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Abstract

We give a tight bound on randomized online coloring of hypergraphs. The bound
holds even if the algorithm knows the hypergraph in advance (but not the ordering in
which it is presented). More specifically, we show that for any n and k, there is a 2-
colorable k-uniform hypergraph on n vertices for which any randomized online coloring
uses Ω(n/k) colors in expectation.

1 Online Hypergraph Coloring

A hypergraph H = (V,E) is formed by a set V of vertices and a collection E of subsets
of V . The hypergraph is k-uniform if each of the hyperedges (the elements of E) are of
cardinality k. A set S ⊂ V is an independent set if no edge in E is a subset of S. A coloring
of H is a partition of V into independent sets. In the online hypergraph coloring problem,
the algorithm receives in each round i, i = 1, 2, . . . , n, a vertex vi and the edges induced by
(i.e., contained in) Vi = {v1, v2, . . . , vi}, and it must assign the vertex irrevocably a valid
color. The objective is to minimize the number of colors.

Nagy-György and Imreh [9] gave tight bounds for deterministic online hypergraph color-
ing. They showed that First-Fit uses at most dn/(k− 1)e colors on k-uniform hypergraphs,
while no algorithm can color every such 2-colorable hypergraph with fewer colors. It is easy
to see that basically no reasonable algorithm can do much worse.

Randomized algorithms tend to attain better performance for many online problems.
An oblivious adversary first chooses a graph and its ordering, and the algorithm can then use
its random bits to thwart some of the worst-case nature of the instance. For ordinary graph
coloring, the best performance ratio known by a randomized algorithm is O(n/ log n) [5],
which is considerably better than the best deterministic ratio of O(n log log log n/ log log n)
by a deterministic algorithm, due to Kierstead [8]. On the other hand, the best lower
bound known for online graph coloring of Ω(n/ log2 n) [7], due to Halldórsson and Szegedy,
holds both for deterministic and randomized algorithms. One feature of the construction
of [7] is that it holds also in a transparent model : immediately after the algorithm makes
its assignment, the adversary reveals its intended color of the node. It also holds under
other relaxations, i.e., when the algorithm is allowed logarithmic lookahead, buffering, or a
constant fraction of recolorings.
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In a stronger model (see, e.g., [4]), the graph is given in advance to the algorithm, but
not the order in which the vertices are presented. Namely, after all n vertices have been
presented, the presented graph must be isomorphic to the graph given in advance — the
difficulty lies in the fact that this isomorphism is not given. For this model, a lower bound
of Ω(n/ log2 n) also holds [6].

A different version of online coloring a known graph was considered by Bartal, Fiat, and
Leonardi [3]. In their model, each presented vertex is identified on arrival with one of the
underlying vertices. The difficulty then lies in the fact that the algorithm does not know
which subset of the vertices will be presented. Also, the adversary is charged only for the
chromatic number of the presented subgraph, as opposed to that of the underlying graph
in our model. They prove a lower bound of Ω(n1−log4 3) ≈ Ω(n0.2) and an upper bound of
O(
√

n).
A related problem is the online independent set problem in hypergraphs. Alon, Arad

and Azar [1] gave a tight θ(n/k) bound on the performance of deterministic and randomized
algorithms.

Our results We extend the Ω(n/k) lower bound for deterministic online hypergraph
coloring to randomized online algorithms against an oblivious adversary. The hypergraphs
constructed are 2-colorable. The bound holds also in the transparent model, where the
algorithm is immediately informed of the true color of the node, and in the known graph
model, where the algorithm is given the full graph in advance.

We can also view these constructions as giving stronger bounds for online independent
sets in hypergraphs, in that we restrict the given graphs to be 2-colorable.

2 Lower Bound Construction

By Yao’s lemma [10], in order to prove a lower bound for randomized algorithms, it suffices
to give a probability distribution for which any deterministic algorithm exceeds that bound.

Theorem 1 For any n and k ≥ 3, there is a 2-colorable k-uniform hypergraph Hn,k on
n vertices with the following property: There is a probability distribution over the vertex
orderings of Hn,k such that any deterministic online coloring algorithm uses at least n/(2k)
colors in expectation.

This implies our main result.

Corollary 2 Let k ≥ 3. The performance ratio of any randomized online algorithm for
coloring k-uniform hypergraphs is Ω(n/k), even if the hypergraph is known in advance.

