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amden.rutgers.edu1 Multi
oloring Graphs: Problems, Measures,Appli
ationsA multi
oloring is an assignment where ea
h vertex is assigned not just a singlenumber (a \
olor") but a set of numbers. The number of 
olors assigned to thevertex is spe
i�ed by the length (or 
olor requirement) parameter of that vertexin the input. As usual, adja
ent verti
es 
annot re
eive the same 
olor; thushere, the sets of 
olors they re
eive must be disjoint. Multi
olorings are thereforeproper generalizations of ordinary graph 
olorings. The purpose of this paper isto summarize some of the te
hniques that have been developed spe
i�
ally forobtaining good approximate multi
olorings in di�erent 
lasses of graphs.The multi
oloring problem is reserved for the 
ase where there is no restri
tionon the set of 
olors that ea
h vertex 
an re
eive (ex
ept its size) and the obje
tiveis to minimize the number of 
olors used. A di�erent problem is obtained whenwe require the 
olors assigned to a vertex to form a 
ontiguous interval { werefer to su
h an assignment as a non-preemptive multi
oloring. Yet a di�erentfamily of problems o

urs when we 
hange the obje
tive fun
tion; in parti
ular,we will be interested in the minimizing the sum of the multi
olorings, or thesum of the largest 
olor assigned to ea
h vertex (assuming the 
olors 
orrespondto the natural numbers).Appli
ations. Graph 
oloring has great many appli
ations. One of the 
lassi
examples are in timetabling, where we want to assign 
ourses (nodes) to timeslots (
olors) so that 
lasses that 
annot be taught simultaneously (e.g., thatshare a student/tea
her population) are assigned di�erent time slots. If 
oursesare all of the same length, we have an ordinary 
oloring problem (let us ignorethe issue of the number of 
lassrooms). Only in spe
ial 
ases do we have anordinary graph 
oloring problem; with le
tures of di�erent length, we have anon-preemptive multi
oloring problem, while with le
tures of identi
al lengthbut several o

urren
es within the s
heduling time frame, we have a preemptiveproblem.Another appli
ation is frequen
y allo
ation or 
hannel assignment in wireless
ommuni
ation. In a 
ellular network, 
ommuni
ation between mobiles and abase station in a 
ell is a
ross a narrow frequen
y 
hannel. Two base stations
annot use the same frequen
y if it 
auses interferen
e due to geographi
 lo
ality.



