
Multioloring: Problems and TehniquesMagn�us M. Halld�orsson1 and Guy Kortsarz21 Department of Computer Siene, University of Ieland, IS-107 Reykjavik, Ieland.mmh�hi.is2 Department of Computer Siene, Rutgers University, Camden, NJ 08102.guyk�amden.rutgers.edu1 Multioloring Graphs: Problems, Measures,AppliationsA multioloring is an assignment where eah vertex is assigned not just a singlenumber (a \olor") but a set of numbers. The number of olors assigned to thevertex is spei�ed by the length (or olor requirement) parameter of that vertexin the input. As usual, adjaent verties annot reeive the same olor; thushere, the sets of olors they reeive must be disjoint. Multiolorings are thereforeproper generalizations of ordinary graph olorings. The purpose of this paper isto summarize some of the tehniques that have been developed spei�ally forobtaining good approximate multiolorings in di�erent lasses of graphs.The multioloring problem is reserved for the ase where there is no restritionon the set of olors that eah vertex an reeive (exept its size) and the objetiveis to minimize the number of olors used. A di�erent problem is obtained whenwe require the olors assigned to a vertex to form a ontiguous interval { werefer to suh an assignment as a non-preemptive multioloring. Yet a di�erentfamily of problems ours when we hange the objetive funtion; in partiular,we will be interested in the minimizing the sum of the multiolorings, or thesum of the largest olor assigned to eah vertex (assuming the olors orrespondto the natural numbers).Appliations. Graph oloring has great many appliations. One of the lassiexamples are in timetabling, where we want to assign ourses (nodes) to timeslots (olors) so that lasses that annot be taught simultaneously (e.g., thatshare a student/teaher population) are assigned di�erent time slots. If oursesare all of the same length, we have an ordinary oloring problem (let us ignorethe issue of the number of lassrooms). Only in speial ases do we have anordinary graph oloring problem; with letures of di�erent length, we have anon-preemptive multioloring problem, while with letures of idential lengthbut several ourrenes within the sheduling time frame, we have a preemptiveproblem.Another appliation is frequeny alloation or hannel assignment in wirelessommuniation. In a ellular network, ommuniation between mobiles and abase station in a ell is aross a narrow frequeny hannel. Two base stationsannot use the same frequeny if it auses interferene due to geographi loality.



This is modeled by a graph where the nodes orrespond to the base stations andedges represent geographi adjaeny [42℄. Eah node needs to be alloated asmany hannels, or olors, as there are alls onneting to that base station,resulting in a multioloring problem.For many lasses of graphs, the multioloring problem an be translated tothe ordinary oloring problem. A vertex v of length x(v) is replaed by a liqueof x(v) verties (onneting a opy of v to a opy of u if u and v are onneted inG). This redution is polynomial if p is polynomial in n, but an often be doneimpliitly for large values of p. This is one reason why multiolorings appear lessoften in the literature.As the timetabling example indiates, pratial appliations of graph olor-ing often relate to sheduling. The graph then represents some onstraints oronits between the jobs that disallow simultaneous exeution. One di�erenewith typial sheduling problems is that they tend to involve a �xed number of\mahines", rather than allowing for an unbounded number of verties of thesame olor. Another di�erene is that onstraints on jobs in sheduling tend tobe either non-existent or based on preedene instead of onits. Yet, there areseveral exeptions to these restritions/di�erenes.Viewing a problem as a sheduling or as a graph theory problem is not astrivial a issue as it may seem; these are two (overlapping but) di�erent ommu-nities with widely di�erent voabulary and di�erent perspetive. It may evenbe frowned upon to mix metaphors or borrow di�erent