Multicoloring: Problems and Techniques

Magnts M. Halldérsson! and Guy Kortsarz?

! Department of Computer Science, University of Iceland, IS-107 Reykjavik, Iceland.
mmh@hi.is
2 Department of Computer Science, Rutgers University, Camden, NJ 08102.
guyk@camden.rutgers.edu

1 Multicoloring Graphs: Problems, Measures,
Applications

A multicoloring is an assignment where each vertex is assigned not just a single
number (a “color”) but a set of numbers. The number of colors assigned to the
vertex is specified by the length (or color requirement) parameter of that vertex
in the input. As usual, adjacent vertices cannot receive the same color; thus
here, the sets of colors they receive must be disjoint. Multicolorings are therefore
proper generalizations of ordinary graph colorings. The purpose of this paper is
to summarize some of the techniques that have been developed specifically for
obtaining good approximate multicolorings in different classes of graphs.

The multicoloring problem is reserved for the case where there is no restriction
on the set of colors that each vertex can receive (except its size) and the objective
is to minimize the number of colors used. A different problem is obtained when
we require the colors assigned to a vertex to form a contiguous interval — we
refer to such an assignment as a non-preemptive multicoloring. Yet a different
family of problems occurs when we change the objective function; in particular,
we will be interested in the minimizing the sum of the multicolorings, or the
sum of the largest color assigned to each vertex (assuming the colors correspond
to the natural numbers).

Applications. Graph coloring has great many applications. One of the classic
examples are in timetabling, where we want to assign courses (nodes) to time
slots (colors) so that classes that cannot be taught simultaneously (e.g., that
share a student/teacher population) are assigned different time slots. If courses
are all of the same length, we have an ordinary coloring problem (let us ignore
the issue of the number of classrooms). Only in special cases do we have an
ordinary graph coloring problem; with lectures of different length, we have a
non-preemptive multicoloring problem, while with lectures of identical length
but several occurrences within the scheduling time frame, we have a preemptive
problem.

Another application is frequency allocation or channel assignment in wireless
communication. In a cellular network, communication between mobiles and a
base station in a cell is across a narrow frequency channel. Two base stations
cannot use the same frequency if it causes interference due to geographic locality.



This is modeled by a graph where the nodes correspond to the base stations and
edges represent geographic adjacency [42]. Each node needs to be allocated as
many channels, or colors, as there are calls connecting to that base station,
resulting in a multicoloring problem.

For many classes of graphs, the multicoloring problem can be translated to
the ordinary coloring problem. A vertex v of length z(v) is replaced by a clique
of z(v) vertices (connecting a copy of v to a copy of u if u and v are connected in
(). This reduction is polynomial if p is polynomial in n, but can often be done
implicitly for large values of p. This is one reason why multicolorings appear less
often in the literature.

As the timetabling example indicates, practical applications of graph color-
ing often relate to scheduling. The graph then represents some constraints or
conflicts between the jobs that disallow simultaneous execution. One difference
with typical scheduling problems is that they tend to involve a fixed number of
“machines”, rather than allowing for an unbounded number of vertices of the
same color. Another difference is that constraints on jobs in scheduling tend to
be either non-existent or based on precedence instead of conflicts. Yet, there are
several exceptions to these restrictions/differences.

Viewing a problem as a scheduling or as a graph theory problem is not as
trivial a issue as it may seem; these are two (overlapping but) different commu-
nities with widely different vocabulary and different perspective. It may even
be frowned upon to mix metaphors or borrow different concepts. We, however,
advocate freedom from denominational canons in order to benefit from the best
of both worlds. As we shall see, this will allow us to map a technique from one
area to the other and back. We shall intermix the vocabulary, talking equally of
vertices and jobs, colors and rounds (or steps), schedules and colorings.

