by at most a 1 + � fator.
6



Proof. Let �1 be a number to be determined later. Choose j suh that dn=�1e � bp=2j � 2�dn=�1e,and put x0 = bx=2j. The number x0 gives (roughly) the log(n=�1) most signi�ant bits in x. The\small part" of the olor requirements xs = x� x0 � 2j sum to at most O(�1 � p). This follows sinepxs � n2�1 ; (3)for any x.Now the shedule is desribed. Let Is be the instane indued by the olor requirements x�x0 �2j .Choose a minimum oloring of G, and shedule �rst Is non-preemptively one olor-lass after theother. We separate the ost inurred into two parts: The sum of the olor ontribution of thesmall numbers, and the delay inited on the large numbers. Regarding the olor-sum of the smallnumbers, it follows from Inequality (3) that sine the graph is O(1)-olorable, this ost (whih isbounded by O(1) times the sum of the small numbers) is at most O(�1 � p) = O(�1 � S). In addition,this oloring of the small numbers gives a delay for the large part of the numbers. The numberof olors used in oloring the small numbers is bounded by (an order of) the maximum olor-requirement in the small part of the numbers. By Inequality (3) this is bounded by O(�1 � p=n) =O(�1 � S=n) inurring an O(�1 � S) delay for the remaining verties. Now, removing the zeros fromthe remaining (\large") numbers, we get an instane with olor requirements x0 with maximumof O(1=�1 � n). We now solve this instane with the assumed algorithm, and take q opies of eahresulting set. Now, with an appropriate hoie of �1, we get by Corollary (2.5) that only a (1 + �)inrease in the ost is inurred.It is interesting to note that this means that our approximation will hold even when olor require-ments are super-polynomial and optimal solutions may not be polynomial representable. Also, forgeneral graphs, a similar argument follows with p = O(n � �(G)).In the non-preemptive ase, saling an be done without error.Lemma 2.8 (Exat non-preemptive saling) Let I = (G;x) be a non-preemptive multiolor-ing instane where for eah v, x(v) is divisible by q. Then,q � npSMC(I=q) = npSMC(I): (4)Proof. Let  �(I) be an optimal np-sum oloring of I, and let Ci be the set of verties oloredwith olor i. By indution, the �nish time of any vertex in  �(I) is a multiple of q. Now, onsiderthe oloring  formed by every q-th olor of  �,  = Cq; C2q; : : :. Then,  is a proper oloring ofI=q. Hene, npSMC(I=q) � npSMC(I)=q. On the other hand, given a oloring of I=q, we an form aoloring of I by repeating eah olor q times. Thus, npSMC(I) � q � npSMC(I=q).Rounding non-preemptive instanes The non-preemptive ase is easier to round-and-sale,as we an redue the minimum length down to a onstant while paying only a slight overheadfator. Let I=q = (G;x0) be the instane obtained by x0(v) = bx(v)=q: Reall that pmin denotesminv x(v).Lemma 2.9 (Non-preemptive rounding) Let I = (G;x) be a multioloring instane, and � > 0given. Suppose pmin � 3=� and suppose we an approximate np-sum on I=q within ratio �, wheneverq = O(�pmin). Then, we an approximate np-sum on I within ratio (1 + �)�.Proof. Let �1 to be determined, and let q = d�1pmine. Let x0(v) = bx(v)=q and let I=q = (G;x0)be the orresponding instane. Given a multioloring  0 of I=q, form a shedule  00 by repeatingeah olor of I=q q times. Observe that eah x0(v) � 1=�1, for eah vertex v. Note that q � x0(v) �x(v)� (q � 1) � (1� �1)x(v). 7



Let t = b(1 � �1)=�1. We �nally form a shedule  , by repeating one every 2t-th olor lassof  00, i.e. if  00 onsists of the sequene of independent sets C1; C2; : : : ;, then  onsists of all ofthese sets, along with double ourrenes of the sets Ci�2t, i = 1; 2; : : :. Sine eah job is of lengthat least t, the number of olors they reeive is multiplied by 1 + 1=t. Hene,  (v) ontains at leastqx0(v)(1 + 1=t) � (1� �1)x(v)(1 + 1=t) � x(v)olors.The �nish time of v in  is at most (1 + 2=t) 00(v) = (1 + 2=t)q 0(v). Then, the multisum of 00 is at most (1 + 2=t)qOPT (I=q) � (1 + 2=t)OPT (I):Set � = 2=t = 2b(1� �1)=�1 satis�es the lemma.We shall be using this lemma for partial k-trees when the ratio of maximum to minimum olorrequirement is relatively small.2.3 Partitioning into subgraphs of relatively uniform olor requirementThe main tehnique introdued here involves splitting the instane into subgraphs in whih allverties have similar olor requirements.Call a lass G of graphs hereditary if any indued subgraph of a member of the lass is also amember. Let SMC refer to either p-sum or np-sum. Reall that �(G) denotes the ratio p=pmin.Theorem 2.10 Let n, q = q(n) and � be given. Suppose that for any G in a hereditary lass Gthat has at most n verties and has �(G) � q, we an approximate SMC within a fator 1 + �(n)using � �p(G) olors in time t(n). Then, we an approximate SMC on any graph in G within a fator1 + �(n) + �=pln q using at most 2� � p(G) olors in O(t(n)) time.We shall later see how to approximate np-sum eÆiently on planar graphs with � relativelysmall. That, ombined with the above theorem, then yields a PTAS for np-sum on planar graphs.We �rst prove two lemmas.Markov inequality shows that at most 1=` fration of the elements of a set X = fx1; x2; : : : ; xngof non-negative numbers are greater than ` times the average value x (f. [MR95℄). De�ne g(x) tobe the number of xi greater than or equal to x, i.e. g(x) = jfxi : xi � xgj. Then, Markov inequalityorresponds to g(` � x) � 1̀xn:Rewriting t = `n, and x = S(X)=n, it orresponds tog(t) � S(X)t ;whih holds for every t � 0. It is easy to show it to be tight for any �xed value of t but notfor multiple values of t simultaneously. We show that if we are free to hoose t from a range ofvalues, the resulting bound on the tail is improved by a logarithmi fator. We state this �rst foran arbitrary funtion f .Lemma 2.11 Let r and s be real numbers, s < r, and let f be a funtion de�ned on [s; r℄. Then,for some t 2 [s; r℄, tf(t) � 1ln(r=s) Z rs f(x)dx:
8