onepts. We, however,advoate freedom from denominational anons in order to bene�t from the bestof both worlds. As we shall see, this will allow us to map a tehnique from onearea to the other and bak. We shall intermix the voabulary, talking equally ofverties and jobs, olors and rounds (or steps), shedules and olorings.Measures. The possibility of onsidering di�erent objetive funtions is oneeye-opening produt of the sheduling perspetive. The seond most ommonobjetive funtion is the sum of ompletion times, or its weighted version. Thishas been onsidered for (unit-length) graph oloring as the sum oloring problem:the olors are positive integers, and the objetive is to minimize the sum of theolors assigned to the verties. In the multioloring versions, we sum over theverties the �nish times, or the last olor assigned to that vertex. In the ontextof dependent jobs in a system, the sum measure has been seen to favor the users(that own the jobs), while the makespan measure is the favorite of the system(that wants to get done quikly). We use the following notation for the di�erentproblems:SC Minimum sum oloringpMC Multihromati number of G, or preemptive makespan multioloringnpMC Non-preemptive makespan, or fewest olors in a ontiguous multioloringnpSMC Non-preemptive sum multioloringpSMC Preemptive sum multioloring2
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(a) (b)Fig. 1. An example of a path whose optimal sum oloring uses more than the minimumnumber of olors. (a) Graph with vertex lengths; (b) A minimum sum oloring.Multioloring vs. ordinary oloring problems. How di�erent is multioloringfrom ordinary graph oloring? We mention some lasses of graphs where thedi�erene beomes signi�ant.Paths Almost anything is trivial for paths, inluding all makespan problemsand all unit-length oloring problems. However, it is not at all easy to derivea polynomial time algorithm for preemptive sum multioloring (as an beattested by many false starts by the authors). The urrent best algorithmdue to Kov�as runs in time O(n3p) [31℄; a strongly polynomial algorithm isyet to be found.Trees Preemptive sum multioloring has been shown to be strongly NP-hardfor trees, even binary trees with polynomially bounded weights [38℄. Onthe other hand, sum oloring yields an easy (but not greedy) linear timealgorithm.Interval graphs Non-preemptive makespan multioloring on interval graphs isthe Dynami Storage Alloation problem, whih is NP-hard and APX-hard(i.e., hard to approximate within some  > 1). The ordinary oloring prob-lem is, however, easily solvable by a greedy method. Sum oloring and summultioloring problems are all approximable within some onstant; however,the best ratio di�ers by a fator of as muh as 4 (see table).Perfet graphs For this lass of graphs, we see a di�erene between preemp-tive and non-preemptive problems. Preemptive sum multioloring is approx-imable within a small onstant fator, while no onstant fator approxima-tion is known for the non-preemptive ase.1.1 Known ResultsOne of the most elebrated onjetures of mathematis for a long time waswhether all planar graphs ould be olored with at most 4 olors. This was �nallyproved by Appel and Haken [2℄ with a omputer-aided proof, more reentlyre�ned in [47℄. However, determining whether a planar graph requires 4 olorsor not is NP-omplete [13℄. Exat oloring algorithms have been derived fornumerous lasses of graphs, one of the most general is that of perfet graphs,due to Gr�otshel, Lov�asz, and Shrijver [22℄. Another important lass of graphs isthat of line graphs; oloring line graphs is equivalent to �nding an edge oloring3



