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Abstract

We present a generic scheme for approximathi@-hard problems on graphs of
treewidthk = w(logn). When a tree-decomposition of widths given, the scheme typ-
ically yields an?/ 1g n-approximation factor; otherwise, an extrg k factor is incurred.

Our method applies to several basic subgraph and partitioning problems, including the

maximum independent saioblem.
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1 Introduction

One of the most successful parameterization of graphs is thegeidth While the formal
definition is deferred to the next section, graphs of treewidthlso known apartial k-trees
are graphs that admit a tree-like structure, known as trerdecompositionf width k.

A wide variety of N'P-hard graph problems have been shown to be solvable in poly-
nomial time, or even linear time, when constrained to patiitdees [2, 12]. For some of
these problems polynomial time solutions are possible for graphs of tree@iddlg ) or
O(logn/loglogn) [12].

A standard example of a problem solvable in graphs of treeviddibg n) is the maximum
independent set (MIS) problem [2], which is that of finding a maximum collection of pair-
wise non-adjacent vertices. In the weighted version of the problem, vertices are given with
weights and we seek an independent set of maximum total weight. For general graphs, the
best polynomial-time approximation ratios known for M1Suiflog log n)?/ log® n [6]. On the
other hand, it is known that unleaéP C ZPTIME(20°sm°™) 'no polynomial-time algorithm
can achieve an approximation guarantee'of°(*/(°em)") for some constant [9].

In this paper, we investigate the approximability status of some of the aforementiGRed
hard problems, where our main interest is in graphs of treewidthw(logn). We focus our
study on MIS, deriving further applications of our method by extensions of that given for MIS.

Better approximation bounds for MIS are achievable for special classes of graphs. For
the purposes of this paper, a class that properly contains pédtiiees is that of-inductive
graphs A graph is said to bé&-inductive if there is an ordering of its vertices so that each
vertex has at most higher-numbered neighbors. If such an ordering exists, it can be found
by iteratively choosing and removing a vertex of minimum degree in the remaining graph.
¢ From this definition, it is clear thattrees, and thus also partigltrees, are:-inductive. A
k-inductive graph is easily + 1-colored by processing the vertices in their reverse inductive

order, assigning each vertex one of the colors not used by its at Amm®viously colored



neighbors. This implies that the largest weight color class approximates the weighted MIS
within a factor ofk + 1. The best approximation known for MIS (and weighted MIS) in

k-inductive graphs i®)(k loglog k/ log k) [8].

1.1 New contribution

We present a novel generic scheme for approximation algorithms for maximum independent
set and otheN/P-hard graph optimization problems constrained to graphs of treewidth
Q(logn). Our scheme leads to deterministic polynomial-time algorithms that typically achieve
an approximation ratio of/logn for ¢ = Q(logn) when a tree-decomposition of widthis

given.

Our scheme can be applied to any problem of finding a maximum induced subgraph with
hereditary propertyl and any problem of finding a minimum partition into induced subgraphs
with hereditary propertyI provided that for graphs with given tree-decomposition of logarith-
mic or near logarithmic width can be solved exactly in polynomial time. All these approxima-
tion factors achievable in polynomial time are the best known for the aforementioned problems
for graphs of superlogarithmic treewidth.

In case a tree-decomposition of width= k£ is not given, the approximation achieved by

our method increases by a factor@flog k).

2 Preliminaries

The notion oftreewidthof a graph was originally introduced by Robertson and Seymour [11]in
their seminal graph minors project. It has turned out to be equivalent to several other interesting

graph theoretic notions, e.g., that of parfiairees.

Definition 1 Atree-decompositioaf a graphG = (V, E)isapair({X; |i € I},T = (I, F)),

where{X, | i € I} is a collection of subsets 6f, andT" = (I, F') is a tree, such that the
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following three conditions are fulfilled: (1) J,., X; =V, (2) for all edgeqv, w) € E, there
exists a node <€ I, withv,w € X;, and (3) for every vertex € V, the subgraph ofT,
induced by the nodes € I | v € X} is connected.

Thesize ofT is the number of nodes if, that is,|I|. Each setX;, i € I, is called thebag
associated with théth node off". The width of a tree-decompositiofX; | i € I},7 = (I, F))
is max;es | X;| — 1. Thetreewidthof a graph is the minimum width of its tree-decomposition

taken over all possible tree-decompositions of the graph.

It is well known that a graply is a partialk-tree iff the treewidth of7 is at mostt [2]. For
a graph withn vertices and treewidth, a tree decomposition of width can be found in time
O(n 2°:)) [5], whereas a tree decomposition of widk log k) and sizeD(n) can be found
in time polynomial inn [1].
For technical reasons, it will be more convenient to use a special form of tree-decomposition

termed asiice tree-decomposition

Definition 2 A tree-decompositiofi = (7, F') of a graph( is niceif (1) T is a binary rooted
tree, (2) if a node € I has two childrenj; andj,, thenX,; = X;, = X, (i is called ajoin
node), (3) ifanode € I has one child, then eitherX; C X; and|X; —X,| =1,0or X; C X;

and|X; — X;| = 1 (: is called anintroduceor a forgetnode, respectively).

Fact 3 [10] A tree-decompositioi’ = (I, F') of a graphG can be transformed into a nice
tree-decomposition in time polynomial jh| and the size of’, without increasing its width.

The size of the resulting nice decompositio®ig - |]), where/ is the width of7".

3 Approximation of maximum independent set

In this section we present a deterministic approximation algorithm for finding maximum inde-
pendent set in graphs with given tree-decomposition of widt¥e begin with the following

general partition lemma of independent interest.
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Lemma 4 Lett¢ be a positive integer and |&t be a graph given with a tree decomposition
T of width ¢. Then, the vertex set ¢f can be partitioned in polynomial time into classes

Vi, ..., Vi so that each bag df contains at most vertices from each class.