This is modeled by a graph where the nodes 
orrespond to the base stations andedges represent geographi
 adja
en
y [42℄. Ea
h node needs to be allo
ated asmany 
hannels, or 
olors, as there are 
alls 
onne
ting to that base station,resulting in a multi
oloring problem.For many 
lasses of graphs, the multi
oloring problem 
an be translated tothe ordinary 
oloring problem. A vertex v of length x(v) is repla
ed by a 
liqueof x(v) verti
es (
onne
ting a 
opy of v to a 
opy of u if u and v are 
onne
ted inG). This redu
tion is polynomial if p is polynomial in n, but 
an often be doneimpli
itly for large values of p. This is one reason why multi
olorings appear lessoften in the literature.As the timetabling example indi
ates, pra
ti
al appli
ations of graph 
olor-ing often relate to s
heduling. The graph then represents some 
onstraints or
on
i
ts between the jobs that disallow simultaneous exe
ution. One di�eren
ewith typi
al s
heduling problems is that they tend to involve a �xed number of\ma
hines", rather than allowing for an unbounded number of verti
es of thesame 
olor. Another di�eren
e is that 
onstraints on jobs in s
heduling tend tobe either non-existent or based on pre
eden
e instead of 
on
i
ts. Yet, there areseveral ex
eptions to these restri
tions/di�eren
es.Viewing a problem as a s
heduling or as a graph theory problem is not astrivial a issue as it may seem; these are two (overlapping but) di�erent 
ommu-nities with widely di�erent vo
abulary and di�erent perspe
tive. It may evenbe frowned upon to mix metaphors or borrow di�erent 
on
epts. We, however,advo
ate freedom from denominational 
anons in order to bene�t from the bestof both worlds. As we shall see, this will allow us to map a te
hnique from onearea to the other and ba
k. We shall intermix the vo
abulary, talking equally ofverti
es and jobs, 
olors and rounds (or steps), s
hedules and 
olorings.Measures. The possibility of 
onsidering di�erent obje
tive fun
tions is oneeye-opening produ
t of the s
heduling perspe
tive. The se
ond most 
ommonobje
tive fun
tion is the sum of 
ompletion times, or its weighted version. Thishas been 
onsidered for (unit-length) graph 
oloring as the sum 
oloring problem:the 
olors are positive integers, and the obje
tive is to minimize the sum of the
olors assigned to the verti
es. In the multi
oloring versions, we sum over theverti
es the �nish times, or the last 
olor assigned to that vertex. In the 
ontextof dependent jobs in a system, the sum measure has been seen to favor the users(that own the jobs), while the makespan measure is the favorite of the system(that wants to get done qui
kly). We use the following notation for the di�erentproblems:SC Minimum sum 
oloringpMC Multi
hromati
 number of G, or preemptive makespan multi
oloringnpMC Non-preemptive makespan, or fewest 
olors in a 
ontiguous multi
oloringnpSMC Non-preemptive sum multi
oloringpSMC Preemptive sum multi
oloring2
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Fig. 1. An example of a path whose optimal sum 
oloring uses more than the minimumnumber of 
olors. (a) Graph with vertex lengths; (b) A minimum sum 
oloring.Multi
oloring vs. ordinary 
oloring problems. How di�erent is multi
oloringfrom ordinary graph 
oloring? We mention some 
lasses of graphs where thedi�eren
e be
omes signi�
ant.Paths Almost anything is trivial for paths, in
luding all makespan problemsand all unit-length 
oloring problems. However, it is not at all easy to derivea polynomial time algorithm for preemptive sum multi
oloring (as 
an beattested by many false starts by the authors). The 
urrent best algorithmdue to Kov�a
s runs in time O(n3p) [31℄; a strongly polynomial algorithm isyet to be found.Trees Preemptive sum multi
oloring has been shown to be strongly NP-hardfor trees, even binary trees with polynomially bounded weights [38℄. Onthe other hand, sum 
oloring yields an easy (but not greedy) linear timealgorithm.Interval graphs Non-preemptive makespan multi
oloring on interval graphs isthe Dynami
 Storage Allo
ation problem, whi
h is NP-hard and APX-hard(i.e., hard to approximate within some 
 > 1). The ordinary 
oloring prob-lem is, however, easily solvable by a greedy method. Sum 
oloring and summulti
oloring problems are all approximable within some 
onstant; however,the best ratio di�ers by a fa
tor of as mu
h as 4 (see table).Perfe
t graphs For this 
lass of graphs, we see a di�eren
e between preemp-tive and non-preemptive problems. Preemptive sum multi
oloring is approx-imable within a small 
onstant fa
tor, while no 
onstant fa
tor approxima-tion is known for the non-preemptive 
ase.1.1 Known ResultsOne of the most 
elebrated 
onje
tures of mathemati
s for a long time waswhether all planar graphs 
ould be 
olored with at most 4 
olors. This was �nallyproved by Appel and Haken [2℄ with a 
omputer-aided proof, more re
entlyre�ned in [47℄. However, determining whether a planar graph requires 4 
olorsor not is NP-
omplete [13℄. Exa
t 
oloring algorithms have been derived fornumerous 
lasses of graphs, one of the most general is that of perfe
t graphs,due to Gr�ots
hel, Lov�asz, and S
hrijver [22℄. Another important 
lass of graphs isthat of line graphs; 
oloring line graphs is equivalent to �nding an edge 
oloring3