of the underlying graph. This is NP-hard [23℄ but an be done within an additiveone of the trivial lower bound of �(G), the maximum degree of the graph [49℄.Minimum preemptive multioloring is NP-hard to approximate on planargraphs within better than 4/3; this follows from the fat that it is NP-hardto tell if a planar graph is 3-olorable. The problem is known to be hard evenon the speial lass of hexagon graphs [40℄, whih are of partiular importanefor their appliations for ellular networks. A 4=3-approximation for minimummultioloring of hexagon graphs is given in [43℄. The oloring algorithm of [22℄for perfet graphs extends to multioloring, and hene it is solvable on all of itssublasses. For line graphs, minimum multioloring is equivalent to edge oloringmultigraphs, whih is approximable within a fator of 1:1 [45℄.Non-preemptive makespan problems have been onsidered for di�erent lassesof graphs, but under names unrelated to olorings. The npMC problem for intervalgraphs is better known as dynami storage alloation. Gergov gave an algorithmthat uses at most 3!(G) olors [17℄. Buhsbaum et al. [8℄ reently gave an algo-rithm with a performane ratio of 2+�, for any � > 0. Non-preemptive makespanof line graphs was studied by Co�man et al. [11℄ under the name �le transferproblem, with appliations to eÆient movement and migration of data on a net-work.. They showed that a lass of greedy algorithms yields a 2-approximationand gave a (2 + �)-approximation for a version with more general resoure on-straints.The sum oloring problem was �rst studied by Kubika [33℄. EÆient algo-rithms have been given for trees [33℄, partial k-trees [29℄, and regular bipartitegraphs [37℄. NP-hardness has been shown for general graphs [35℄, interval graphs[48℄, bipartite [6℄, line [4℄, planar [25℄, and ubi planar graphs [37℄. Approxi-mation algorithms were studied for sparse graphs [34, 4℄, bounded-degree graphs[4℄, bipartite graphs [6, 18℄, interval graphs [44, 27℄, omparability graphs [27℄,perfet graphs [4℄, planar graphs [25℄, line graphs [4℄, while results on hardnessof approximation have been shown for general [12, 4℄, bipartite [6℄, and intervalgraphs [20℄. See Table 1 for a summary of best results known.Exat and approximate algorithms for multioloring sum problems have beengiven for various lasses of graphs, as indiated in Table 1. There are hardnessresults spei� to sum multioloring; the ase to date is a reent NP-hardnessresult of Marx [38℄ of pSMC on trees.Results on sum multioloring problems are all fairly reent and in many asesthere are large gaps between the best upper and lower bounds on approximabil-ity. Several suesses are however prominent:{ Approximation preserving redutions to the maximum independent set prob-lem on any hereditary graph lass [5℄: within a fator of 4 for sum oloring,and fator 16 for preemptive sum multioloring.{ Polynomial time approximation shemes (PTAS) for planar graphs (pSMCand npSMC),{ Constant fator approximations for npSMC of line graphs and interval graphs[27℄, [16℄.{ Very small fator approximations of sum oloring bipartite graphs [18℄.4



Table 1. Known results for sum (multi-)oloring problemsSC SMCu.b. l.b. pSMC npSMCGeneral graphs n= log2 n [4℄ n1�� [4℄ n= log2 n [5℄ n= log n [5℄Perfet graphs 3.591 [16℄  > 1 [6℄ 5.436 [16℄ O(log n) [5℄Interval graphs 1.796 [27℄  > 1 [20℄ [16℄ 7:682 + � [16℄Bipartite graphs 27=26 [18℄  > 1 [6℄ 1.5 [5℄ 2.8 [5℄Partial k-trees 1 [29℄ PTAS [25℄ FPTAS [25℄Planar graphs PTAS [25℄ NPC [25℄ PTAS [25℄ PTAS [25℄Trees 1 [33℄ PTAS [26℄ 1 [26℄Intersetion of k-sets k [4℄ k [5℄ 3:591k+:5 [16℄Line graphs 2 [4℄ NPC 2 [5℄ 7.682 [16℄Line graphs of trees 1 PTAS [39℄NotationWe use the following symbols in the rest of the text:x(v) Length (or olor requirements) of vertex vp = p(G) Maximum vertex length�(G) Chromati number of graph G, ignoring vertex lengths2 Length Partitioning Tehnique and npSMC of PlanarGraphsWe will onsider in this setion the npSMC problem for planar graphs, in order toillustrate several of the tehniques appliable to multioloring problems. Unlesswhere otherwise stated, the results are from [25℄. We will be aiming towards apolynomial time approximation sheme (PTAS), but in order to get there, weshall be looking at progressively more general speial ases. First, however, letus onsider some of the more basi approahes.The �rst approah might be to ignore the lengths to begin with, apply thequadrati algorithm behind the 4-olor theorem [47℄, and then expand eah olorlass