Measures. The possibility of considering different objective functions is one
eye-opening product of the scheduling perspective. The second most common
objective function is the sum of completion times, or its weighted version. This
has been considered for (unit-length) graph coloring as the sum coloring problem:
the colors are positive integers, and the objective is to minimize the sum of the
colors assigned to the vertices. In the multicoloring versions, we sum over the
vertices the finish times, or the last color assigned to that vertex. In the context
of dependent jobs in a system, the sum measure has been seen to favor the users
(that own the jobs), while the makespan measure is the favorite of the system
(that wants to get done quickly). We use the following notation for the different
problems:

SC Minimum sum coloring

pMC  Multichromatic number of G, or preemptive makespan multicoloring
npMC Non-preemptive makespan, or fewest colors in a contiguous multicoloring
npSMC Non-preemptive sum multicoloring

pSMC Preemptive sum multicoloring
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Fig. 1. An example of a path whose optimal sum coloring uses more than the minimum
number of colors. (a) Graph with vertex lengths; (b) A minimum sum coloring.

Multicoloring vs. ordinary coloring problems. How different is multicoloring
from ordinary graph coloring? We mention some classes of graphs where the
difference becomes significant.

Paths Almost anything is trivial for paths, including all makespan problems
and all unit-length coloring problems. However, it is not at all easy to derive
a polynomial time algorithm for preemptive sum multicoloring (as can be
attested by many false starts by the authors). The current best algorithm
due to Kovédcs runs in time O(n®p) [31]; a strongly polynomial algorithm is
yet to be found.

Trees Preemptive sum multicoloring has been shown to be strongly NP-hard
for trees, even binary trees with polynomially bounded weights [38]. On
the other hand, sum coloring yields an easy (but not greedy) linear time
algorithm.

Interval graphs Non-preemptive makespan multicoloring on interval graphs is
the Dynamic Storage Allocation problem, which is NP-hard and APX-hard
(i-e., hard to approximate within some ¢ > 1). The ordinary coloring prob-
lem is, however, easily solvable by a greedy method. Sum coloring and sum
multicoloring problems are all approximable within some constant; however,
the best ratio differs by a factor of as much as 4 (see table).

Perfect graphs For this class of graphs, we see a difference between preemp-
tive and non-preemptive problems. Preemptive sum multicoloring is approx-
imable within a small constant factor, while no constant factor approxima-
tion is known for the non-preemptive case.

1.1 Known Results

One of the most celebrated conjectures of mathematics for a long time was
whether all planar graphs could be colored with at most 4 colors. This was finally
proved by Appel and Haken [2] with a computer-aided proof, more recently
refined in [47]. However, determining whether a planar graph requires 4 colors
or not is NP-complete [13]. Exact coloring algorithms have been derived for
numerous classes of graphs, one of the most general is that of perfect graphs,
due to Grotschel, Lovdsz, and Schrijver [22]. Another important class of graphs is
that of line graphs; coloring line graphs is equivalent to finding an edge coloring



of the underlying graph. This is NP-hard [23] but can be done within an additive
one of the trivial lower bound of A(G), the maximum degree of the graph [49].

Minimum preemptive multicoloring is NP-hard to approximate on planar
graphs within better than 4/3; this follows from the fact that it is NP-hard
to tell if a planar graph is 3-colorable. The problem is known to be hard even
on the special class of hexagon graphs [40], which are of particular importance
for their applications for cellular networks. A 4/3-approximation for minimum
multicoloring of hexagon graphs is given in [43]. The coloring algorithm of [22]
for perfect graphs extends to multicoloring, and hence it is solvable on all of its
subclasses. For line graphs, minimum multicoloring is equivalent to edge coloring
multigraphs, which is approximable within a factor of 1.1 [45].

Non-preemptive makespan problems have been considered for different classes
of graphs, but under names unrelated to colorings. The npMC problem for interval
graphs is better known as dynamic storage allocation. Gergov gave an algorithm
that uses at most 3w(G) colors [17]. Buchsbaum et al. [8] recently gave an algo-
rithm with a performance ratio of 2+ ¢, for any € > 0. Non-preemptive makespan
of line graphs was studied by Coffman et al. [11] under the name file transfer
problem, with applications to efficient movement and migration of data on a net-
work.. They showed that a class of greedy algorithms yields a 2-approximation
and gave a (2 + ¢)-approximation for a version with more general resource con-
straints.