of the underlying graph. This is NP-hard [23℄ but 
an be done within an additiveone of the trivial lower bound of �(G), the maximum degree of the graph [49℄.Minimum preemptive multi
oloring is NP-hard to approximate on planargraphs within better than 4/3; this follows from the fa
t that it is NP-hardto tell if a planar graph is 3-
olorable. The problem is known to be hard evenon the spe
ial 
lass of hexagon graphs [40℄, whi
h are of parti
ular importan
efor their appli
ations for 
ellular networks. A 4=3-approximation for minimummulti
oloring of hexagon graphs is given in [43℄. The 
oloring algorithm of [22℄for perfe
t graphs extends to multi
oloring, and hen
e it is solvable on all of itssub
lasses. For line graphs, minimum multi
oloring is equivalent to edge 
oloringmultigraphs, whi
h is approximable within a fa
tor of 1:1 [45℄.Non-preemptive makespan problems have been 
onsidered for di�erent 
lassesof graphs, but under names unrelated to 
olorings. The npMC problem for intervalgraphs is better known as dynami
 storage allo
ation. Gergov gave an algorithmthat uses at most 3!(G) 
olors [17℄. Bu
hsbaum et al. [8℄ re
ently gave an algo-rithm with a performan
e ratio of 2+�, for any � > 0. Non-preemptive makespanof line graphs was studied by Co�man et al. [11℄ under the name �le transferproblem, with appli
ations to eÆ
ient movement and migration of data on a net-work.. They showed that a 
lass of greedy algorithms yields a 2-approximationand gave a (2 + �)-approximation for a version with more general resour
e 
on-straints.The sum 
oloring problem was �rst studied by Kubi
ka [33℄. EÆ
ient algo-rithms have been given for trees [33℄, partial k-trees [29℄, and regular bipartitegraphs [37℄. NP-hardness has been shown for general graphs [35℄, interval graphs[48℄, bipartite [6℄, line [4℄, planar [25℄, and 
ubi
 planar graphs [37℄. Approxi-mation algorithms were studied for sparse graphs [34, 4℄, bounded-degree graphs[4℄, bipartite graphs [6, 18℄, interval graphs [44, 27℄, 
omparability graphs [27℄,perfe
t graphs [4℄, planar graphs [25℄, line graphs [4℄, while results on hardnessof approximation have been shown for general [12, 4℄, bipartite [6℄, and intervalgraphs [20℄. See Table 1 for a summary of best results known.Exa
t and approximate algorithms for multi
oloring sum problems have beengiven for various 
lasses of graphs, as indi
ated in Table 1. There are hardnessresults spe
i�
 to sum multi
oloring; the 
ase to date is a re
ent NP-hardnessresult of Marx [38℄ of pSMC on trees.Results on sum multi
oloring problems are all fairly re
ent and in many 
asesthere are large gaps between the best upper and lower bounds on approximabil-ity. Several su

esses are however prominent:{ Approximation preserving redu
tions to the maximum independent set prob-lem on any hereditary graph 
lass [5℄: within a fa
tor of 4 for sum 
oloring,and fa
tor 16 for preemptive sum multi
oloring.{ Polynomial time approximation s
hemes (PTAS) for planar graphs (pSMCand npSMC),{ Constant fa
tor approximations for npSMC of line graphs and interval graphs[27℄, [16℄.{ Very small fa
tor approximations of sum 
oloring bipartite graphs [18℄.4



Table 1. Known results for sum (multi-)
oloring problemsSC SMCu.b. l.b. pSMC npSMCGeneral graphs n= log2 n [4℄ n1�� [4℄ n= log2 n [5℄ n= log n [5℄Perfe
t graphs 3.591 [16℄ 
 > 1 [6℄ 5.436 [16℄ O(log n) [5℄Interval graphs 1.796 [27℄ 
 > 1 [20℄ [16℄ 7:682 + � [16℄Bipartite graphs 27=26 [18℄ 
 > 1 [6℄ 1.5 [5℄ 2.8 [5℄Partial k-trees 1 [29℄ PTAS [25℄ FPTAS [25℄Planar graphs PTAS [25℄ NPC [25℄ PTAS [25℄ PTAS [25℄Trees 1 [33℄ PTAS [26℄ 1 [26℄Interse
tion of k-sets k [4℄ k [5℄ 3:591k+:5 [16℄Line graphs 2 [4℄ NPC 2 [5℄ 7.682 [16℄Line graphs of trees 1 PTAS [39℄NotationWe use the following symbols in the rest of the text:x(v) Length (or 
olor requirements) of vertex vp = p(G) Maximum vertex length�(G) Chromati
 number of graph G, ignoring vertex lengths2 Length Partitioning Te
hnique and npSMC of PlanarGraphsWe will 
onsider in this se
tion the npSMC problem for planar graphs, in order toillustrate several of the te
hniques appli
able to multi
oloring problems. Unlesswhere otherwise stated, the results are from [25℄. We will be aiming towards apolynomial time approximation s
heme (PTAS), but in order to get there, weshall be looking at progressively more general spe
ial 
ases. First, however, letus 
onsider some of the more basi
 approa
hes.The �rst approa
h might be to ignore the lengths to begin with, apply thequadrati
 algorithm behind the 4-
olor theorem [47℄, and then expand ea
h 
olor
lass as needed to �t the lengths of the verti
es. This 
an lead to a multi
oloringwhose sum is arbitrarily worse than optimal. Consider the graph in Fig. 2. Theonly valid two 
oloring mixes the white verti
es in 
olor 
lasses with the longdark verti
es; then, at least half of the white verti
es have to wait very long inorder to start.We see that we must give short verti
es pre
eden
e over long verti
es. Areasonable approa
h would be to 
olor the verti
es in groups, shortest-�rst.Grouping by length: Divide the verti
es into groups of geo-metri
ally in
reasing lengths, and fully 
olor the groups in orderof length.The most natural version is to use powers-of-two as breakpoints between groups,i.e., assign ea
h vertex v to group blg x(v)
+ 1. Ea
h group is then 
olored into5