as needed to �t the lengths of the verties. This an lead to a multioloringwhose sum is arbitrarily worse than optimal. Consider the graph in Fig. 2. Theonly valid two oloring mixes the white verties in olor lasses with the longdark verties; then, at least half of the white verties have to wait very long inorder to start.We see that we must give short verties preedene over long verties. Areasonable approah would be to olor the verties in groups, shortest-�rst.Grouping by length: Divide the verties into groups of geo-metrially inreasing lengths, and fully olor the groups in orderof length.The most natural version is to use powers-of-two as breakpoints between groups,i.e., assign eah vertex v to group blg x(v)+ 1. Eah group is then olored into5



Fig. 2. Example of a planar graph (a tree) whose 2-oloring an lead to an arbitrarilypoor sum multioloring. The many white verties are short, while the two dark vertiesare very long.�(G) sets, eah using at most 2dlg x(v)e�1 olors. For instane, verties of lengths4; 5; 6; 7 are in group 3, and eah of the �(G) sets in that group are assigned 7olors (the largest length of a vertex in the group).This approah works reasonably well. Observe that group i will be fullyolored after at most �(G)[1 + 3 + 7 + : : :+ 2i � 1℄ olors have been used. Thisamounts to less than �(G)(2i+1 � 1). On the other hand, eah vertex in groupi is of length at least 2i�1. The performane ratio is therefore at most 4�(G).A loser look an atually redue this to 2�(G) [5℄. A further improvement isobtained by seleting the base of the geometri sequene randomly ; this givesthe best ratio known of e for non-preemptive sum multioloring bipartite graphs[5℄. A planar graphs are 4-olorable, this length grouping approah gives us aonstant fator approximation. We have, however, higher expetations for pla-narity. We now turn our attention to the unit-length ase, the SC problem, as a�rst step on the road to an approximation ratio arbitrarily lose to 1.Sum Coloring Planar Graphs The primary tehnique for approximatelysolving optimization problems, espeially subgraph and partitioning problems,on planar graphs is the deomposition tehnique of Baker [3℄. The deompositiontheorem says that for any integer k, we an partition the verties of a planargraph with n verties into two sets induing subgraph H1 and H2, where H1 isk-outerplanar and H2 is outerplanar with at most n=k verties. A plane graphis said to be outerplanar if all the verties lie on the outer (i.e., in�nite) fae.Outerplanar graphs are also the 1-outerplanar graphs, while a graph is said tobe k-outerplanar if after removing all verties on the outer fae the graph isk � 1-outerplanar.Figure 3 illustrates a planar graph with the verties on the outer fae beingemphasized.The advantage with this deomposition is that outerplanar and k-outerplanargraphs are frequently easy to solve optimally. Baker gave expliit dynami pro-gramming algorithms for many optimization problems on k-outerplanar graphs[3℄; e.g., the algorithm to �nd maximum independent sets runs in time O(8kn).A more general indiret approah is to use the observation of Bodlaender that6
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Fig. 3. Planar graph and the outerplanar graph indued by its outer fae.k-outerplanar graphs have treewidth at most 3k � 2 [7℄, tapping into the vastresoure of algorithms on partial k-trees.Baker's deomposition proeeds as follows. Let V1 be the set of verties on theouter fae of the graph; remove this set from the graph. Now reursively applythis rule to obtain sets V2; V3; : : :, eah induing an outerplanar graph. Figure 4illustrates this \peeling of onion skins". It is easy to see that a vertex in a set Viis adjaent only to verties in its urrent set, previous set, or the following set.We now form set Ui; i = 1; 2; : : : ; k, as [tVtk+i, the union of the layers modulo k.Eah of the Ui also indues an outerplanar graph, and at least one of them, sayUp, ontains at most n=k verties. The remaining verties, V �Up, then form ak-outerplanar graph.