The sum coloring problem was first studied by Kubicka [33]. Efficient algo-
rithms have been given for trees [33], partial k-trees [29], and regular bipartite
graphs [37]. NP-hardness has been shown for general graphs [35], interval graphs
[48], bipartite [6], line [4], planar [25], and cubic planar graphs [37]. Approxi-
mation algorithms were studied for sparse graphs [34, 4], bounded-degree graphs
[4], bipartite graphs [6, 18], interval graphs [44,27], comparability graphs [27],
perfect graphs [4], planar graphs [25], line graphs [4], while results on hardness
of approximation have been shown for general [12,4], bipartite [6], and interval
graphs [20]. See Table 1 for a summary of best results known.

Exact and approximate algorithms for multicoloring sum problems have been
given for various classes of graphs, as indicated in Table 1. There are hardness
results specific to sum multicoloring; the case to date is a recent NP-hardness
result of Marx [38] of pSMC on trees.

Results on sum multicoloring problems are all fairly recent and in many cases
there are large gaps between the best upper and lower bounds on approximabil-
ity. Several successes are however prominent:

— Approximation preserving reductions to the maximum independent set prob-
lem on any hereditary graph class [5]: within a factor of 4 for sum coloring,
and factor 16 for preemptive sum multicoloring.

— Polynomial time approximation schemes (PTAS) for planar graphs (pSMC
and npSMC),

— Constant factor approximations for npSMC of line graphs and interval graphs
[27], [16].

— Very small factor approximations of sum coloring bipartite graphs [18].



Table 1. Known results for sum (multi-)coloring problems

SC SMC

u.b. l.b. pSMC npSMC
General graphs n/log®n [4][n' = [4] |n/log®n [5]|n/logn [5]
Perfect graphs 3.591 [16] |c>1[6] |5.436 [16] |O(logm) [5]
Interval graphs 1.796 [27] |c > 1 [20]| [16 7.682 4+ € [16]
Bipartite graphs 27/26 [18] |c>116] |1.5 [5] 2.8 [5]
Partial k-trees 1 [29] PTAS [25] |FPTAS [25]
Planar graphs PTAS [25] |NPC [25] |PTAS [25] |[PTAS [25]
Trees 1 [33] PTAS [26] |1 [26]
Intersection of k-sets|k [4] k5 3.591k+.5 [16]
Line graphs 2 [4] NPC 2[5 7.682 [16]
Line graphs of trees |1 PTAS [39]
Notation

We use the following symbols in the rest of the text:
x(v) Length (or color requirements) of vertex v
p = p(G) Maximum vertex length
x(G) Chromatic number of graph G, ignoring vertex lengths

2 Length Partitioning Technique and npSMC of Planar
Graphs

We will consider in this section the npSMC problem for planar graphs, in order to
illustrate several of the techniques applicable to multicoloring problems. Unless
where otherwise stated, the results are from [25]. We will be aiming towards a
polynomial time approximation scheme (PTAS), but in order to get there, we
shall be looking at progressively more general special cases. First, however, let
us consider some of the more basic approaches.

The first approach might be to ignore the lengths to begin with, apply the
quadratic algorithm behind the 4-color theorem [47], and then expand each color
class as needed to fit the lengths of the vertices. This can lead to a multicoloring
whose sum is arbitrarily worse than optimal. Consider the graph in Fig. 2. The
only valid two coloring mixes the white vertices in color classes with the long
dark vertices; then, at least half of the white vertices have to wait very long in
order to start.

We see that we must give short vertices precedence over long vertices. A
reasonable approach would be to color the vertices in groups, shortest-first.

