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Abstract

We consider the approximation of weighted maximum subgraph problems by partitioning
the input graph into easier subproblems. In particular, we obtain efficient approximations
of the weighted independent set problem with performance ratios of O(n(log log n/ log n)2)
and (∆ + 2)/3, with the latter improving on a ∆/2 ratio of Hochbaum for ∆ ≥ 5. We also
obtain a O(n/ log n) performance ratio for various maximization problems where a subset of
a solution is also a solution.

1 Partitioning and hereditary induced subgraph problems

A property of graphs is hereditary if whenever it holds for a graph it also holds for its induced
subgraphs. For a hereditary property, the associated subgraph problem is that of finding a
subgraph of maximum weight satisfying the property. We say that a problem is approximable
within f(n) if there is a polynomial time algorithm that on graphs with n vertices returns a
feasible solution within f(n) factor of optimal.

Hereditary can be generalized to other discrete structures. A property is hereditary if when-
ever it holds for a subset X of the instance, it also holds for any subset of X.

The main purpose of this note is to study the implications of the following lemma. We state
it in the language of graphs, while it can also be applied to other hereditary problems.

Proposition 1 Let Π be the problem of finding a maximum induced subgraph satisfying a hered-
itary property π. If we can partition the graph G into subgraphs G1, G2, . . . Gt and solve Π
optimally on each Gi, then we can approximate Π on G within t.

Our results We present several applications of this approach in Section 2. The first is to
partition the input into small bits, each of which can be searched exhaustively for an optimal
solution. This suffices to obtain a performance ratio of O(n/ log n) for various problems for which
a subset of any solution is also a solution, including hereditary induced subgraph problems, and
the problems Longest Common Subsequence and Maximum Satisfying Linear Subsystem (see [8]
for statements of these problems and references). Here, n is the total number of items in the
instance, as given in the measure. This also holds for weighted versions of these problems. We
strengthen this approximation slightly for unweighted versions to show how to find a solution of
size log2n/OPT n, where OPT is the size of the optimal solution.

We then obtain a stronger performance ratio of O(n(log log n/ log n)2) for the Weighted
Independent Set problem, and other hereditary problems with a forbidden clique or independent
set. This is obtained by partitioning the graph into subgraphs that are either independent sets
or unions of at most log n/ log log n cliques.

We then consider graphs of maximum degree ∆. We present an efficient algorithmic proof of
an obscure lemma of Lovász, and use it to approximate weighted hereditary induced subgraph
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problems within d(∆ + 1)/3e. An additional technique allows us to improve the bound for the
Weighted Independent Set problem to (∆ + 2)/3, for ∆ ≥ 5, from the ∆/2 ratio of Hochbaum
[11].

Finally, we consider some limitations on this technique of approximating by partitioning the
input into easy subproblem. In particular, we find that partitioning into subgraphs with any
given hereditary property cannot yield a performance ratio better than what we obtained.

A more general theorem Proposition 1 is a special instance of the following more general
theorem, which we shall also refer to.

Theorem 2 Let Π be a hereditary, weighted induced subgraph problem. Suppose we can:

1. extract t induced subgraphs of G, G1, G2, . . . Gt, such that each node in G is contained in
at least k different Gi, and

2. find feasible Π-solutions HEU(Gi) such that HEU(Gi)ρi ≥ OPT (Gi).

Then,
HEU(G) = max

i
HEU(Gi) ≥ OPT (G) · k/(

∑
i

ρi).

Proof. Restricting the optimal solution on G to each subgraph yields a feasible solution, thus∑
i

OPT (Gi) ≥ k ·OPT (G).

Some Gj must have the property that

OPT (Gj) ≥
ρj∑
i ρi

k ·OPT (G).

Then,
HEU(Gj) ≥ OPT (Gj)/ρj ≥ OPT (G)/(

∑
i

ρi).

Previous approximation results via partitioning Two notable applications of Theorem
2 in the literature deal with geometric graphs. Baker [2] approximated a host of problems on
planar graphs by partitioning into K-outerplanar graphs and developing dynamic programming
methods for solving the problems on these graphs. Hunt et al. [12] similarly approximated
independent sets in unit-disk graphs by partitioning into graphs of bounded treewidth.

2 Applications

2.1 Partition into small subsets

We say that a property of graphs is EXP-checkable if, given a graph on n vertices, the property
can be verified in time at most 2nc

, for some constant c. The class of hereditary EXP-checkable
properties includes all the common ones, such as the ones listed in [17]. However, it probably
doesn’t include such esoteric properties as:

Subgraph of a minimum cardinality graph containing no s-clique and no t-independent
set.
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Suppose we arbitrarily partition a graph into n/ log n sets each with log n vertices. Then,
simple brute-force suffices to find an optimal solution to any hereditary maximum subgraph
problem in polynomial time.

Proposition 3 Any EXP-checkable hereditary, weighted induced subgraph problem can be ap-
proximated within n/ log n.