Fig. 4. Partition of a planar graph into a sequene of outerplanar graphs.We an fairly easily solve sum oloring problems on partial k-trees, us-ing traditional dynami programming on the tree deomposition, as shown by7



Jansen [29℄. When proessing a supernode (a node in the tree deomposition),we want to ompute for eah possible oloring of the up to k verties in thesupernode, the minimum ost oloring of the subtree of the tree deomposition.If the maximum olor value of a vertex is , then the total time omplexity willbe O(kkn). We see that it is ruial to bound the number of olors needed.Kubika and Shwenk [35℄ observed that an optimum sum oloring of a treemay require 
(logn) olors, but O(log n) olors also suÆe. A similar bound of�(k logn) was obtained for partial k-trees by Jansen [29℄. We shall prove later amore general result for multiolorings. This graph measure, the minimum numberof olors in a minimum sum oloring, has been studied more extensively reentlyas the strength of a graph.We now see that it is easy to apply Baker's deomposition and solve eahpart optimally in quasi-linear time. The problem is: How do we ombine thesesolutions into a single oloring with of low sum? Intuitively, sine H1 ontainsthe great majority of the verties, we would want to olor those verties �rst,and the verties of H2 afterwards. However, onsider what happens if we waituntil H1 is fully olored for oloring H2. The ost of oloring H1 is the minimumhromati sum of H1, whih is at most the minimum sum of the whole graphG, whih is good. However, H2 may now start to be olored at olor k logn+1.Thus, the ost of oloring H2 is as muh as n=k � (k logn+ 1) � n logn. This isertainly muh more than the optimal sum (for one thing, 5-oloring G has sumof at most 3n).Lemma 1. After t�(G) olors, an optimal sum oloring of graph G has oloredall but at most n=2t verties.Trunating a oloring: If a good sum oloring uses too manyolors, it may be preferable to stop that oloring earlier, and revertto a minimum-makespan oloring for the remainder.The ombined strategy is then the following:1. Apply Baker's deomposition on input graph G, obtaining a k-outerplanargraph H1 and a smaller graph H2 with at most n=k verties.2. Solve H1 optimally, using dynami programming.3. Use the �rst 4 lg k olors of the optimal oloring of H1, leaving at mostn=2lg k = n=k verties unolored.4. Color the remaining at most n=k + n=k verties using the 5 olors 4 lg k +1; : : : ; 4 lg k + 5.The ost of the verties olored in the �rst 4 lg k olors is at most the optimalvalue for G. The ost of the verties olored later is at most (4 lg k+3)2n=k. Forany given �, hoose k = �(��1 lg ��1) suh that this is at most �n � � �npSMC(G).Improved time omplexity of sum oloring planar graphs. We indiate how wean improve slightly the time omplexity of the PTAS for sum oloring planargraphs of [25℄. 8
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Fig. 5. The shema for sum oloring planar graphs.Instead of �nding an optimal sum oloring of H1, we might as well take intoaount that we shall only be using the �rst 4 lg k olor lasses. Thus, instead,we an searh for an optimal trunated pseudooloring with 4 lg k+1 olors; thisis a proper oloring of all of the verties exept those in the last lass. Lemma 1applies as before, for any t � lg k, so the last olor lass ontains at most n=kverties. The ost of suh a oloring is at most the optimum hromati sum ofH1, sine any oloring is also a valid trunated pseudooloring.The advantage of using a trunated oloring is immediate from our observa-tion of the time omplexity of the DP approah being O(nk), where  is thevalue of the largest olor used. Here,  = O(lg k), so the resulting omplexity isO(n2k lg lg k).Multioloring with small lengths. What hinders us from applying the samestrategy to the multioloring ase? Let us see how far the tehniques used so farwill take us.First, we need to bound the number of olors used. A straightforward ex-tension of Lemma 1 shows that after O(tp�(G)) olors, at most n=2t vertiesremain, and the total number of olors used in an optimal multisum oloring isat most O(p�(G) logn).The dynami programming solution of partial k-trees an be applied withminimal hanges to non-preemptive multiolorings. The only hange needed isto assign eah vertex an interval of olors instead of a single olor. The primarye�et is on the omplexity, sine the number of possible olors is larger. Thus,we an handle ombinations of p and k suh that (p logn)k is polynomial.This gives us a PTAS for npSMC of planar graphs with polynomially boundedlengths (although not very eÆient). 9