Construction For any k ≥ 3 and any even number n ≥ k − 2, we consider the following
hypergraph Hn,k with vertex set Vn = {v0, v1, . . . , vn−1}. Let A and B denote the sets of
even- and odd-numbered vertices, respectively. A mixed q-set is a set of q vertices from
both A and B. The graph Hn,k is constructed recursively as follows. The base case Hk′,k,
with k′ = 2d(k − 2)/2e, has no edges and k′/2 = d(k − 2)/2e vertices in each of A and B.
Inductively, for n > k′, the graph Hn,k consists of the graph Hn−2,k, the vertices vn−2 and
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vn−1, and the edges {vn−2} ∪S and {vn−1} ∪S, for each mixed (k− 1)-set S in Vn−2. This
completes the construction. Observe that the vertices vn−2 and vn−1 are indistinguishable
in Hn,k (i.e., they have the same set of neighbors). Observe that A and B form a 2-coloring,
since each edge is mixed.

The ordering of Hn,k that is presented to the algorithm is in the form of two sequences
from Vn. The first sequence contains from each pair v2q−2, v2q−1 one of the vertices cho-
sen at random, while the second sequence contains the remaining vertices. Formally, let
b0, b1, . . . , bN−1 be random bits and b0, b1, . . . , bN−1 be their complements, where N = n/2.
The presentation of the graph is given by the vertex ordering

X = 〈v0+b0 , v2+b1 , . . . , v2(N−1)+bN−1
, v0+b0

, v2+b1
, . . . , v2(N−1)+bN−1

〉 .

In our analysis, we only consider the actions of the algorithm on the first half of the node
set.

Analysis We shall refer to the color classes used by the online algorithm as bins, and the
colors A and B of the construction as types. A bin is mixed if it contains nodes of both
types.

We first describe the intuition behind the proof. Once a bin becomes mixed, it can only
receive additional nodes if it contains fewer than k − 1 nodes. Recall that each pair v2t−1

and v2t of vertices is indistinguishable. Thus, when a node v is added to a non-empty bin,
the probability that a bin becomes mixed, is at least the probability that v has different
type than the first node in that bin, which is 1/2. The number of nodes that can be added
until a bin becomes mixed is a geometric random variable with expected value 2. Thus,
the expected size of any bin, or the expected number of vertices that a bin receives before
it becomes unusable, is at most max{k − 1, 3} ≤ k. The expected number of bins is then
at least N/k, where N = n/2 is the number of vertices in the first sequence.

Formally, let ALG be a particular deterministic online coloring algorithm. We shall
show that the expected number of colors used by ALG on X, over the random choices
b0, b1, . . . , bN−1, is at least n/(2k). We say that a mixed bin with t < k vertices has k−1− t
unused slots, since any set of k − 1− t vertices can be added to the bin.

We use the potential function Φ = nB + (k − 1) · nM − sM , where nB is the number of
non-empty bins, nM is the number of mixed bins, and sM is the total number of unused
slots. Recall that a mixed bin can only receive additional nodes if it contains fewer than
k − 1 nodes; hence, each mixed bin contains at most k − 3 unused slots. Note that nB ≤
Φ ≤ nB + (k − 1)nM ≤ k · nB, and initially Φ = 0. We shall show that Φ increases by at
least 1, in expectation, in the first N rounds. This yields the theorem.

Consider the step when a node v is presented and is assigned by the algorithm to a bin.
Let ∆Φ be the change in potential by the coloring of v. There are three possible cases for
the algorithm’s assignment of the vertex v:

1. v is assigned to a new bin.
Then, ∆Φ = 1, since nB increases by 1, while nM and sM stay unchanged.

2. v is assigned to a mixed bin.
Then, ∆Φ = 1, since sM decreases by 1, while nB and nM stay unchanged.
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3. v is assigned to an unmixed bin.
Then, with probability 1/2, v is of the same type (A or B) as the other nodes in the
bin, in which case ∆Φ remains unchanged. Also, with probability 1/2, v is of different
type than other nodes in the bin. In this case, nM goes up by one, sM goes up by at
most k − 3, and thus (k − 1)nM − sM goes up by at least two. Hence, the expected
value of ∆Φ is at least 1.

It follows that after the first N vertices have been presented, the expected potential Φ is
at least N . Since Φ ≤ knB, it follows that the expected number nB of bins used by the
algorithm is at least N/k = n/(2k).

Remark: In the case of unknown hypergraphs (the usual online model), the factor 2 can
also be omitted from the above argument by only giving the first half of the set X and then
stopping the input.

Corollary 3 Any randomized online algorithm uses at least n/k colors in expectation on
2-colorable k-uniform hypergraphs, when the graph is not known in advance.
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