Proof. Let t be the value x in the interval [s; r℄ that minimizes xf(x). Then,Z rs f(x)dx = Z rs xf(x) � 1xdx � tf(t) Z rs 1xdx = tf(t) ln(r=s): (5)A weaker version of the lemma gives perhaps the most indiative improvement on Markovinequality. It uses the fat that g is positive and integer-valued. Its bound an be shown to betight.Corollary 2.12 There is a t, s � t � r, suh thatg(t) � 1ln(r=s) � S(X)t :Proof. De�ne the indiator funtions Ii(x) as 1 where x � xi and 0 elsewhere. Thus, g(x) =Pi Ii(x). Then, Z 10 g(x)dx =Xi Z 10 Ii(x)dx =Xi xi = S(X): (6)From Lemma 2.11 we have that tg(t) � 1ln(r=s) R10 g(x)dx = 1ln(r=s)S(X).We use Lemma 2.11 to partition the instane into ompat segments with good average weightproperties.Proposition 2.13 Let X = fx1; : : : ; xng be a set of non-negative reals, and let q be a naturalnumber. Then, there is a polynomial time algorithm that generates a sequene of integral breakpointsbi, i = 1; 2; : : :, with pq � bi+1=bi � q, suh thatmXi=1 g(bi) � bi � 1lnpq S(X):Proof. Let b0 be the smallest xi value, and indutively let bi be the breakpoint obtained by theLemma 2.11 on the set Xi = fxj : xj � bi�1g with s = bi�1 � pq and r = bi�1 � q. Terminate thesequene one bi exeeds the maximum length p.Sine bi � bi�1pq, we have that bi � qi=2, and the loop terminates within 2 logq p iterations. Ineah iteration, the ratio r=s is at least pq. By Lemma 2.11,bi � g(bi) � 1lnpq Z bi�1qbi�1pq g(x)dx:Note that bi � bi�1pq and thus the intervals [bi�1pq; bi�1q) are disjoint. Hene,Xi big(bi) � 1lnpq �Xi Z bi�1qbi�1pq g(x)dx � 1lnpq Z 10 g(x)dx = S(X)lnpq :The algorithm that �nds the bi partition an be easily implemented in linear time.Proof of Theorem 2.10.Our approximation algorithm for an arbitrary graph G in G is as follows:1. Find breakpoints b1; b2; : : : of the olor requirements x(v1); : : : ; x(vn) by Proposition 2.13 forthe given value of q.2. Partition G into subgraphs Gi, indued by Vi = fv : bi�1 � x(v) < big, for whih �(Gi) � q.9



3. Solve instanes (Gi; x) independently (by the algorithm assumed in Theorem 2.10) and shed-ule them in that order.The reason why we an shedule the subgraphs Gi in order is that we have ensured with our hoieof breakpoints that the smaller jobs don't delay the longer jobs muh.The ost of the multioloring is derived from two parts: the sum of the osts of the subproblems,and the delay osts inurred by the olorings of the subproblems. We onsider separately the delayaused by eah Gi. Namely, the total delay is broken into the delays aused by eah individualsubproblem. For eah subproblem, the delay ourred is reeted by the number of olors used inthis subproblem, times the number of yet unolored verties (namely, the number of olors usedtimes the total number of verties inluded in later problems whih are verties of higher lengths).The number of olors used in Gi is assumed to be O(� � bi), while g(bi) represents the number ofverties delayed. By Proposition 2.13, this ombined ost is thus O( �pln q � S(G)).The ost of subproblem i is, by assumption, at most (1 + �(n))OPT (Gi). Thus, the sum of theosts of the subproblems, exluding the delay is Pi(1 + �(jGij))OPT (Gi) � (1 + �(n))OPT (G).The total ost of the oloring is thus at most (1 + �(n) +O( �pln q ))OPT (G). The total number ofolors used is at most Pi �bi � �P1i=0 p=qi = (1 + 1=(q � 1))� � p.3 Exat multiolorings of partial k-treesIn this setion, we study exat algorithms for multioloring partial k-trees, partiularly for np-sum.We note that the results here hold for a fairly general type of a ost funtion or measure thatinludes makespan and multisum funtions. The de�nition of this family in its most general formis deferred to the appendix. The algorithm is desribed for the sum of ompletion time measure,while slight hanges give a solution for the makespan measure.The senario is as follows. We are given a family F of olorings, and we look for the best oloringin this family. A trivial example would be for the family F to ontain all possible olorings. Thismay, however, not be tratable. Instead, F may ontain a family of oloring of some restritiveform where the best one is only an approximation of the optimum oloring. The family F must beuniformly well behaved in the sense that F must ontain a good approximation for any instane.Hene, F annot be too small.The algorithm CompSum we present below follows a path similar to [J97℄ and is desribed forthe sake of ompleteness. As we deal with graphs of �xed treewidth, whih are k + 1-olorable,we may assume by Corollary 2.2 that the number of olors used by an optimal oloring is at most � p � logn, where  � 2k + 3. We assume without loss of generality that the graph ontains noisolated verties.Partial k-trees are graphs that an be represented by the following tree struture. In a treedeomposition, we are given a olletion X of at most n = jV j subsets Xi � V of verties. Eahsubset Xi ontains at most k+1 verties. In addition, the subsets Xi are the verties in a supertree,T (X ; E) with the following properties.(I)Edge-overing property: The subsets Xi over the edges of G, namely, for eah (v; u) 2 E,there exists a subset Xi 2 X suh that v; u 2 Xi.(II)Connetivity: For every vertex v, the subtree indued by the subsets Xj ontaining v isonneted.The verties of the partial k-tree orrespond to the nodes of the supertree, and two verties areadjaent if they are both ontained in some set Xi. Trees are partial 1-trees, where the edges form10