Multioloring with \almost idential" lengths. What if all the vertex lengths arethe same? Is that the same as the unit-length ase? In the non-preemptive ase,that is indeed true; this an be shown in various ways, e.g., by taking a validsolution, and turning into one where jobs never overlap. (In the preemptive ase,it is not true, although it holds for several speial ases like bipartite graphs andliques.)More generally, if the lengths are all multiple of a ommon fator q, we ansale the instane by this fator q, i.e. redue the problem to the instane whereall lengths are smaller by a fator of q.Lemma 2 (Exat non-preemptive saling). Let I = (G; x) be a non-preemptivemultioloring instane where for eah v, x(v) is divisible by q. Then, q�npSMC(I=q) =npSMC(I).We an argue by indution that in any optimal oloring of I , all hangeshappen at olors that are multiples of q. This shows that optimal olorings of Iis equivalent to strething an optimal oloring of I=q by a fator of q by repeatingeah olor lass q times in order.What if the vertex lengths are fairly similar? We an then turn to a lassialapproximation tehnique from sheduling:Rounding-and-saling: If all lengths are greater than r and weround them upwards to a multiple of q, then the inrease in theobjetive funtion is at most a fator of 1 + q=r.This holds independent of the graph and for any onvex objetive funtion ofthe lengths (inluding multisum and makespan).Partitioning by length. We have now seen how to handle unit-length instanes,and ertain restrited kind of multioloring instanes, most generally the asewhen the ratio between the minimum and maximum length is bounded (by aterm that ould be a small polynomial in n).This suggests that we would want to divide the instane into groups of a-ording to length, oloring the \short" verties before the \long" verties. Weplae the verties on the sale aording to length, divide the instane into groupsof similar length, olor eah of them separately, and then \paste" them togetherin order of length. In order for this to work, we need to ensure that earlier groupsdo not \delay" the later groups. Basially, if a group starts reeiving olors late,it may not matter how eÆiently we olor it; the resulting oloring will alreadyhave beome too expensive.[An aside: One may suggest that instead of oloring the groups in sequene{ thus e�etively delaying all the verties in a group until all previous groupshave been ompleted { that we try to olor the verties in the group as early aspossible, intermixed with the olorings of the earlier groups. This may well bea good heuristi, but an be hard to analyze; in partiular, it would destroy theindependene of the solutions of the individual groups. We shall not attempt topursue that diretion here.℄ 10



Consider what ould happen to a naive partition. A group of maximum lengthx, requires 
(x) olors; indeed, if even if it is 3-olorable, if it ontains a trianglewith eah vertex of length x, we will have to use at least 3x olors. This mayprove too muh for the next group, whih may have most of its verties withlengths x+1. If we start that group at olor 3x+1 { not even aounting for thestill earlier groups { that e�etively preludes the possibility of a PTAS. Thus,what we need to ensure is that the ost of oloring the earlier groups is small inomparison with the average length of verties in the urrent group.We want to �nd a sequene of breakpoints b0 = 1; b1; : : : ;, that indue subsetsV1; V2; : : : ; Vt by Vi = fv 2 V : x(v) 2 (bi�1; bi℄g. We �nd that we an save alogarithmi fator on any arbitrary hoies of breakpoints.Lemma 3 (Length partitioning). For any q = q(n), we an partition thevertex set into length groups so that the average length of verties in Vi is at least(lnpq)bi. Further, the groups di�er by a fator of at most q, i.e. bi � bi�1 � q.This lemma has an interesting relationship with the lassi inequality ofMarkov from probability theory. Consider any olletion of positive numbersx1; : : : ; xn. Markov inequality shows that at most 1=` fration of the elementsof the