Grouping by length: Divide the vertices into groups of geo-
metrically increasing lengths, and fully color the groups in order
of length.

The most natural version is to use powers-of-two as breakpoints between groups,
i.e., assign each vertex v to group |lgz(v)] + 1. Each group is then colored into



Fig. 2. Example of a planar graph (a tree) whose 2-coloring can lead to an arbitrarily
poor sum multicoloring. The many white vertices are short, while the two dark vertices
are very long.

X(G) sets, each using at most 2 =()]1 _1 colors. For instance, vertices of lengths
4,5,6,7 are in group 3, and each of the x(G) sets in that group are assigned 7
colors (the largest length of a vertex in the group).

This approach works reasonably well. Observe that group ¢ will be fully
colored after at most x(G)[1 +3+ 7+ ...+ 2" — 1] colors have been used. This
amounts to less than x(G)(2i*! — 1). On the other hand, each vertex in group
i is of length at least 28" 1. The performance ratio is therefore at most 4x(G).
A closer look can actually reduce this to 2x(G) [5]. A further improvement is
obtained by selecting the base of the geometric sequence randomly; this gives
the best ratio known of e for non-preemptive sum multicoloring bipartite graphs
[5].

A planar graphs are 4-colorable, this length grouping approach gives us a
constant, factor approximation. We have, however, higher expectations for pla-
narity. We now turn our attention to the unit-length case, the SC problem, as a
first step on the road to an approximation ratio arbitrarily close to 1.

Sum Coloring Planar Graphs The primary technique for approximately
solving optimization problems, especially subgraph and partitioning problems,
on planar graphs is the decomposition technique of Baker [3]. The decomposition
theorem says that for any integer k, we can partition the vertices of a planar
graph with n vertices into two sets inducing subgraph H; and H,, where H; is
k-outerplanar and H, is outerplanar with at most n/k vertices. A plane graph
is said to be outerplanar if all the vertices lie on the outer (i.e., infinite) face.
Outerplanar graphs are also the 1-outerplanar graphs, while a graph is said to
be k-outerplanar if after removing all vertices on the outer face the graph is
k — l-outerplanar.

Figure 3 illustrates a planar graph with the vertices on the outer face being
emphasized.

The advantage with this decomposition is that outerplanar and k-outerplanar
graphs are frequently easy to solve optimally. Baker gave explicit dynamic pro-
gramming algorithms for many optimization problems on k-outerplanar graphs
[3]; e.g., the algorithm to find maximum independent sets runs in time O(8%n).
A more general indirect approach is to use the observation of Bodlaender that



Fig. 3. Planar graph and the outerplanar graph induced by its outer face.

k-outerplanar graphs have treewidth at most 3k — 2 [7], tapping into the vast
resource of algorithms on partial k-trees.

Baker’s decomposition proceeds as follows. Let V] be the set of vertices on the
outer face of the graph; remove this set from the graph. Now recursively apply
this rule to obtain sets V5, Vs, ..., each inducing an outerplanar graph. Figure 4
illustrates this “peeling of onion skins”. It is easy to see that a vertex in a set V;
is adjacent only to vertices in its current set, previous set, or the following set.
We now form set U;,t = 1,2, ..., k, as Uy Vg, the union of the layers modulo &.
Each of the U; also induces an outerplanar graph, and at least one of them, say
Up, contains at most n/k vertices. The remaining vertices, V' — U, then form a
k-outerplanar graph.

Fig. 4. Partition of a planar graph into a sequence of outerplanar graphs.

We can fairly easily solve sum coloring problems on partial k-trees, us-
ing traditional dynamic programming on the tree decomposition, as shown by



Jansen [29]. When processing a supernode (a node in the tree decomposition),
we want to compute for each possible coloring of the up to k vertices in the
supernode, the minimum cost coloring of the subtree of the tree decomposition.
If the maximum color value of a vertex is ¢, then the total time complexity will
be O(kckn). We see that it is crucial to bound the number of colors needed.