the sets Xi. Partial k-trees draw their usefulness from their suseptibility to dynami programmingsolutions. This uses the fat that it is possible to deompose the problem leanly: if we delete allk + 1 elements of a set Xi from the instane, we break the graph into disjoint omponents.It is well known (see, e.g., [J97℄) that a small modi�ation in this tree struture, allows to keepthe above properties and extend it with the following properties. It is possible to root T suh that1. T is a binary tree.2. If supervertex Xi has a single hild Xj , then jjXij � jXj jj = 1 and Xi � Xj or Xj � Xi.3. If supervertex Xi has two hildren Xk and Xj , then Xi = Xk = Xj .The algorithm CompSum follows the prototypial dynami programming paradigm on trees.Eah node in the supertree involves up to k+1 verties in the graph. For every meaningful oloringof these verties, we ompute the ost of the heapest onsistent oloring of the subtree rootedat the node. The omputation proeeds bottom-up, with eah node depending only on valuesomputed at its hildren.For every Xi, let Ti be the tree rooted by Xi, and let Ui = SXj2Ti Xj . Let gi : Xi ! 2Z+ , gi 2 Fbe a funtion that assigns x(v) olors to the verties v 2 Xi. Namely, gi is some multioloring ofthe set Xi. Denote by Rgi(v) this set of olors assigned to v by gi.De�ne Mi(gi) to be the minimum SMC value of all multiolorings �gi (in F) that extend gi to theverties in Ui. Formally, let Qi be the set of funtions �gi : Ui ! f1; : : : ;  � p � logng, �gi 2 F with�gi(v) = gi(v), for all v 2 Xi. DenoteMi(gi) = min�gi2QifSMC(Ui; �gi)g:These values are omputed in a bottom-up manner. In a leaf Xi we have for any funtion giMi(gi) = ( SMC(Xi; gi); if Rgi(v) \Rgi(u) = ; for all u; v 2 Xi s.t. (u; v) 2 E;1; otherwise.In what follows, we onsider only funtions gi that orrespond to legal olorings of Xi, namely,Rgi(v) \Rgi(u) = ; for all u; v 2 Xi & (u; v) 2 E:Now, onsider an internal nodeXi, with a single hildXj in the tree. Assume �rst that Xi � Xj.Let fvg = Xj nXi. Given a funtion gi, let Lgi be the set of legal olorings for Xj that are onsistentwith gi on Xi. (We show later that we an bound the ardinality of Lgi by a natural parameter ofthe family F .) In this ase, Mi(gi) = min�gi2LgifMj(�gi)g:Otherwise, we have Xj � Xi. Let fvg = Xi n Xj. In this ase, for a funtion gi giving values toXi, let �gi be the restrition of gi to Xj . By previous omputation, we know Mj(�gi); the optimumextension of Xj to Uj. Then Mi(gi) =Mj(�gi) + fgi(v):Namely, we add the �nish time given to v by gi to the minimum olor-sum over UjFinally, we have the ase of Xi with two hildren Xj and Xk. Note that by the Connetivityproperty, Uj \ Uk = Xi. Let gi be a funtion on Xi(= Xk = Xj). By previous omputation, weknow that values Mj(gi) and Mk(gi), the osts of the respetive funtions extending gi optimallyto respetively Uk and Uj. By adding these together, we have aounted for the ost of oloring allof Ui, but doubly ounted the �nish times of verties in Xi. Thus,Mi(gi) =Mj(gi) +Mk(gi)� Xv2Xi fgi(v):11



We note that by the edge-overing property, all the �nite values Mt(gi) for the root Xt rep-resent legal olorings gi of all the verties of G. Hene the minimum multiolor sum is given bymingifMt(gi)g. It is easy to ompute the atual minimum oloring from the above.The CompSum algorithm requires only slight hanges to �nd the optimum makespan of thepartial k-trees.Analysis The following parameter is used in measuring the running time of the proedure. Wedenote by D = D(F ; v) the number of di�erent olorings v has among the family F . Let D(F)denote maxvfD(F ; v)g. \Good" families F are ones with D(F) small.Let us now estimate the time omplexity. We need to ompute Mi(gi) for all the appropriatefuntions gi. For a given funtion gi, the required time is O(k) per edge in the supertree. Thenumber of di�erent funtions gi on Xi is bounded by Dk+1, sine eah of the at most k+1 vertiesin Xi has at most D di�erent olorings. Sine the number of verties of T is bounded by n, theresulting omplexity is bounded by O(n � Dk+1).De�nition 3.1 A family F of olorings is searhable if, for eah vertex, the number of di�erentolorings for v is polynomial and they an be generated in polynomial time.Theorem 3.1 Given a searhable family F , CompSum an �nd either the optimum multisum orthe optimum makespan in time O(nDk+1).Remark: The main problem with the above time omplexity is that the number D may be verylarge. In partiular, while we know that the number of non-redundant non-preemptive olorings ofa vertex are fewer than (2�(G) + 1)p, where �(G) denotes the hromati number of G, the numberof preemptive olorings may be as large as �p log np �, or exponential in p.3.1 Two orollariesOur �rst result is for np-sum on partial k-trees. In this ase, by Corollary 2.2, the number ofpossible olorings of a vertex v, D(v), is bounded by D = O(k � p � logn), sine we only need tospeify the �rst olor with the rest of the olors being onseutive.Corollary 3.2 The np-sum and np-makespan problems admit an exat algorithm for partial k-treesthat runs in O(n � (kp log n)k+1) time.For the speial ase of trees, i.e. 1-trees, np-sum an be solved in time O(np) and O(n2) [HK+99℄.It is not lear if an algorithm exists for partial k-trees that does not depend on p, but it is likelythat the polynomiality and log fators ould be improved.In general, the situation in the preemptive ase seems harder, as great many olorings are possi-ble for a single vertex. However, onsider the ase of preemptive oloring when olor requirementsare small, whih may be a reasonable restrition. We know by Corollary 2.2 that the number ofolors used by an optimum solution for p-sum on partial k-trees is at most O(p � log n). For eahvertex we need to hoose up to p olors in the range 1; : : : ; O(p � log n). The number of di�erentpossible preemptive assignments of olors to a vertex v is �O(p�logn)p �. This is polynomial in n dueto the bound on p when p = O(logn= log log n). Hene, the following orollary.Corollary 3.3 The p-sum and p-makespan problems on partial k-trees admit polynomial solutionsin the ase p = O(logn= log log n), k �xed.4 Approximate multiolorings of partial k-treesWe show in this setion that one an obtain near-optimal solutions to p-makespan on partial k-treeswith the additional property of using few preemptions. This leads to a good approximation of p-sum,12