set X = fx1; x2; : : : ; xng are greater than ` times the average value x(f. [41℄). It is easy to show that this is tight for any �xed value of t; but itannot be tight for more than one value of t simultaneously. If we are free tohoose t from a range of values, the resulting bound on the tail is better; as ourlemma shows, it is improved by a logarithmi fator.Putting together the piees. This beomes the missing puzzle in our quest for aPTAS.The ombined strategy is illustrated in Figure 6. The length partitioninglemma breaks the vertex set into groups with lengths in a ompat interval;the groups are proessed independently using a variation of the sum oloringapproximation sheme. Finally, the individual solutions are pasted together, inorder of the group lengths.The ost of the multioloring is derived from two parts: the sum of the osts ofthe subproblems, and the delays inurred by the olorings of the earlier subprob-lems. The former is at most 1 + � times the optimal ost of oloring eah of thesubgraphs separately, whih is at most (1+�)npSMC(G). The main issue is there-fore aounting for the ontribution of the delays. The number of olors used ineah subproblem Gj is at most �bj , where � = O(log k) = O(log ��1). The sumof these is dominated by a geometri series with base of pq; thus, the sum of theolors used on the subproblems preeding Gi is at most (1+1=(pq�1))�bi. Hereit beomes ruial that the average weight of verties in eah subproblem Gi,and thus the multiolor sum as well, is at least lnpqbi. Thus the ost inurredby the delays of earlier subproblems are at most O(npSMC(G) � �= lnpq). In ourase we hoose q = e(��1 ln ��1)2 , to make this quantity at most npSMC(G) �O(�).The total ost of the solution is therefore 1 +O(�) times optimal, whih an bemade arbitrarily lose to 1. 11
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np-sumcoloringof GFig. 6. The shema for non-preemptive sum multioloring planar graphs. Eah smalldotted box on the right is an instane of the shema on the right applied to a length-onstrained subgraph.3 The Delay Tehnique, npSMC on Line Graphs andOpen-shop ShedulingWe now desribe another general tehnique appliable in several senarios. Inpartiular, it is used to approximate the npSMC problem on line graphs, and forapproximating open-shop sheduling.Let L(v) and S(v) denote the sets of shorter and longer neighbors of v,respetively. Let x(U) = Pu2U x(u) be the sum of the lengths of verties in aset U .Note that for every edge e = (u; v) 2 E and in any legal shedule the jobsorresponding to u and v are performed in disjoint rounds. In partiular, if thejob of v starts (and thus ends) before the job u starts, u has to \wait" x(v) timeunits before it an start being exeuted. Say that x(u) � x(v). In suh a ase, a\perfet" algorithm will \manage" to shedule u before v inurring x(u) delay(rather than x(v) delay). Admittedly, some of the delays an happen \together,namely, at the same round several of the neighbors of v are ative together. Onthe other hand, these ative neighbors of v must form an independent set. Atmost two neighbors of any node in a line graph an be ative at the same time.This intuition is onverted into the following laim [27℄. Let Q(G) =Pv x(S(v)).Proposition 1. [27℄ For a line graph G,Q(G) � 2 � (npSMC(G)� S(G)):As it turns out, Claim 1 does not suÆe to give a \good" approximation.The problem is with the longer neighbors L(v) of a vertex v. Say that u 2 L(v)12



and x(u) � x(v). In the non-preemptive senario, if u exeutes before v then vhas to wait for u to end ausing a large delay.If we disallow u 2 L(v) to be exeuted before v this may ause the indepen-dent sets exeuted at given rounds not to be even maximal independent sets.We adopt an intermediate approah that an be summarized as follows.1. Before a vertex v an beome \ative", namely, is exeuted non-preemptivelyfor x(v) rounds, it has to \pay" � � x(v) rounds, where � is some arefullyhosen onstant.2. A vertex an only pay if it not exeuted and has no ative neighbor.Thus the paying of � � x(v) rounds is a way of disallowing long jobs to haveearly proess starting times. In fat, the delay \paid" by a job is proportionalto its length, hene long jobs wait more.The algorithm used in [27℄ is implied by the following additional rules:{ At eah round, the union of the ative and paying verties is a maximalindependent set. Thus, two verties paying at the same round annot beneighbors.