Surprisingly, this n/ log n-approximation appears to be the best that is known for most such
problems. A property is non-trivial if it holds for some and fails for some graphs. It is known
that, the subgraph problem for any non-trivial hereditary property cannot be approximated
within any constant unless P = NP , and stronger results are known for most properties [17].

This can be generalized to some hereditary subset problems.

Proposition 4 Let Π be a hereditary subset problem for which the question of feasibility question
of an instance with measure at most log n can be answered in polynomial time. Here, n is an
upper bound on the measure of the instance. Then, the problem can be approximated within
O(n/ log n).

We previously applied this approach to the problems Maximum Common Pointset and Maxi-
mum Common Subtree [1]. Refer to [8] for a definitions and references on these and the following
problems. It also applies to Longest Common Subsequence, which we can approximate within
n log n, where n is the length of the shortest sequence.

Another problem is Maximum Satisfying Linear Subsystem, defined as follows: Given a
system Ax = b of linear equations, with A an integer m× n matrix and b an integer m vector,
find a rational vector x ∈ Qn that satisfies the maximum number of equations. Since feasibility
of a given system can be solved in polynomial time via linear programming, we can approximate
this problem via Proposition 1 within O(m/ log m) (or m log N , where N is the size of the
input). This holds equally if the variables are restricted to take on a binary values or if equality
is replaced by inequalities (>, ≥). It also holds if some additional constraints/equations are
required to be satisfied by a solution.

2.2 Partition into searchable subsets

For unweighted problems we can obtain a better approximation, although the performance ratio
is not directly affected. The following algorithm was originally used by Berger and Rompel [4]
as a part of an approximate graph coloring algorithm.

Theorem 5 Let Π be a hereditary, EXP-checkable, induced subgraph problem. Given a graph
G, let OPT be the size of an optimal solution, and let k denote 2n/OPT . Then, we can obtain
a π-subgraph of size logk n in polynomial time.

Proof. Suppose we are given the value of k. We can obtain this value by applying binary search
on k until the following procedure yields a proper solution. Let m = k logk n.

Partition the graph into n/m induced subgraphs, containing m vertices each (ignoring ceil-
ings). At least one of these subgraphs contains a logk n size subset of the optimal solution, and
we can find such a solution by searching through all the subsets of size at most logk n in each
partition.

The number of such subsets is

n/m ·
(

m

logk n

)
≤ n(ek)logk n/m ≤ n3/m,
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hence the algorithm runs in O(n3) time.
This approach also applies to the hereditary subset problems discussed earlier. Also, observe

that this approach above can produce a logk n size subset that satisfies all checkable properties
of a subset of an optimal solution. This property proved useful for improving the performance
ratio known for graph coloring [10].

2.3 Partition into independent sets and union of cliques

A theorem of Erdős and Szekeres [9] on Ramsey numbers yields an efficient algorithm for finding
either cliques or independent sets of non-trivial size.

Theorem 6 (Erdős, Szekeres) Any graph on n vertices contains a clique on t vertices and
independent set on s vertices such that

(s+t−2
s−1

)
≥ n.

Theorem 6 implies that we can obtain either an independent set of size log2 n, or a clique of
size log n/ log log n. We now form a partition where each class is either an independent set, or
a (not necessarily disjoint) union of log n/ log log n different cliques. This yields a partition into
O(n(log log n/ log n)2) classes.

The weighted independent set problem can be solved on the latter type by exhaustively
checking all (log n/ log log n)log n/ log log n = O(n) possible combinations of selecting one vertex
from each clique.

Corollary 7 The weighted independent set problem can be approximated within O(n(log log n/ log n)2).

Similar results, within constant factors, hold for induced subgraph problems whose properties
are not satisfied either by some independent set or some clique. For comparison, the best
performance ratio known for the unweighted case is only slightly better or O(n/ log2 n) [5]. It
is known that the unweighted problem cannot be approximated within nt, where t ≥ 1/6 − δ,
unless P = NP [3], and it has been conjectured that t = o(1) is still impossible.

2.4 Partition into low-degree subgraphs

A little-known lemma of Lovász provides the tool for partitioning a graph into subgraphs of low
maximum degree.

Lemma 8 (Lovász [15]) Let G = (V,E) be a multigraph with no self loops. Let k1, k2, . . . , kt

be non-negative integers such that 1 + (
∑

i ki − 1) = ∆(G). Then, V can be partitioned into t
subsets inducing subgraphs G1, G2, . . . Gt such that ∆(Gi) ≤ ki, for i = 1, 2, . . . t.

Proof. Lovász’s proof of this lemma involves a common local search strategy that repeatedly
applies the following rule: If some vertex in Gi has more than ki neighbors, then move it to
some Gj where the vertex has at most kj neighbors. By the pigeon-hole principle, at least one
of the subgraphs must have this property, and his proof shows that this strategy terminates.