that also uses few preemptions. First, we give a still better approximation for the non-preemptivease.4.1 FPTAS for np-sum on partial k-treesThe algorithm CompSum is polynomial only when p is polynomially bounded. We now shownp-sum an in general be approximated within a very small ratio. The same an be shown to holdfor np-makespan.Theorem 4.1 np-sum admits a fully-polynomial time approximation sheme (FPTAS) on partial k-treesthat runs in (n=�)O(k) time.Proof. Let � be given and let q = b�p=n2. We may assume that q � 1, as otherwise algorithmCompSum yields an exat solution in polynomial time by Corollary 3.2.The algorithm is as follows. Form a new instane I 0 = (G;x0) by rounding the olor requirementsof the input I = (G;x) upwards to the nearest multiple of q. Apply the algorithm CompSum onthe quotient instane I 0=q, and obtain an optimal solution to I 0=q. By Lemma 2.8, this also givesan optimal solution to I 0 formed by repeating eah olor q times.To analyze the same solution for I, let us �rst relate solutions of I 0 to those of I. Given asolution of I, we an form a solution of I 0 by repeating q times, for eah node v, some olor lassontaing v. The ombined delay aused by repeating a single olor lass is at most qn. In total,we must repeat (at most) n olor lasses, one per eah vertex. Thus, the total additional ost isbounded above by qn2. Hene,OPT (I) � OPT (I 0) � OPT (I) + qn2 � OPT (I) + �p � (1 + �)OPT (I):Thus, the solution produed by our algorithm is within a fator of 1 + � from optimal.The time omplexity of the method is polynomial in p=q � n2=�, amounting to O((n2��1 log n)k+1 =O(n2k+3��(k+1)).4.2 PTAS for p-makespan using O(logn) preemptionsPreemptions are a resoure that may be desirable to onserve. From the point of view of a sheduler,a preemption is likely to ost some overhead in hanging to and from an ative state. Limited useof preemptions is also preferable for our multisum approximations, in hindsight of our algorithms;in a sense, suh olorings have low entropy.In our ase we an bound the number of rounds when some vertex turns ative, and refer tothis as the maximum number of preemptions per vertex.Theorem 4.2 The p-makespan problem on partial k-trees, k �xed, admits a PTAS that usesO(log n) preemptions per vertex and runs in time nO(k2=�3).The theorem follows immediately from Lemma 4.3 below along with Theorem 3.1. A family ofolorings will here be said to be universal if it depends only on n, p, and a given k-partition of then verties. Universal families do not depend on the atual struture of the graph, nor on the olorrequirements.Lemma 4.3 There is a searhable universal family of multiolorings F with D(F) polynomial inn, suh that for any k-olorable graph G, F inludes a oloring that approximates the makespan ofG by a 1 + � fator. Additionally, the number of preemptions per vertex used by any oloring in Fis O(logn).Proof. We reall the family in the proof of Lemma 2.6. The instane I is split into an instane I 00and an instane �I, where �I has �p = O(log n=�). A oloring of I orresponds to a non-preemptiveoloring of I 00 and after that a oloring of �I repeated q = 2!�� times (see the lemma). Now, ount13