Fig. 2. Example of a planar graph (a tree) whose 2-
oloring 
an lead to an arbitrarilypoor sum multi
oloring. The many white verti
es are short, while the two dark verti
esare very long.�(G) sets, ea
h using at most 2dlg x(v)e�1 
olors. For instan
e, verti
es of lengths4; 5; 6; 7 are in group 3, and ea
h of the �(G) sets in that group are assigned 7
olors (the largest length of a vertex in the group).This approa
h works reasonably well. Observe that group i will be fully
olored after at most �(G)[1 + 3 + 7 + : : :+ 2i � 1℄ 
olors have been used. Thisamounts to less than �(G)(2i+1 � 1). On the other hand, ea
h vertex in groupi is of length at least 2i�1. The performan
e ratio is therefore at most 4�(G).A 
loser look 
an a
tually redu
e this to 2�(G) [5℄. A further improvement isobtained by sele
ting the base of the geometri
 sequen
e randomly ; this givesthe best ratio known of e for non-preemptive sum multi
oloring bipartite graphs[5℄. A planar graphs are 4-
olorable, this length grouping approa
h gives us a
onstant fa
tor approximation. We have, however, higher expe
tations for pla-narity. We now turn our attention to the unit-length 
ase, the SC problem, as a�rst step on the road to an approximation ratio arbitrarily 
lose to 1.Sum Coloring Planar Graphs The primary te
hnique for approximatelysolving optimization problems, espe
ially subgraph and partitioning problems,on planar graphs is the de
omposition te
hnique of Baker [3℄. The de
ompositiontheorem says that for any integer k, we 
an partition the verti
es of a planargraph with n verti
es into two sets indu
ing subgraph H1 and H2, where H1 isk-outerplanar and H2 is outerplanar with at most n=k verti
es. A plane graphis said to be outerplanar if all the verti
es lie on the outer (i.e., in�nite) fa
e.Outerplanar graphs are also the 1-outerplanar graphs, while a graph is said tobe k-outerplanar if after removing all verti
es on the outer fa
e the graph isk � 1-outerplanar.Figure 3 illustrates a planar graph with the verti
es on the outer fa
e beingemphasized.The advantage with this de
omposition is that outerplanar and k-outerplanargraphs are frequently easy to solve optimally. Baker gave expli
it dynami
 pro-gramming algorithms for many optimization problems on k-outerplanar graphs[3℄; e.g., the algorithm to �nd maximum independent sets runs in time O(8kn).A more general indire
t approa
h is to use the observation of Bodlaender that6
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Fig. 3. Planar graph and the outerplanar graph indu
ed by its outer fa
e.k-outerplanar graphs have treewidth at most 3k � 2 [7℄, tapping into the vastresour
e of algorithms on partial k-trees.Baker's de
omposition pro
eeds as follows. Let V1 be the set of verti
es on theouter fa
e of the graph; remove this set from the graph. Now re
ursively applythis rule to obtain sets V2; V3; : : :, ea
h indu
ing an outerplanar graph. Figure 4illustrates this \peeling of onion skins". It is easy to see that a vertex in a set Viis adja
ent only to verti
es in its 
urrent set, previous set, or the following set.We now form set Ui; i = 1; 2; : : : ; k, as [tVtk+i, the union of the layers modulo k.Ea
h of the Ui also indu
es an outerplanar graph, and at least one of them, sayUp, 
ontains at most n=k verti
es. The remaining verti
es, V �Up, then form ak-outerplanar graph.

Fig. 4. Partition of a planar graph into a sequen
e of outerplanar graphs.We 
an fairly easily solve sum 
oloring problems on partial k-trees, us-ing traditional dynami
 programming on the tree de
omposition, as shown by7