Kubicka and Schwenk [35] observed that an optimum sum coloring of a tree
may require {2(logn) colors, but O(logn) colors also suffice. A similar bound of
6(klogn) was obtained for partial k-trees by Jansen [29]. We shall prove later a
more general result for multicolorings. This graph measure, the minimum number
of colors in a minimum sum coloring, has been studied more extensively recently
as the strength of a graph.

We now see that it is easy to apply Baker’s decomposition and solve each
part optimally in quasi-linear time. The problem is: How do we combine these
solutions into a single coloring with of low sum? Intuitively, since H; contains
the great majority of the vertices, we would want to color those vertices first,
and the vertices of Hs afterwards. However, consider what happens if we wait
until H; is fully colored for coloring Hy. The cost of coloring H; is the minimum
chromatic sum of Hy, which is at most the minimum sum of the whole graph
G, which is good. However, H, may now start to be colored at color klogn + 1.
Thus, the cost of coloring H» is as much as n/k - (klogn + 1) > nlogn. This is
certainly much more than the optimal sum (for one thing, 5-coloring G has sum
of at most 3n).

Lemma 1. After tx(G) colors, an optimal sum coloring of graph G has colored
all but at most n/2t vertices.

Truncating a coloring: If a good sum coloring uses too many
colors, it may be preferable to stop that coloring earlier, and revert
to a minimum-makespan coloring for the remainder.

The combined strategy is then the following:

1. Apply Baker’s decomposition on input graph G, obtaining a k-outerplanar
graph H; and a smaller graph H, with at most n/k vertices.

2. Solve H; optimally, using dynamic programming.

3. Use the first 41gk colors of the optimal coloring of H;, leaving at most
n/2'8% = n/k vertices uncolored.

4. Color the remaining at most n/k + n/k vertices using the 5 colors 41gk +
1,...,41gk + 5.

The cost of the vertices colored in the first 41gk colors is at most the optimal
value for G. The cost of the vertices colored later is at most (41g k+ 3)2n/k. For
any given €, choose k = §(e ! lge~!) such that this is at most en < e-npSMC(G).

Improved time complexity of sum coloring planar graphs. We indicate how we
can improve slightly the time complexity of the PTAS for sum coloring planar
graphs of [25].
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Fig. 5. The schema for sum coloring planar graphs.

Instead of finding an optimal sum coloring of H;, we might as well take into
account that we shall only be using the first 41gk color classes. Thus, instead,
we can search for an optimal truncated pseudocoloring with 41g k + 1 colors; this
is a proper coloring of all of the vertices except those in the last class. Lemma 1
applies as before, for any t < lgk, so the last color class contains at most n/k
vertices. The cost of such a coloring is at most the optimum chromatic sum of
H,, since any coloring is also a valid truncated pseudocoloring.

The advantage of using a truncated coloring is immediate from our observa-
tion of the time complexity of the DP approach being O(nc*), where c is the
value of the largest color used. Here, ¢ = O(lg k), so the resulting complexity is
O(n2klelsk),

Multicoloring with small lengths. What hinders us from applying the same
strategy to the multicoloring case? Let us see how far the techniques used so far
will take us.

First, we need to bound the number of colors used. A straightforward ex-
tension of Lemma 1 shows that after O(tpx(G)) colors, at most n/2¢ vertices
remain, and the total number of colors used in an optimal multisum coloring is
at most O(px(G)logn).

The dynamic programming solution of partial k-trees can be applied with
minimal changes to non-preemptive multicolorings. The only change needed is
to assign each vertex an interval of colors instead of a single color. The primary
effect is on the complexity, since the number of possible colors is larger. Thus,
we can handle combinations of p and k such that (plogn)* is polynomial.

This gives us a PTAS for npSMC of planar graphs with polynomially bounded
lengths (although not very efficient).