{ The length rule: A vertex v pays in a round if and only if it has neitheran ative neighbor or a shorter paying neighbor in that round.Our goal is to prove that the appliation of this algorithm on a line graphgives a O(x(S(v)) �nish time for a vertex v. Then, by Proposition 1 an O(1)-approximation algorithm for npSMC is implied. In given round, a vertex v aneither be1. ative,2. paying, or3. neither paying nor ative, in whih ase it is delayed.It is easy to aount for the ontribution of rounds where v is ative or paying.It remains to hek rounds where v is delayed. By de�nition, v an be delayedbeause either the round ontains a paying S(v) vertex or the round ontains anative neighbor of v.Again, it is easy to aount for rounds where v is delayed by a shorter neighbor(paying or ative); see Proposition 1. Hene the only \problemati" rounds arerounds that ontain a longer ative neighbor.Let L0(v) be the verties of L(v) that beame ative before v. Observe that byde�nition, before beoming ative, these L0(v) verties paid a total of � �x(L0(v))units (while some of those units were simultaneously paid). The following laimbounds x(L0(v)) by O(x(S(v)). Thus, we an use Claim 1 to get a onstant fatorapproximation for npSMC.Proposition 2. x(L0(v)) = O(k � x(S(v))Proof. Sine the verties of L0(v) needed to pay for a total of � �x(L0(v)) roundsbefore beoming ative, and sine at most 2 neighbors of a vertex in a line graph13



are ative at the same time, there were at least � � x(L0(v))=k rounds in whihthe L0(v) verties were paying. Call suh a round an \important" round.Consider an important \problemati" round for v, namely, an importantround for v in whih no S(v) vertex is paying or ative. Sine v was not hosento be the paying vertex in an important round, it follows that v must havean ative neighbor in suh a round; otherwise, by the length rule, it has to bepaying. Thus we get: � � x(L0(v))k � x(L0(v)) + x(S(v)):Remark: The main property used here is that verties in L(v)nL0(v) annotbeome ative before v beomes ative.Hene, we get that x(L0(v)) = O(k � x(S(v))) as required.A more detailed proof along these lines implies a 12-ratio for npSMC on linegraphs.Open-shop and simultaneous delay. In our ontext, it is best to desribe the non-preemptive open-shop sheduling problem as follows. We are given a bipartitegraph G(M;J;E), (M for mahines and J for jobs). Eah edge e orresponds toa task and has length x(e). A subset of the tasks (edges) has to be sheduledat every round. The edges sheduled at a given round must be \independent",namely, must indue a mathing. We need to shedule non-preemptively all tasks(edges) so that every e is exeuted non-preemptively for x(e) time units.In this senario, verties m 2 M orrespond to jobs. A job is ompleted ifall its tasks (edges) omplete. Formally, let m 2 M . The �nish time f(m) isthe maximum �nish time of an edge touhing m. The objetive funtion is tominimize Pm2M f(m).The open shop sheduling problem resembles the npSMC problem on linegraphs (beause a round is an independent set of edges). The main di�erene isthat we sum the �nish times of verties (of the underlying graph, of whih wetake the line graph) and not of edges. In that respet, the open-shop problemresembles more the data migration problem (see [30℄). In [15℄ the delay method isused ombined with LP tehniques to give improved approximation. The problemis relaxed to a frational linear program. The frational values are used in thedelay funtion. Namely, if an edge e has frational starting time �(e), it is delayedby a funtion of �(e) of rounds. Instead of a \ombinatorial" lower bound lemma1, the frational LP value is used to prove a lower bound.One important new idea is used here. In the line graph algorithm, adjaentverties annot simultaneously pay at a round (the paying verties are an in-dependent set). In [15℄ a simultaneous pay method is used: Adjaent vertiesan pay at the same round. While this simultaneous pay method fails to give agood approximation for general line graphs, it sueeds for open shop sheduling,in part beause open shop sheduling essentially orresponds to line graphs ofbipartite graphs. 14
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