the number of possible olorings of a vertex v. Reall that the maximum olor-requirement in I 00 isbounded by kp�= < (�=2)p. Further, I 00 is olored non-preemptively one olor lass after the other.Hene, we an assign in advane p�= �xed (disjoint) olors to eah olor-lass (independent of theinstane). Hene, for the �rst (roughly) �=2�(I) olors the oloring is independent of the instane(depends only on k and p) and is of one of (only) k types. What determines D is thus the oloringof �I. Now, D(F ; v) �  �p � k�p ! � 2�pk = nO(k=�1) = nO(k=�3):Taking q onseutive opies of eah olor does not a�et this bound.It may seem somewhat surprising that suh a universal oloring an approximate simultaneouslyall the multioloring instanes. It should be lear from the proof that the di�erent olorings of agiven vertex an be omputed eÆiently.4.3 PTAS for p-sum using O(logn) preemptionsWe now give a PTAS for the sum measure, building on the makespan result.Theorem 4.4 The p-sum problem on partial k-trees admits a PTAS using O(log n) preemptionsper vertex with a running time of nO(k2=�5).This theorem follows immediately from the following lemma. The existene of a family with Dpolynomial means that we an use CompSum to �nd the desired oloring.Lemma 4.5 There is a searhable universal family of multiolorings F with D polynomial in n,suh that for any k-olorable graph G, F inludes a shedule that approximates p-sum(G) within1 + �. Additionally, eah oloring in F has O(log n) preemptions per vertex.We show this by transforming an optimum p-sum solution to an approximate solution with thedesired restrited struture that olorings in F have. The exat shedule is divided into segments,and eah segment onsidered as a makespan instane, for whih we use the restrited approximatesolutions of Lemma 4.3. We also want to ensure that the oloring of eah vertex is limited toa ompat interval. Thus, we delete all very small and very large olors assigned to the vertex,and shedule them in small bloks in between the intermediate segments. This will ensure thatonly onstant number of segments are ative for any given vertex, and therefore there is a 1 + �-approximate searhable family of olorings for the graph.Proof. Let �4 and �5 be small values to be hosen later, and let �0 = �5=k. Partition the olorsf1; 2; : : :g into geometrially inreasing segments, where the length di of the i-th segment Li isdi = (1 + �4)i (ignoring round-o�). The set M(v) = f(�0=2)x(v); : : : ; (2=�0)x(v)g is the area of theolor spae to whih we want to on�ne the oloring of v. Let  � be an optimal p-sum shedule ofG. Let x0(v) = j �(v) nM(v)j, and xi(v) = j �(v) \ Li \M(v)j. Thus, we obtain instanes (G;x0)and (G;xi), i = 1; 2; : : :, that partition the instane (G;x). Namely, x(v) = x0(v) +Pi xi(v).Our oloring  will onsist of segments, eah ontaining a main blok for treating xi and kround-robin bloks for the remaining olor requirements x0. The size of the main blok is (1+ �5)di,and the size of eah of the k round-robin bloks is �0di, for a total segment size of (1 + 2�5)di. Thestarting point of segment i is therefore zi = (1 + 2�5)Pi�1j=1 dj = (1 + 2�5) (1+�4)i2+�4 .Sine (G;xi) ould be olored properly in di = (1 + �4)i olors, we an obtain by Lemma 4.3 ashedule  i of (G;xi) with makespan at most (1 + �5)di, whih we use in the main blok.At most one of the k sets of round-robin bloks is used for any given vertex v. For that purpose,we make use of a k-oloring of G, � : V ! f0; 1; : : : ; k�1g. For eah vertex v, and for eah segmenti, exatly one (more preisely, the one indexed by �(v)) of the round-robin bloks is used to satisfythe x0(v) requirements. 14



Let a = minifLi 6= ;g = log1+�4(�0=2)x(v) be the index of the smallest segment with a non-empty main blok. Similarly, let b = maxifLi 6= ;g be the index of the largest suh segment.The set of olors assigned to v an be spei�ed preisely as follows. For a set S of integers andinteger t, de�ne the set [S + t℄ = fx+ t : x 2 Sg. Then, (v) = b[i=a[ i(v) + zi℄ [ [f1; 2; : : : ; �0dig+ (zi + (1 + �5)di +�(v)�0di)℄:The round-robin blok is o�set by zi, the beginning of segment i, (1 + �5)di, the size of the mainblok, and �(v)�0di, the ombined size of the previous round-robin bloks.
�������������
�������������
�������������

�������������
�������������
�������������

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

ψψψ

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

L L L L L L2 3 4 5 61

543Figure 1: Transformation of  �(v) to  (v)We illustrate the onstrution in Figure 1 for a 2-olorable graph. The upper blok shows  �(v)ut into segments Li. Here, a = 3 and b = 5, so segments L3 through L5 are transformed into mainbloks  3(v) through  5(v) in  (v). The seond of two round-robin bloks are used in segments 3through 5 for satisfying x0(v), whih here amounts to the the olors used in L1 and L2.We �rst verify that this forms a valid oloring of (G;x). The oloring is proper for eah  i,and thus for the orresponding parts of  (v). Also, two verties u and v use the same round-robinsegment, then it must be that �(u) = �(v), so they are non-adjaent and their olorings do notonit.We now argue that the round-robin bloks used over the remaining olor requirements x0(v).We may alloate more olors than neessary, but that does not hurt. Observe that the round-robin bloks available to v are a �0 fration of the size of the orresponding main bloks. Thevalue x0(v) is omposed of two parts: values of  �(v) less than (�0=2)x(v) and those greater than(2=�0)x(v). Consider �rst the small values. Let r be the smallest number suh that Pqi=1 di � x(v),i.e. r = dlog1+�4 x(v)e. The round-robin segments alloated to v in segments 1; 2; : : : ; r then ontainspae for �0x(v) elements. Thus, the segments a; a + 1; : : : ; r ontain spae for at least (�0=2)x(v)elements, sine Pri=1 di � 2Pa�1i=1 di. Therefore, sine b � r, the small values do not delay theoloring of v in  , independent of how v was olored by  �,Consider now the ase when x0(v) ontained some large values of  0. Thus, the index of thelargest segment ontaining a non-empty main blok is b = log1+�4(2=�0)x(v). Then, the round-robin bloks available to v in segments 1; 2; : : : ; b ontain spae for 2x(v) elements. Hene, those insegments a; a+ 1; : : : ; b ontain spae for at least x(v) elements.The �nish time of a vertex v in  (v) depends on two fators: its �nal segment in  �(v), andits loation within that segment of  (v). The segments expand from  �(v) to  (v) by a fator of1 + 2�5. The olors that a vertex reeives within a segment is beyond our ontrol, as the segmentsare handled as makespan instanes where only the maximum number of olors used is relevant. Thismay delay the vertex by what amounts the full size of the last segment in whih it was olored, or�4x(v). Hene, f (v) is bounded above by (1 + 2�5 + �4)f �(v).We hoose �4 = �5 = �=3 to ensuref (v) � (1 + �)f �(v). 15