Multicoloring with “almost identical” lengths. What if all the vertex lengths are
the same? Is that the same as the unit-length case? In the non-preemptive case,
that is indeed true; this can be shown in various ways, e.g., by taking a valid
solution, and turning into one where jobs never overlap. (In the preemptive case,
it is not true, although it holds for several special cases like bipartite graphs and
cliques.)

More generally, if the lengths are all multiple of a common factor ¢, we can
scale the instance by this factor g, i.e. reduce the problem to the instance where
all lengths are smaller by a factor of q.

Lemma 2 (Exact non-preemptive scaling). Let I = (G, z) be a non-preemptive
multicoloring instance where for each v, x(v) is divisible by q. Then, g-npSMC(I/q) =
npSMC(I).

We can argue by induction that in any optimal coloring of I, all changes
happen at colors that are multiples of ¢. This shows that optimal colorings of I
is equivalent to stretching an optimal coloring of I/q by a factor of ¢ by repeating
each color class ¢ times in order.

What if the vertex lengths are fairly similar? We can then turn to a classical
approximation technique from scheduling;:

Rounding-and-scaling: If all lengths are greater than r and we
round them upwards to a multiple of ¢, then the increase in the
objective function is at most a factor of 1 + ¢/r.

This holds independent of the graph and for any convex objective function of
the lengths (including multisum and makespan).

Partitioning by length. We have now seen how to handle unit-length instances,
and certain restricted kind of multicoloring instances, most generally the case
when the ratio between the minimum and maximum length is bounded (by a
term that could be a small polynomial in n).

This suggests that we would want to divide the instance into groups of ac-
cording to length, coloring the “short” vertices before the “long” vertices. We
place the vertices on the scale according to length, divide the instance into groups
of similar length, color each of them separately, and then “paste” them together
in order of length. In order for this to work, we need to ensure that earlier groups
do not “delay” the later groups. Basically, if a group starts receiving colors late,
it may not matter how efficiently we color it; the resulting coloring will already
have become too expensive.

[An aside: One may suggest that instead of coloring the groups in sequence
— thus effectively delaying all the vertices in a group until all previous groups
have been completed — that we try to color the vertices in the group as early as
possible, intermixed with the colorings of the earlier groups. This may well be
a good heuristic, but can be hard to analyze; in particular, it would destroy the
independence of the solutions of the individual groups. We shall not attempt to
pursue that direction here.]

10



Consider what could happen to a naive partition. A group of maximum length
x, requires {2(x) colors; indeed, if even if it is 3-colorable, if it contains a triangle
with each vertex of length x, we will have to use at least 3z colors. This may
prove too much for the next group, which may have most of its vertices with
lengths x + 1. If we start that group at color 3z +1 — not even accounting for the
still earlier groups — that effectively precludes the possibility of a PTAS. Thus,
what we need to ensure is that the cost of coloring the earlier groups is small in
comparison with the average length of vertices in the current group.

We want to find a sequence of breakpoints by = 1, by, ... ,, that induce subsets
Vi,Va,...,Vi by V; = {v € V : z(v) € (bi—1,b;]}. We find that we can save a
logarithmic factor on any arbitrary choices of breakpoints.

Lemma 3 (Length partitioning). For any q = q(n), we can partition the
vertex set into length groups so that the average length of vertices in V; is at least
(In\/q)b;. Further, the groups differ by a factor of at most q, i.e. b; <b;_1 - q.

This lemma has an interesting relationship with the classic inequality of
Markov from probability theory. Consider any collection of positive numbers
xi,...,Z,. Markov inequality shows that at most 1/¢ fraction of the elements
of the set X = {z1,22,...,2,} are greater than ¢ times the average value T
(cf. [41]). It is easy to show that this is tight for any fixed value of ¢; but it
cannot be tight for more than one value of ¢ simultaneously. If we are free to
choose t from a range of values, the resulting bound on the tail is better; as our
lemma shows, it is improved by a logarithmic factor.

Putting together the pieces. This becomes the missing puzzle in our quest for a
PTAS.