Jansen [29℄. When pro
essing a supernode (a node in the tree de
omposition),we want to 
ompute for ea
h possible 
oloring of the up to k verti
es in thesupernode, the minimum 
ost 
oloring of the subtree of the tree de
omposition.If the maximum 
olor value of a vertex is 
, then the total time 
omplexity willbe O(k
kn). We see that it is 
ru
ial to bound the number of 
olors needed.Kubi
ka and S
hwenk [35℄ observed that an optimum sum 
oloring of a treemay require 
(logn) 
olors, but O(log n) 
olors also suÆ
e. A similar bound of�(k logn) was obtained for partial k-trees by Jansen [29℄. We shall prove later amore general result for multi
olorings. This graph measure, the minimum numberof 
olors in a minimum sum 
oloring, has been studied more extensively re
entlyas the strength of a graph.We now see that it is easy to apply Baker's de
omposition and solve ea
hpart optimally in quasi-linear time. The problem is: How do we 
ombine thesesolutions into a single 
oloring with of low sum? Intuitively, sin
e H1 
ontainsthe great majority of the verti
es, we would want to 
olor those verti
es �rst,and the verti
es of H2 afterwards. However, 
onsider what happens if we waituntil H1 is fully 
olored for 
oloring H2. The 
ost of 
oloring H1 is the minimum
hromati
 sum of H1, whi
h is at most the minimum sum of the whole graphG, whi
h is good. However, H2 may now start to be 
olored at 
olor k logn+1.Thus, the 
ost of 
oloring H2 is as mu
h as n=k � (k logn+ 1) � n logn. This is
ertainly mu
h more than the optimal sum (for one thing, 5-
oloring G has sumof at most 3n).Lemma 1. After t�(G) 
olors, an optimal sum 
oloring of graph G has 
oloredall but at most n=2t verti
es.Trun
ating a 
oloring: If a good sum 
oloring uses too many
olors, it may be preferable to stop that 
oloring earlier, and revertto a minimum-makespan 
oloring for the remainder.The 
ombined strategy is then the following:1. Apply Baker's de
omposition on input graph G, obtaining a k-outerplanargraph H1 and a smaller graph H2 with at most n=k verti
es.2. Solve H1 optimally, using dynami
 programming.3. Use the �rst 4 lg k 
olors of the optimal 
oloring of H1, leaving at mostn=2lg k = n=k verti
es un
olored.4. Color the remaining at most n=k + n=k verti
es using the 5 
olors 4 lg k +1; : : : ; 4 lg k + 5.The 
ost of the verti
es 
olored in the �rst 4 lg k 
olors is at most the optimalvalue for G. The 
ost of the verti
es 
olored later is at most (4 lg k+3)2n=k. Forany given �, 
hoose k = �(��1 lg ��1) su
h that this is at most �n � � �npSMC(G).Improved time 
omplexity of sum 
oloring planar graphs. We indi
ate how we
an improve slightly the time 
omplexity of the PTAS for sum 
oloring planargraphs of [25℄. 8



Baker
’
s decomposition


Color near
-
optimally


Truncate

2lg k
cols


4
-
color


Glue together


Output
: Sum
Coloring


Input
: 
Graph 
G


Baker
’
s decomposition


Color near
-
optimally
Color near
-
optimally


Truncate

2lg k
cols

Truncate

2lg k
cols


4
-
color
4
-
color


Glue together
Glue together


Output
: Sum
Coloring


Input
: 
Graph 
G


Fig. 5. The s
hema for sum 
oloring planar graphs.Instead of �nding an optimal sum 
oloring of H1, we might as well take intoa

ount that we shall only be using the �rst 4 lg k 
olor 
lasses. Thus, instead,we 
an sear
h for an optimal trun
ated pseudo
oloring with 4 lg k+1 
olors; thisis a proper 
oloring of all of the verti
es ex
ept those in the last 
lass. Lemma 1applies as before, for any t � lg k, so the last 
olor 
lass 
ontains at most n=kverti
es. The 
ost of su
h a 
oloring is at most the optimum 
hromati
 sum ofH1, sin
e any 
oloring is also a valid trun
ated pseudo
oloring.The advantage of using a trun
ated 
oloring is immediate from our observa-tion of the time 
omplexity of the DP approa
h being O(n
k), where 
 is thevalue of the largest 
olor used. Here, 
 = O(lg k), so the resulting 
omplexity isO(n2k lg lg k).Multi
oloring with small lengths. What hinders us from applying the samestrategy to the multi
oloring 
ase? Let us see how far the te
hniques used so farwill take us.First, we need to bound the number of 
olors used. A straightforward ex-tension of Lemma 1 shows that after O(tp�(G)) 
olors, at most n=2t verti
esremain, and the total number of 
olors used in an optimal multisum 
oloring isat most O(p�(G) logn).The dynami
 programming solution of partial k-trees 
an be applied withminimal 
hanges to non-preemptive multi
olorings. The only 
hange needed isto assign ea
h vertex an interval of 
olors instead of a single 
olor. The primarye�e
t is on the 
omplexity, sin
e the number of possible 
olors is larger. Thus,we 
an handle 
ombinations of p and k su
h that (p logn)k is polynomial.This gives us a PTAS for npSMC of planar graphs with polynomially boundedlengths (although not very eÆ
ient). 9