The number of segments used, b�a+1, is at most log1+�4(2=�0) x(v)�0x(v) = log1+�4(2=�0)2, whih isO(1=� � log 1=�). In eah of these segments a vertex v has O(1=�3 � logn) preemptions, by Lemma 4.3.Hene, the total number of preemptions for eah vertex is O(1=�4 � log 1=� � log n). Let F denotethe family of all possible legal olorings in the above restrited form. Thus, in a way similar toLemma 4.3, D(F ; v) is polynomially bounded in n.5 Sum multioloring planar graphsWe give a PTAS for both preemptive and non-preemptive ases on planar graphs, starting withthe easier preemptive ase. For this, we rely heavily on the result obtained in the previous setionfor partial k-trees. We math them with an NP-hardness result for the unit-length Sum Coloringproblem.The results hold also for other lasses of graphs that are onstant olorable and an be parti-tioned into partial k-trees, suh as K3;3-free graphs [C98℄.5.1 NP-hardness of sum oloring planar graphsIt is lear that p-makespan and np-makespan are NP-hard on planar graphs, as they extend theNP-hard minimum oloring problem on planar graphs (f. [GJ79℄). We prove that already thesum-oloring problem, SC, is NP-omplete for planar graphs.Theorem 5.1 The SC problem and SMC problem are NP-omplete on planar graphs.
lll1 2 3

x

y z
u vFigure 2: Gadget for the edge uv.The redution is from the maximum independent set (MIS) problem on planar graphs, whihis NP-omplete (f. [GJ79℄). Given a planar graph G(V;E), we onstrut a graph ~G( ~V ; ~E) byreplaing eah edge of G by the gadget shown in Fig. 2. For edge e = uv in G we add to ~Gthe verties xe; ye; ze; l1e ; l2e ; l3e and the edges xeye; xeze; yeze; xel1e ; xel2e ; xel3e as well as uye and vze.Clearly ~G is planar when G is planar.Let �(G) be the size of the maximum independent set in G. Theorem 5.1 follows from thefollowing lemma.Lemma 5.2 SC( ~G) = 9 � jEj+ 2 � jV j � �(G).Proof. We �rst show the upper bound by onstruting a oloring for ~G given a maximum indepen-dent set I� of G. Color the verties of I� with 1 and other verties oming from G with 2. Colorthe gadget of eah edge uv as follows. Color x with 2, and the leaves li with 1. If u is olored 1,16



then by the hoie we made v is not olored 1. Color y with 3 and z with 1; otherwise, olor y with1 and z with 3. This forms a valid oloring of ~G where the ost of oloring eah edge-gadget is 9,and the ost of oloring the verties of G is 2jV j � �(G).We now argue a mathing lower bound on SC( ~G), laiming that the oloring onstruted aboveis in a sense anonial. Let  � be an optimal sum oloring of ~G. We laim that verties of Golored with 1 in  � must form an independent set in G. Assuming that laim, the minimum ostof oloring the verties of G is 2jV j ��(G). Sine the the minimum ost of oloring eah gadget is9, the minimum ost of oloring ~G is at least 9jEj+2jV j��(G). Note that u and v are themselvesnot part of the gadget for the edge uv.To prove the laim, suppose for the sake of obtaining a ontradition that for some edge uv in~G, both u and v are olored 1 in  �. We then form another oloring  0 of ~G by hanging the olor ofu to 2, and reoloring the gadget of eah inident edge uv0 as needed. Namely, the leaf nodes of thegadgets are olored 1, x-nodes 2, y-nodes 1, and z-nodes 3 (unless v0 was olored 3, in whih asewe olor z with 2 and x with 3). It an be veri�ed that the reoloring never inreases the ost of agadget. If both u and v0 were olored 1, then the ost of oloring the gadget ompatibly was at least12 (as the \triangle" xe; ye; ze has olors 2, 3, and 4 or larger olors, sine olor 1 is prohibited).Our transformation thus dereased the ost of the gadget by at least 3, while inreasing the ostof u by only 1. Hene, we have obtained a oloring of lower ost, whih is a ontradition. Hene,the laim and the lemma follow.The lemma implies a linear relationship between the approximability of MIS and SC on planargraphs. This uses the fat that for a planar graph G, �(G) � jV j=4 and that by Euler's theorem,jEj � 3jV j (see [H69℄).Corollary 5.3 Let f(n) be a monotone non-inreasing funtion. If SC an be approximated onplanar graphs in polynomial time within a ratio of 1 + f(n), then MIS an be approximated onplanar graphs in polynomial time within a ratio of 1 + 30f(n).Proof. Assume that we are given a proedure A that an approximate the SC problem within1+f(n). Let G be a graph for whih we want to approximate the size of the maximum independentset. Consider the graph ~G de�ned above. Let  � be the minimum sum oloring for ~G. ByLemma 5.2, we may assume that this oloring assigns olor 1 to a maximum independent set andthat it ompletes the oloring as desribed in the proof of Lemma 5.2. Let IA denote the vertiesolored 1 by A. Observe that SC( ~G) = SC( �) = 9 � jEj + 2 � jV j � �(G). By our assumption,9 � jEj+ 2 � jV j � jIAj � (1 + f(n)) � (9 � jEj+ 2 � jV j � �(G)): Rearranging the terms, we getjIAj � f(n)(9jEj+ 2jV j) + (1 + f(n))�(G) � 29f(n)jV j+ (1 + f(n))� � (1 + 30f(n))�(G):The laim now follows.5.2 PTAS for p-sumThe following well-known deomposition lemma of Baker [B94℄ will be used for both np-sum as wellas p-sum.A lass of plane graphs are outerplanar if all verties are on the exterior fae. More generally,the lass of t-outerplanar graphs(f. [B94℄) are de�ned to be the outerplanar graphs when t = 1,and indutively, when t > 1, graphs suh that the graph indued by verties not on the exteriorfae is t � 1-outerplanar. The only property of t-outerplanar graphs that is relevant here is thatthey are of treewidth at most 3t� 1 [B98℄. The weight of a graph is the sum of the weights of theverties. We view olor requirements as vertex weights.Lemma 5.4 (Planar deomposition) Let G be a planar graph, and t be a positive integer. ThenG an be deomposed into two vertex-disjoint graphs: Gb, whih is t-outerplanar, and Ga, whih isouterplanar with at most 2n=t verties and at most 2S(G)=t weight.17