The combined strategy is illustrated in Figure 6. The length partitioning
lemma breaks the vertex set into groups with lengths in a compact interval;
the groups are processed independently using a variation of the sum coloring
approximation scheme. Finally, the individual solutions are pasted together, in
order of the group lengths.

The cost of the multicoloring is derived from two parts: the sum of the costs of
the subproblems, and the delays incurred by the colorings of the earlier subprob-
lems. The former is at most 1 + € times the optimal cost of coloring each of the
subgraphs separately, which is at most (1+ €)npSMC(G). The main issue is there-
fore accounting for the contribution of the delays. The number of colors used in
each subproblem G; is at most ob;, where 0 = O(log k) = O(loge™'). The sum
of these is dominated by a geometric series with base of |/g; thus, the sum of the
colors used on the subproblems preceding G; is at most (14+1/(,/g—1))ob;. Here
it becomes crucial that the average weight of vertices in each subproblem G;,
and thus the multicolor sum as well, is at least In,/gb;. Thus the cost incurred
by the delays of earlier subproblems are at most O(npSMC(G) - o/ In/g). In our
case we choose ¢ = e(¢” <™ {0 make this quantity at most npSMC(G) - O(e).
The total cost of the solution is therefore 1 + O(e) times optimal, which can be
made arbitrarily close to 1.

11
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Fig. 6. The schema for non-preemptive sum multicoloring planar graphs. Each small
dotted box on the right is an instance of the schema on the right applied to a length-
constrained subgraph.

3 The Delay Technique, npSMC on Line Graphs and
Open-shop Scheduling

We now describe another general technique applicable in several scenarios. In
particular, it is used to approximate the npSMC problem on line graphs, and for
approximating open-shop scheduling.

Let L(v) and S(v) denote the sets of shorter and longer neighbors of v,
respectively. Let 2(U) = ),y z(u) be the sum of the lengths of vertices in a
set U.

Note that for every edge e = (u,v) € E and in any legal schedule the jobs
corresponding to u and v are performed in disjoint rounds. In particular, if the
job of v starts (and thus ends) before the job u starts, v has to “wait” z(v) time
units before it can start being executed. Say that z(u) < z(v). In such a case, a
“perfect” algorithm will “manage” to schedule u before v incurring x(u) delay
(rather than x(v) delay). Admittedly, some of the delays can happen “together,
namely, at the same round several of the neighbors of v are active together. On
the other hand, these active neighbors of v must form an independent set. At
most two neighbors of any node in a line graph can be active at the same time.
This intuition is converted into the following claim [27]. Let Q(G) = _, z(S(v)).

Proposition 1. [27] For a line graph G,
Q(G) < 2- (apsHC(G) — S(G)).

As it turns out, Claim 1 does not suffice to give a “good” approximation.
The problem is with the longer neighbors L(v) of a vertex v. Say that u € L(v)

12



and z(u) > z(v). In the non-preemptive scenario, if u executes before v then v
has to wait for u to end causing a large delay.

If we disallow u € L(v) to be executed before v this may cause the indepen-
dent sets executed at given rounds not to be even maximal independent sets.
We adopt an intermediate approach that can be summarized as follows.

1. Before a vertex v can become “active”, namely, is executed non-preemptively
for z(v) rounds, it has to “pay” 8- x(v) rounds, where 8 is some carefully
chosen constant.

2. A vertex can only pay if it not executed and has no active neighbor.

Thus the paying of - z(v) rounds is a way of disallowing long jobs to have
early process starting times. In fact, the delay “paid” by a job is proportional
to its length, hence long jobs wait more.

The algorithm used in [27] is implied by the following additional rules:

— At each round, the union of the active and paying vertices is a mazimal
independent set. Thus, two vertices paying at the same round cannot be
neighbors.

— The length rule: A vertex v pays in a round if and only if it has neither
an active neighbor or a shorter paying neighbor in that round.