Proof. By Fact 3, we may assume w.l.0.g. that the given tree decompogitismice.

To obtain the intended partition, we proceed top-down, arbitrarily assigning the vertices in
the root-bag of" into classes with at mostvertices each. Inductively, for a nodevith a child
w in T, the partition of the bag af is consistent with that of the bag ofand the upper bound
of ¢ on the size of each class within each bag. Namely, if is a join node, the bag af gets
the same partition as that of if v is an introduce node, the patrtition is also the same (with one
fewer vertices); ifv is a forget node, then the additional vertexums placed into some class

that has fewer thanvertices from the bag af. O

Lemma 4 yields the aforementioned approximation algorithm for maximum independent set.

Theorem 5 Let ¢ be a positive constant. For a grapf on n vertices given with its tree-
decomposition of width > clog n and of polynomial size, the maximum weighted independent

set problem admits &/(clog n)]-approximation algorithm running in polynomial time.

Proof. Apply Lemma 4 tdl” with ¢t = clogn to obtain a vertex partitioly, . . ., Vi (c1og n)1-
Foranyi, 1 < i < [¢/(clogn)], let G; be the subgraph aff induced by the vertex set
V; and letT; be the tree-decomposition 6f; obtained by constraining the bagsBfto the
vertices inV;. By the properties of the class&s each’; has widthlog n.
For eachi, 1 < i < [¢/(clogn)], we can find a maximum independent setinby using
the standard dynamic programming method¢n3]. By the pigeon hole principle, at least
one of these maximum weight independent sets is of weight not less than that of a maximum

weight independent set 6f divided by [//(clogn)], which yields the theorem. O



4 Extensions of the approximation method

We can generalize Theorem 5 to include the problemmakimum weight induced subgraph
with hereditary propertyI provided that the problem constrained to graphs of treevidibg n)

can be solved exactly in polynomial time. For a graph with vertex weights, the problem of
maximum weight induced subgraph with propertyis to find a maximum weight subset of
vertices of the input graph which induces a subgraph having the progerty IT holds for
arbitrarily large graphs, does not hold for all graphs, anldeieditary(holds for all induced
subgraphs of a graph whenever it holds for the graph) then the problem of finding a maximum
weight induced subgraph with the propeltys N'P-hard (see GT21 in [7]). Examples of such

propertiedI are “being an independent set,” “beingcolorable,” and “being a planar graph.”

Theorem 6 For a graphG given with tree-decomposition of width> ¢ > 0 and of polyno-
mial size, the problem of finding a maximum weight induced subgraph with hereditary property
IT admits a[¢/t]|-approximation, provided that for graphs of treewidtk= ¢ the problem can

be solved exactly in polynomial time.

Proof. Replace the solution of the weighted MIS problem@nin the proof of Theorem 5
with the solution of the problem of maximum weight induced subgraph with propeotyG;,

and the theorem follows. O

Since for every cliquéV in a graphGG and every tree decompositidf.X;|: € [}, T) of
G, there is an € I with W C X, it suffices to check each subset in each bag of the given
tree decomposition in order to find a maximum weight clique. Hence, we can approximate the
clique problem by applying any clique-approximation algorithm on the graphs induced by each

X;. Combined with Theorem 6, we obtain the following corollary.

Corollary 7 Letc be any positive constant. For a graghon n vertices given with its tree-
decomposition of width > clogn and of polynomial size, the problem of maximum weighted

clique admits anin(¢/(clogn), £(loglog ¢)?/ log® ¢)-approximation.
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The problem ofminimum partition into induced subgraphs with propditys to find a min-
imum cardinality partition of vertices of the input graph into subsets inducing subgraphs having

the propert\l. E.g., ifIT is “being independent,” we get the minimum coloring problem.

Theorem 8 For a graphG onn vertices given with its tree-decomposition of width ¢ > 0
and of polynomial size, the problem of minimum partition into induced subgraphs with hered-
itary propertyIT admits a[¢/t|-approximation polynomial-time algorithm, provided that for

¢ = t the problem can be solved exactly in polynomial time.

Proof. Produce the subgraplig, 1 <i < [¢/logn], as in the proof of Theorem 5. For each
G, find a minimum number partitiof; into induced subgraphs with hereditary propéitgnd

output the union of?; as the approximate solution. O

Since the minimum vertex coloring problem can be solved exactly in polynomial time for

graphs with given tree-decomposition of widttilog n/ log log n) [12], we obtain the follow-

ing.

Corollary 9 Letc be any positive constant. For a graghon n vertices given with its tree-
decomposition of widtlf > clogn/loglogn and of polynomial size, the minimum vertex

coloring problem admit$/ log log n/(clog n)]-approximation.

Since a tree decomposition of width(k log k) and sizeD(n) can be found in time polyno-

mial in n [1], we obtain the following variants of Theorems 6 and 8 for graphs of treewidth

Theorem 10 Letk >t > 0 and letG be a graph with treewidtlk. The problems of maximum
weight induced subgraph with hereditary properiyand the problems of minimum partition
into induced subgraphs with hereditary propeltyadmitlog k[ % /t|-approximation algorithm

running in polynomial time provided that for a graph of treewidtlthey can be solved in

polynomial time.



In [12], classes of vertex partitioning problems that can be solved in polynomial time on
graphs ofO(logn) or O(logn/loglogn) treewidth are given. Thus, for problems in these

classes, Theorems 6, 8, and 10 can be used.
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