Multi
oloring with \almost identi
al" lengths. What if all the vertex lengths arethe same? Is that the same as the unit-length 
ase? In the non-preemptive 
ase,that is indeed true; this 
an be shown in various ways, e.g., by taking a validsolution, and turning into one where jobs never overlap. (In the preemptive 
ase,it is not true, although it holds for several spe
ial 
ases like bipartite graphs and
liques.)More generally, if the lengths are all multiple of a 
ommon fa
tor q, we 
ans
ale the instan
e by this fa
tor q, i.e. redu
e the problem to the instan
e whereall lengths are smaller by a fa
tor of q.Lemma 2 (Exa
t non-preemptive s
aling). Let I = (G; x) be a non-preemptivemulti
oloring instan
e where for ea
h v, x(v) is divisible by q. Then, q�npSMC(I=q) =npSMC(I).We 
an argue by indu
tion that in any optimal 
oloring of I , all 
hangeshappen at 
olors that are multiples of q. This shows that optimal 
olorings of Iis equivalent to stret
hing an optimal 
oloring of I=q by a fa
tor of q by repeatingea
h 
olor 
lass q times in order.What if the vertex lengths are fairly similar? We 
an then turn to a 
lassi
alapproximation te
hnique from s
heduling:Rounding-and-s
aling: If all lengths are greater than r and weround them upwards to a multiple of q, then the in
rease in theobje
tive fun
tion is at most a fa
tor of 1 + q=r.This holds independent of the graph and for any 
onvex obje
tive fun
tion ofthe lengths (in
luding multisum and makespan).Partitioning by length. We have now seen how to handle unit-length instan
es,and 
ertain restri
ted kind of multi
oloring instan
es, most generally the 
asewhen the ratio between the minimum and maximum length is bounded (by aterm that 
ould be a small polynomial in n).This suggests that we would want to divide the instan
e into groups of a
-
ording to length, 
oloring the \short" verti
es before the \long" verti
es. Wepla
e the verti
es on the s
ale a

ording to length, divide the instan
e into groupsof similar length, 
olor ea
h of them separately, and then \paste" them togetherin order of length. In order for this to work, we need to ensure that earlier groupsdo not \delay" the later groups. Basi
ally, if a group starts re
eiving 
olors late,it may not matter how eÆ
iently we 
olor it; the resulting 
oloring will alreadyhave be
ome too expensive.[An aside: One may suggest that instead of 
oloring the groups in sequen
e{ thus e�e
tively delaying all the verti
es in a group until all previous groupshave been 
ompleted { that we try to 
olor the verti
es in the group as early aspossible, intermixed with the 
olorings of the earlier groups. This may well bea good heuristi
, but 
an be hard to analyze; in parti
ular, it would destroy theindependen
e of the solutions of the individual groups. We shall not attempt topursue that dire
tion here.℄ 10



Consider what 
ould happen to a naive partition. A group of maximum lengthx, requires 
(x) 
olors; indeed, if even if it is 3-
olorable, if it 
ontains a trianglewith ea
h vertex of length x, we will have to use at least 3x 
olors. This mayprove too mu
h for the next group, whi
h may have most of its verti
es withlengths x+1. If we start that group at 
olor 3x+1 { not even a

ounting for thestill earlier groups { that e�e
tively pre
ludes the possibility of a PTAS. Thus,what we need to ensure is that the 
ost of 
oloring the earlier groups is small in
omparison with the average length of verti
es in the 
urrent group.We want to �nd a sequen
e of breakpoints b0 = 1; b1; : : : ;, that indu
e subsetsV1; V2; : : : ; Vt by Vi = fv 2 V : x(v) 2 (bi�1; bi℄g. We �nd that we 
an save alogarithmi
 fa
tor on any arbitrary 
hoi
es of breakpoints.Lemma 3 (Length partitioning). For any q = q(n), we 
an partition thevertex set into length groups so that the average length of verti
es in Vi is at least(lnpq)bi. Further, the groups di�er by a fa
tor of at most q, i.e. bi � bi�1 � q.This lemma has an interesting relationship with the 
lassi
 inequality ofMarkov from probability theory. Consider any 
olle
tion of positive numbersx1; : : : ; xn. Markov inequality shows that at most 1=` fra
tion of the elementsof the set X = fx1; x2; : : : ; xng are greater than ` times the average value x(
f. [41℄). It is easy to show that this is tight for any �xed value of t; but it
annot be tight for more than one value of t simultaneously. If we are free to
hoose t from a range of values, the resulting bound on the tail is better; as ourlemma shows, it is improved by a logarithmi
 fa
tor.Putting together the pie
es. This be
omes the missing puzzle in our quest for aPTAS.The 
ombined strategy is illustrated in Figure 6. The length partitioninglemma breaks the vertex set into groups with lengths in a 
ompa
t interval;the groups are pro
essed independently using a variation of the sum 
oloringapproximation s
heme. Finally, the individual solutions are pasted together, inorder of the group lengths.The 
ost of the multi
oloring is derived from two parts: the sum of the 
osts ofthe subproblems, and the delays in
urred by the 
olorings of the earlier subprob-lems. The former is at most 1 + � times the optimal 
ost of 
oloring ea
h of thesubgraphs separately, whi
h is at most (1+�)npSMC(G). The main issue is there-fore a