We briey reall how this deomposition is done. Given a planar embedding of the graph, letL0 be the set of verties on the exterior fae, and indutively let Li be the exterior verties of thegraphs indued by V (G)� [i�1j=0Lj , i = 1; : : : ; t.For a given j, 0 � j < t, let Uj = [i=0Lit+j . Namely, Uj onsists of all the layers whoseindex is ongruent to j modulo t. By a simple averaging argument, there must be some value j,0 � j < t+ 1 suh that jUj j � 2n=t and S(Uj) � 2S(G)=t (beause fewer than k=2 of the Uj failon either one of these two properties). For this value of j, let Va = Uj, let Vb = V � Va, and let Ga(Gb) be the graph indued by Va (Vb). Then Ga onsists of disjoint outerplanar graphs, and thus isouterplanar, and similarly Gb onsists of disjoint t-outerplanar graphs, and thus is t-outerplanar.The following lemma relates approximations of planar graphs to those of partial k-trees.Lemma 5.5 A �-approximation for p-sum on partial k-trees for any �xed k, implies a �(1 + �)-approximation for planar graphs, for any � > 0.Proof. Let t be a onstant to be determined. Deompose G into G1 andG2, withG1 t2-outerplanar,and G2 outerplanar, following Lemma 5.4. Then, S(G2) � 2S(G)=t2. Use the assumed approxima-tion of p-sum on partial k-trees to get solutions  1 and  2 whose sums are bounded by � �OPT (G1)and � �OPT (G2). Then, use a biased round-robin as follows: after eah group of t� 1 olor lassesof  1, insert the next olor lass of  2. Clearly, the �nish times of eah of the verties in G1 ismultiplied by at most 1 + 1=t, and that of a vertex in G2 by t. Note, that sine G2 is 4-olorable,OPT (G2) � 4S(G2). Hene, the four-olorability of G2 gives thatOPT (G2) � 4S(G2) � 8OPT (G)=t2:Therefore, the ost of the sum oloring of G is bounded above by�((1 + 1=t)OPT (G1) + t �OPT (G2)) � �(1 + 9=t) � OPT (G):Choosing t = 1=9� yields the lemma.The following theorem now follows from Lemma 5.5 and Theorem 4.4.Theorem 5.6 The p-sum problem on planar graphs admits a PTAS whose running time is nO(1=�5).5.3 PTAS for np-sumWe now turn to the non-preemptive ase. Given Theorem 2.10, the missing link is in solving planargraphs with small ratios �(G) between maximum and minimum olor requirements. First, we needa variation on the number of olors used. Let OPT (G) be an optimal multioloring sum of G.Corollary 5.7 At most OPT (G)=( � p) verties remain to be ompleted in an optimal sum multi-oloring of G by step p+ 2�(G) lg , for any positive  > 1.Proof. By step p, at most OPT (G)=p verties remain to be ompleted (for otherwise the delayis more than the optimum). By Lemma 2.1, after additional 2�(G) lg  rounds, the number ofremaining verties is down to at most OPT (G)=(p).Lemma 5.8 (Compat lengths) Let (G;x) be a planar instane with �(G) = O(log n=(log log n)3),and let � = �(n). Then, np-sum(G) admits a 1+ �-approximation using O(p � log ��1) olors in time(log n)O(�(G)��1 log ��1)n.Proof. Let h = h(n) be determined later, and let d = d(n) = hp=(OPT (G)=n) and b = b(n) =1 + 8 lg h. Note that d = hpOPT (G)=n � hpS(G)=n � hppmin = h�(G):We apply the following approah. 18