We show that at most 3m + n iterations suffice. We consider each iteration to consist of
two operations. First, a vertex v is moved out of its current subgraph Gi, thereby decreasing
the number of edges within that subgraph by at least ki + 1. Then, it is moved into another
subgraph Gj , increasing the number of edges within that class by at most kj . Consider the set
of operations performed in the first (up to) 3m + n iterations, and pair together move-in and
move-out operations involving the same class. The effect of each pair of operations is a net
drop in the number of edges within that subgraph. There are at most n insertion operations
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that cannot be paired, consisting of distinct vertices v1, v2, . . . , vt, t ≤ n. The number of edges
added to the subgraph due to these operations is at most

∑t
i=1 d(vi) ≤ 2m. Also, there are at

most m edges initially within the subgraphs. It follows that if these movements continue until
the 3m + n-th iteration, no edges can remain within the subgraph after that iteration, and the
process terminates.

The algorithm can be implemented by pre-computing the degrees of each vertex into each
class of the starting partitition, with each move requiring at most O(∆) updates to this data.
The complexity is therefore bounded by O(∆(m + n)).

A corollary of this lemma is that we can partition a graph into at most d(∆ + 1)/3e graphs
of degree at most 2. Any hereditary induced subgraph problem can be solved efficiently on such
graphs via dynamic programming. Any property π holds either for every path, or for all paths
of length up to t, where t is a fixed constant, and the same dichotomy holds for cycles.

Theorem 9 Hereditary weighted induced subgraph problems can be approximated within d(∆ +
1)/3e.

The previous best approximation for the weighted independent set problem is ∆/2 due to
Hochbaum [11]. We can also use here approximation for ∆ = 3 to improve our ratio in the case
∆ (mod 0) ≡ 0. In this case, we partition into ∆/3 classes, where all but the last have maximum
degree 2, and the last class of maximum degree 3 is approximated within 3/2.

Corollary 10 The weighted independent set can be approximated within (∆ + 2)/3, and within
(∆ + 1)/3 when ∆ ≡ 2 (mod 3).

By applying a preprocessing method of Hochbaum [11], we can obtain improved approxima-
tions of weighted vertex cover, for ∆ ≥ 5.

Corollary 11 The weighted vertex cover problem can be approximated within 2 − 3/(2∆ + 4),
and within 2− 3/(2∆ + 2) when ∆ ≡ 2 (mod 3).

Lovász’s lemma also has implications for the coloring of bounded-degree graphs, observed
independently by Catlin [7], Borodin and Kostochka [6] and Lawrence [14], and recently redis-
covered by Lau [13] and communicated to this author.

Partition the graph into subgraphs of degree 3 or 4, with (∆ + 2) (mod 3) subgraphs of
degree 4 and the remainder of degree 3. Assuming the graph contains no complete graph on 4
vertices, each subgraph can be colored with ∆(Gi) colors by the algorithm that follows from the
constructive proof of Brooks’ theorem due to Lovász [16].

Proposition 12 Graphs without 4-cliques can be colored with (3∆+2)/4 colors in time O(∆(m+
n)).

2.4.1 Partition into bipartite subgraphs

Hochbaum [11] proved the following theorem.

Theorem 13 (Hochbaum) If we can color a graph G with k colors, we can approximate the
weighted independent set within k/2.

We can obtain the same result by pairing the color classes together into classes of bipartite
graphs. When k is odd, the last three are grouped together and each of the three pairs is solved
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optimally, with the maximum attaining a ratio of 3/2; the combined approximation ratio is then
(k − 3)/2 + 3/2 = k/2.

Although based on different principles, the approach of [11] is also based on computing the
maximum independent set in a bipartite graph. The advantage with our approach is that when
the classes are of roughly equal size, the sum of the complexity of our method will be smaller
than the complexity of a single execution of the whole. In the weighted case, we may save up
to a factor of k over the O(mn log n) complexity of [11] if the color classes are of roughly equal
sizes.

In the unweighted case, we can guarantee time savings of a factor of
√

k over the O(m
√

n)
complexity of [11] by simply using 2-coloring on classes with more than n/k vertices. Another
advantage of this approach is that unlike the approach of [11], it yields the same approximation
for other induced subgraph problems that are solvable on bipartite graphs. We note, however,
that the above method alone does not yield the improvement for the vertex cover problem that
the approach of [11] does.

2.5 Limitations of partitioning

The wide applicability of this partitioning technique might offer a glimmer of hope for approxi-
mating the independent set problem in general graphs within n1−ε, for some ε > 0. The following
observation casts a shade on that proposal.

For a property Π, the Π-chromatic number of a graph is the minimum number of classes
that the vertex set can be partitioned into such that the graph induced by each class satisfies
Π. Scheinerman [18] has shown that for any non-trivial hereditary property Π, the Π-chromatic
number of a random graph approaches θ(n/ log n). This indicates that our results are essentially
the best possible.
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