ounting for the 
ontribution of the delays. The number of 
olors used inea
h subproblem Gj is at most �bj , where � = O(log k) = O(log ��1). The sumof these is dominated by a geometri
 series with base of pq; thus, the sum of the
olors used on the subproblems pre
eding Gi is at most (1+1=(pq�1))�bi. Hereit be
omes 
ru
ial that the average weight of verti
es in ea
h subproblem Gi,and thus the multi
olor sum as well, is at least lnpqbi. Thus the 
ost in
urredby the delays of earlier subproblems are at most O(npSMC(G) � �= lnpq). In our
ase we 
hoose q = e(��1 ln ��1)2 , to make this quantity at most npSMC(G) �O(�).The total 
ost of the solution is therefore 1 +O(�) times optimal, whi
h 
an bemade arbitrarily 
lose to 1. 11
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Fig. 6. The s
hema for non-preemptive sum multi
oloring planar graphs. Ea
h smalldotted box on the right is an instan
e of the s
hema on the right applied to a length-
onstrained subgraph.3 The Delay Te
hnique, npSMC on Line Graphs andOpen-shop S
hedulingWe now des
ribe another general te
hnique appli
able in several s
enarios. Inparti
ular, it is used to approximate the npSMC problem on line graphs, and forapproximating open-shop s
heduling.Let L(v) and S(v) denote the sets of shorter and longer neighbors of v,respe
tively. Let x(U) = Pu2U x(u) be the sum of the lengths of verti
es in aset U .Note that for every edge e = (u; v) 2 E and in any legal s
hedule the jobs
orresponding to u and v are performed in disjoint rounds. In parti
ular, if thejob of v starts (and thus ends) before the job u starts, u has to \wait" x(v) timeunits before it 
an start being exe
uted. Say that x(u) � x(v). In su
h a 
ase, a\perfe
t" algorithm will \manage" to s
hedule u before v in
urring x(u) delay(rather than x(v) delay). Admittedly, some of the delays 
an happen \together,namely, at the same round several of the neighbors of v are a
tive together. Onthe other hand, these a
tive neighbors of v must form an independent set. Atmost two neighbors of any node in a line graph 
an be a
tive at the same time.This intuition is 
onverted into the following 
laim [27℄. Let Q(G) =Pv x(S(v)).Proposition 1. [27℄ For a line graph G,Q(G) � 2 � (npSMC(G)� S(G)):As it turns out, Claim 1 does not suÆ
e to give a \good" approximation.The problem is with the longer neighbors L(v) of a vertex v. Say that u 2 L(v)12



and x(u) � x(v). In the non-preemptive s
enario, if u exe
utes before v then vhas to wait for u to end 
ausing a large delay.If we disallow u 2 L(v) to be exe
uted before v this may 
ause the indepen-dent sets exe
uted at given rounds not to be even maximal independent sets.We adopt an intermediate approa
h that 
an be summarized as follows.1. Before a vertex v 
an be
ome \a
tive", namely, is exe
uted non-preemptivelyfor x(v) rounds, it has to \pay" � � x(v) rounds, where � is some 
arefully
hosen 
onstant.2. A vertex 
an only pay if it not exe
uted and has no a
tive neighbor.Thus the paying of � � x(v) rounds is a way of disallowing long jobs to haveearly pro
ess starting times. In fa
t, the delay \paid" by a job is proportionalto its length, hen
e long jobs wait more.The algorithm used in [27℄ is implied by the following additional rules:{ At ea
h round, the union of the a
tive and paying verti
es is a maximalindependent set. Thus, two verti
es paying at the same round 
annot beneighbors.{ The length rule: A vertex v pays in a round if and only if it has neitheran a
tive neighbor or a shorter paying neighbor in that round.Our goal is to prove that the appli
ation of this algorithm on a line graphgives a O(x(S(v)) �nish time for a vertex v. Then, by Proposition 1 an O(1)-approximation algorithm for npSMC is implied. In given round, a vertex v 
aneither be1. a
tive,2. paying, or3. neither paying nor a
tive, in whi
h 
ase it is delayed.It is easy to a