1. Partition V via Lemma 5.4 into V1 and V2, where V1 indues a d-outerplanar graph G1 whilejV2j � 2n=d.2. Sum multiolor G1 nearly-optimally, using the rounding lemma 2.9 with CompSum on theredued instane of maximum olor requirement �(G)=�. Use the �rst b � p = (1 + 8 log h)polors in this solution (disarding the remaining olor-lasses), and let V̂ be the set of vertiesnot fully olored by these olors.3. Color V2 [ V̂ using a graph 4-oloring algorithm, yielding a multioloring with at most 4polors.The ost of oloring V1, and thus that of oloring V1� V̂ , is at most (1+�)OPT . By Lemma 5.7,V̂ ontains at most OPT (G)=(hp) verties. Also, V2 ontains at most n=d = OPT (G)=(hp) verties.Hene, the ost of oloring V2 [ V̂ is at most(b+ 4)p � 3OPT (G)=(hp) = 15 + 24 lg hh OPT (G):The 4p term here reets a bound on the ost per eah vertex in a four-oloring, while the b � pterm reets the delay of V2 [ V̂ . Now set h to make the above expression at most �OPT . Thush = O(��1 � log ��1). Then, the total ost of the oloring is at most (1 + 2�)OPT .The omplexity of our algorithm depends primarily on CompSum. Reall that d is at mosth � �(G), and without loss of generality ��1 = O(log n). By Corollary 3.2, the saled instane issolved in time (��1�(G) log n)O(d)n = (logn)O(h�(G))n = (log n)O(�(G)��1 log ��1)n:The number of olors used is (b+ 4)p = (5 + 8 lg h)p = O(p log ��1).Theorem 5.9 Let f� = ��1 log ��1. The np-sum problem on planar graphs admits a PTAS usingO(p � log ��1) olors whose running time is n � exp(ln lnn � exp(O(f2� ))).Proof. By Lemma 5.8, np-sum on short instanes (with �(G) at most a given q) admits a 1 + �-approximation in time n � (log n)O(q�f�). The number of olors used is �p, for � =  log ��1 for someonstant . Let q be suh that �=pln q = �, or q = exp((f�)2). Applying Theorem 2.10 we obtainan approximation of np-sum within a 1 + 2� fator. The time omplexity isn � (log n)O(q�f�) = n � exp(ln lnn � O(exp((f�)2) � f�)) = n � exp(ln lnn � exp(O(f�)2)):In partiular, we an obtain a 1 + pln lnn= ln ln lnn-approximation in sub-quadrati timen1+O(log log logn= log log n).For Sum Coloring, we obtain better tradeo�s, sine we an solve exatly partial k-trees fork = O(log n= log log n), by diretly applying the Compat Lengths Lemma 5.8.Theorem 5.10 SC on planar graphs admits a PTAS with running time of exp(O(ln lnn � f�)) � n.6 Open problemsOur researh leaves some open problems, of whih we mention one. The fat that p-makespan andnp-makespan are solvable on bipartite graphs easily yields a 2-approximation for these problems onplanar graphs. Further, an approximation better than 4=3 does not exist, unless P = NP . Whatthen is the approximation threshold of these problems on planar graphs? Can the redution of themaximum olor to O(log n) help in designing an 4=3 + � approximation for any �?19
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we may assume that the olor osts are non-dereasing. We an generalize this to multiolorings,where the ost inurred for vertex v is (f (v)).We �rst show that any monotoni ost funtion C the optimum uses few olors on ertain graphs,that inlude planar graphs and partial k-trees. We then derive a generalization of the CompSumalgorithm of Setion 3 to monotoni ost funtions.A.1 Number of olorsThe following disussion shows that on ertain graphs, the number of olors an optimum algorithm(under a monotoni ost funtion) needs to optimally multiolor the graph is \small". This appliesboth to the preemptive and non-preemptive ases. The following lemmas extend a similar lemmaof the work in [J97℄ that applies to the unweighted ase (with x(v) = 1 for all v). It is interestingto note that this lemma applies to a family of graphs that ontains among others planar graphsand partial k-trees: the family of indutive graphs.We say that a graph G(V;E) is t-indutive if for any subgraph G0(V 0; E0) of G, jE0j � t � jV 0j.Also, G is indutive, if there exist a onstant t suh that G is t-indutive. In partiular, planargraphs are 5-indutive. Also partial k-trees are k-indutive sine any subgraph of a partial k-treeis also a partial k-tree.Lemma A.1 An optimal sum multioloring of an indutive graph (under a general monotoni ostfuntion) uses at most O(p � log n) olors.We prove the lemma in two laims below.Claim A.2 Let G be t-indutive, and let (Gi; xi) be the instane indued by the olors i; i+1; : : : ofsome optimal preemptive solution, under a monotoni ost funtion. Then, the number of vertiesin Gi0 is at most half that of Gi, when i0 = i+ (8t+ 2)p.Proof. It suÆes to onsider eah onneted omponent of Gi independently, thus for simpliityassume Gi is onneted. Let ni denote the number of verties of Gi. Let t be the largest integersuh that ni+t � ni=2. In eah iteration, a vertex is either olored or adjaent to a vertex that getsolored, by maximality of the independent set olored. Thus, in eah iteration j = i; i+1; : : : ; i+ t,either at least ni=4 verties are olored or at least ni=4 verties are dominated by olored verties.There an be at most 4p iterations of the former type before the sum of the olor requirementsbeomes zero. Let us now onentrate on the latter type of iterations, eah involving at leastni=4 edges inident on olored verties. Eah edge (u; v) an dominate, or delay, a vertex atmost x(u) + x(v) � 2p times. Sine there are at most tni edges by indutiveness, total ountsof dominations is at most 2tpni. Hene, the number of suh iterations is at most 8tp. Thus,t � (8t+ 2)p.We now prove a similar laim for the non-preemptive ase. Again we deal with a monotoni ostfuntion C and some optimum non-preemptive oloring under C. Note that in the non-preemptivease the olor-lasses are not neessarily maximal. Hene, a di�erent proof is needed. However, wemay assume that for eah vertex v, there is no smaller olor-lass in the optimum in whih we an(non-preemptively) insert v (and keep the oloring legal).Claim A.3 Eah O(p) iterations in an optimum solution on indutive graphs, halves the maximumsize of any onneted omponent remaining.Proof. Take a omponent with n0 verties, and onsider all following iterations having a sub-omponent of at least n0=2 verties. Consider the �rst p iterations. Let N be the number ofverties hosen in one of these �rst p iterations. If a vertex v is hosen in one of these iterations,then v is deleted in at most 2 � p iterations (reall that we are dealing with the non-preemptive asenow.) If v is not hosen in any of the �rst p iterations, it must have a neighbor hosen in one ofthese �rst p iterations. Thus, at time 2 � p a neighbor of v is deleted. This means that after 2 � p23



iterations, at least n0=2�N edges of the graph are deleted (the total number of verties is at leastn0=2, and an edge is deleted for eah non-hosen vertex.) Sine maxfN;n0=2�Ng = 
(n) a proofsimilar to the proof of Claim A.2 gives the desired result.A.2 Adapting CompSum to deal with monotoni funtionsIt is now immediate to adapt CompSum for partial k-trees to deal with monotoni funtions. Again,for any supervertexXi, we letMi(g) denote the value of the best assignment of olors that extends gfromXi to Ui. As in the ase with multisum objetive, we need to omputeMi(g) going exhaustivelyover all possible funtions g. Again, we use the fat that few olors are used to bound the numberof funtions g to be onsidered. By the omposition property, we only need to \guess" (searhexhaustively) the oloring of the root in the optimum. One we get the \orret" oloring g ofthe root we know from the omposition property that we get an optimum oloring of Ui extendingthe oloring optimally on the subtrees. The value of the optimal extensions is omputed by thereursive alulation.We now verify the running time of the proedure. By Lemma A.1, the number of possibleolorings of Xi is O((p � log n)k). By the omposition property, the optimum oloring of Ti (thesubtree rooted at Xi) an be omputed in polynomial time P (n). It follows that in time O(P (n) �n � (p � log n)k) the optimum assignment C is omputed.As in Setion 3.1 two orollaries apply.Corollary A.4 The non-preemptive oloring problem under any monotoni ost funtion admitsan exat algorithm in O(P (n) � n � (p � log n)k+1) time.Corollary A.5 The preemptive problem under any monotoni ost funtion admits a polynomialsolution in the ase p = O(log n= log log n), k �xed.
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