Our goal is to prove that the application of this algorithm on a line graph
gives a O(z(S(v)) finish time for a vertex v. Then, by Proposition 1 an O(1)-
approximation algorithm for npSMC is implied. In given round, a vertex v can
either be

1. active,
2. paying, or
3. neither paying nor active, in which case it is delayed.

It is easy to account for the contribution of rounds where v is active or paying.
It remains to check rounds where v is delayed. By definition, v can be delayed
because either the round contains a paying S(v) vertex or the round contains an
active neighbor of v.

Again, it is easy to account for rounds where v is delayed by a shorter neighbor
(paying or active); see Proposition 1. Hence the only “problematic” rounds are
rounds that contain a longer active neighbor.

Let L'(v) be the vertices of L(v) that became active before v. Observe that by
definition, before becoming active, these L'(v) vertices paid a total of 8- x(L'(v))
units (while some of those units were simultaneously paid). The following claim
bounds z(L'(v)) by O(x(S(v)). Thus, we can use Claim 1 to get a constant factor
approximation for npSMC.

Proposition 2. z(L'(v)) = O(k - z(S(v))

Proof. Since the vertices of L'(v) needed to pay for a total of - 2(L'(v)) rounds
before becoming active, and since at most 2 neighbors of a vertex in a line graph
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are active at the same time, there were at least § - #(L'(v))/k rounds in which
the L'(v) vertices were paying. Call such a round an “important” round.

Consider an important “problematic” round for v, namely, an important
round for v in which no S(v) vertex is paying or active. Since v was not chosen
to be the paying vertex in an important round, it follows that v must have
an active neighbor in such a round; otherwise, by the length rule, it has to be
paying. Thus we get:

B - (L' (v))

? < z(L'(v)) + 2(S(v)).

Remark: The main property used here is that vertices in L(v)\ L'(v) cannot
become active before v becomes active.
Hence, we get that 2(L'(v)) = O(k - £(S(v))) as required.

A more detailed proof along these lines implies a 12-ratio for npSMC on line
graphs.

Open-shop and simultaneous delay. In our context, it is best to describe the non-
preemptive open-shop scheduling problem as follows. We are given a bipartite
graph G(M, J, E), (M for machines and J for jobs). Each edge e corresponds to
a task and has length z(e). A subset of the tasks (edges) has to be scheduled
at every round. The edges scheduled at a given round must be “independent”,
namely, must induce a matching. We need to schedule non-preemptively all tasks
(edges) so that every e is executed non-preemptively for z(e) time units.

In this scenario, vertices m € M correspond to jobs. A job is completed if
all its tasks (edges) complete. Formally, let m € M. The finish time f(m) is
the maximum finish time of an edge touching m. The objective function is to
minimize ), ., f(m).

The open shop scheduling problem resembles the npSMC problem on line
graphs (because a round is an independent set of edges). The main difference is
that we sum the finish times of vertices (of the underlying graph, of which we
take the line graph) and not of edges. In that respect, the open-shop problem
resembles more the data migration problem (see [30]). In [15] the delay method is
used combined with LP techniques to give improved approximation. The problem
is relaxed to a fractional linear program. The fractional values are used in the
delay function. Namely, if an edge e has fractional starting time u(e), it is delayed
by a function of u(e) of rounds. Instead of a “combinatorial” lower bound lemma
1, the fractional LP value is used to prove a lower bound.

One important new idea is used here. In the line graph algorithm, adjacent
vertices cannot simultaneously pay at a round (the paying vertices are an in-
dependent set). In [15] a simultaneous pay method is used: Adjacent vertices
can pay at the same round. While this simultaneous pay method fails to give a
good approximation for general line graphs, it succeeds for open shop scheduling,
in part because open shop scheduling essentially corresponds to line graphs of
bipartite graphs.
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Theorem 1. [15] The non-preemptive open-shop scheduling problem admits a
5.055-ratio approximation.

This improves the previous best 5.83-approximation of [46].
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