ount for the 
ontribution of rounds where v is a
tive or paying.It remains to 
he
k rounds where v is delayed. By de�nition, v 
an be delayedbe
ause either the round 
ontains a paying S(v) vertex or the round 
ontains ana
tive neighbor of v.Again, it is easy to a

ount for rounds where v is delayed by a shorter neighbor(paying or a
tive); see Proposition 1. Hen
e the only \problemati
" rounds arerounds that 
ontain a longer a
tive neighbor.Let L0(v) be the verti
es of L(v) that be
ame a
tive before v. Observe that byde�nition, before be
oming a
tive, these L0(v) verti
es paid a total of � �x(L0(v))units (while some of those units were simultaneously paid). The following 
laimbounds x(L0(v)) by O(x(S(v)). Thus, we 
an use Claim 1 to get a 
onstant fa
torapproximation for npSMC.Proposition 2. x(L0(v)) = O(k � x(S(v))Proof. Sin
e the verti
es of L0(v) needed to pay for a total of � �x(L0(v)) roundsbefore be
oming a
tive, and sin
e at most 2 neighbors of a vertex in a line graph13



are a
tive at the same time, there were at least � � x(L0(v))=k rounds in whi
hthe L0(v) verti
es were paying. Call su
h a round an \important" round.Consider an important \problemati
" round for v, namely, an importantround for v in whi
h no S(v) vertex is paying or a
tive. Sin
e v was not 
hosento be the paying vertex in an important round, it follows that v must havean a
tive neighbor in su
h a round; otherwise, by the length rule, it has to bepaying. Thus we get: � � x(L0(v))k � x(L0(v)) + x(S(v)):Remark: The main property used here is that verti
es in L(v)nL0(v) 
annotbe
ome a
tive before v be
omes a
tive.Hen
e, we get that x(L0(v)) = O(k � x(S(v))) as required.A more detailed proof along these lines implies a 12-ratio for npSMC on linegraphs.Open-shop and simultaneous delay. In our 
ontext, it is best to des
ribe the non-preemptive open-shop s
heduling problem as follows. We are given a bipartitegraph G(M;J;E), (M for ma
hines and J for jobs). Ea
h edge e 
orresponds toa task and has length x(e). A subset of the tasks (edges) has to be s
heduledat every round. The edges s
heduled at a given round must be \independent",namely, must indu
e a mat
hing. We need to s
hedule non-preemptively all tasks(edges) so that every e is exe
uted non-preemptively for x(e) time units.In this s
enario, verti
es m 2 M 
orrespond to jobs. A job is 
ompleted ifall its tasks (edges) 
omplete. Formally, let m 2 M . The �nish time f(m) isthe maximum �nish time of an edge tou
hing m. The obje
tive fun
tion is tominimize Pm2M f(m).The open shop s
heduling problem resembles the npSMC problem on linegraphs (be
ause a round is an independent set of edges). The main di�eren
e isthat we sum the �nish times of verti
es (of the underlying graph, of whi
h wetake the line graph) and not of edges. In that respe
t, the open-shop problemresembles more the data migration problem (see [30℄). In [15℄ the delay method isused 
ombined with LP te
hniques to give improved approximation. The problemis relaxed to a fra
tional linear program. The fra
tional values are used in thedelay fun
tion. Namely, if an edge e has fra
tional starting time �(e), it is delayedby a fun
tion of �(e) of rounds. Instead of a \
ombinatorial" lower bound lemma1, the fra
tional LP value is used to prove a lower bound.One important new idea is used here. In the line graph algorithm, adja
entverti
es 
annot simultaneously pay at a round (the paying verti
es are an in-dependent set). In [15℄ a simultaneous pay method is used: Adja
ent verti
es
an pay at the same round. While this simultaneous pay method fails to give agood approximation for general line graphs, it su

eeds for open shop s
heduling,in part be
ause open shop s
heduling essentially 
orresponds to line graphs ofbipartite graphs. 14
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