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Abstract We examine the utility of multiple chan-

nels of communication in wireless networks under the

SINR model of interference. The central question is

whether the use of multiple channels can result in linear

speedup, up to some fundamental limit. We answer this

question affirmatively for the data aggregation problem,

perhaps the most fundamental problem in sensor net-

works. To achieve this, we form a hierarchical structure

of independent interest, and illustrate its versatility by

obtaining a new algorithm with linear speedup for the

node coloring problem.
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1 Introduction

Diversity in wireless networks – having multiple oppor-

tunities for communication – is well known to decrease

interference, increase reliability, and improve perfor-

mance [5,9]. The question is how much it helps and

what the limits are to such improvements. In partic-

ular, we seek an answer to the following fundamental

question in the context of the SINR model:

Can we speed distributed wireless algorithms up

linearly with the number of channels, up to a fun-

damental limit?

Thus, we are interested in the fundamental limits of the

benefits of diversity.

We focus our attention on data dissemination prob-

lems, in particular data aggregation, sometimes referred

to as the “killer-app” for sensor networks: compute a

compressible function (e.g., average) of values stored at

the nodes [20].

Multiple channels can be available by modulation

ranging over frequencies or phases. They can also be

simulated by time-division multiplexing (TDMA) by

assigning time slots to the different channels. The con-

verse does not hold, however, as multiple channels are a

strictly more constrained form of communication. Namely,

whereas nodes can listen (and even choose to send) in

all slots of a TDMA schedule, they can only listen on

one of the channels. Thus, multiple channels can be

viewed as a form of parallelism in wireless communi-

cation and our inquiry involves the parallelizability of

fundamental wireless tasks.

Multiple channels have been found to yield linear

speedups in graph-based models, such as for broadcast

[9], minimum dominating sets [7], leader election [5]

and maximal independent sets [4]. In contrast, essen-
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tially the only work on multiple channels in the signal-

to-interference-and-noise ratio (SINR) model is [33],

which attained a sub-linear speedup for local informa-

tion exchange, but holds only for a restricted number of

channels when each message can carry multiple pack-

ets. Thus, little has been known about the limits for

leveraging multiple channels in an SINR context.

Model. We assume synchronized operation with time

measured in rounds. Nodes have no power control, no

collision detection, but have a carrier sense mechanism

in the form of standard signal strength measurements.

The SINR model of interference is assumed, but the

parameters (α, β,N) are allowed to vary within fixed

ranges. We assume for simplicity of exposition that nodes

are located in the plane, but the results extend to more

general metric spaces known as fading metrics.1 Nodes

are given approximate values of SINR parameters and

a polynomial bound on the number of nodes, but have

no knowledge of the location of other nodes or their

distribution.

Our Results. Let G = (V,E) be the communica-

tion graph obtained by connecting pairs of nodes that

can potentially communicate with each other directly

(please refer to Sec. 2 for detailed definition). Let D be

the diameter of G, ∆ be its maximum degree, F be the

number of channels, and n the number of nodes (see

Sec. 2 for definitions). We say that an event happens

with high probability (with respect to n), if it happens

with probability 1− 1/nc for some constant c > 0.

We give a randomized algorithm that achieves data

aggregation in O(D +∆/F + log n log log n) time with

high probability. Since ∆ is a lower bound for aggre-

gation in single-channel networks, even ones with few
hops, we achieve linear speedup up to the additive

log n log log n term. This is essentially best possible for a

setting where high probability guarantees are required.

Our data aggregation algorithm is based on a data

aggregation structure that can be constructed inO(log2 n)

time. If a logO(1) n-approximation of ∆ is known, the

time for constructing the aggregation structure isO(∆/F
+ log n · log log n). Hence, in this case, the total time

for accomplishing data aggregation (taking into account

the time for structure construction) is O(D + ∆/F +

log n log log n) with high probability.

The aggregation structure is of independent inter-

est, as it can be used to solve other core problems. To

illustrate its applicability, we give an algorithm for the

1 A metric space is said to be fading if the path loss expo-
nent α is strictly greater than the doubling dimension of the
metric. This is a generalization of the standard requirement
of α > 2 in the two-dimensional Euclidean space, as the two-
dimensional Euclidean space has a doubling dimension of 2.
For more details on fading metric, see [12].

node coloring problem that runs inO(∆/F+log n log log n)

time with high probability.

Lower Bounds. We indicate here briefly why our

bounds are close to best possible. Any global task in-

volving communication requires at least D steps, which

yields a lower bound on every instance. Similarly, dlog ne
is a lower bound for data aggregation, since at most half

the items can be coalesced in a single round. Thus, in-

dependent of the parallelization in the form of multiple

channels, Ω(D + log n) steps are needed.

In a single channel, the term ∆ is necessary for any

communication task that involves all the nodes com-

municating, when using fixed power assignment such

as uniform power. In particular, consider the “exponen-

tial chain”, where point i is located at position 2i on

the real line, i = 1, 2, . . . , n. Then, when using uniform

power, at most one successful transmission can occur in

a time slot (assuming β ≥ 21/α) [22]. In particular, ag-

gregation and coloring require ∆ steps in single-channel

networks, and clearly F channels can reduce the time

requirement at most to ∆/F . This example holds even

when the nodes have full information about the instance

and even a side channel for coordination.

In a setting with power control, the above absolute

lower bound no longer holds. Yet the same challenges of

achieving coordination exist, and without knowledge or

inferences about the input instance, it is hard to utilize

power control in a constructive way. It is known that

aggregation can be achieved in O(log n) rounds using

power control [13,2], but only after non-trivial precom-

putation. All known methods using power control (that

avoid the ∆ term in the time complexity) [2,13,24] use

time proportional to the length diversity Λ of the in-

stance, which is n in the case of the exponential chain.

It seems likely that dependence on either ∆ or Λ cannot

be avoided.

Related Work.

Data Aggregation. In single-channel networks, there

is a long line of research on data aggregation under

different settings in the protocol model [27–29] and the

SINR model [1,2,10,13–15,20,21]. Regarding distributed

solutions in the SINR model, a distributed aggrega-

tion algorithm with uniform power assignment was pro-

posed in [21], which achieves a latency upper bound

of O(D + ∆). Assuming a model where every node in

the network knows its position, the network diameter

and the number of neighbors, Li et al. [20] presented

a distributed algorithm with a latency bound of O(K),

whereK is the logarithm of the ratio between the length

of the longest link and that of the shortest link. This re-

sult additionally needs that nodes can adjust the trans-

mission power arbitrarily. In [15], Hobbs et al. gave a
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deterministic algorithm which can accomplish data ag-

gregation in O(D+∆ log n) rounds. An entirely differ-

ent approach is to use (significant) precomputation to

build a fast aggregation structure. In particular, aggre-

gation can be achieved in optimal O(D+log n) time [2,

13], but this uses O(K log2 n) time for precomputation

and also relies heavily on arbitrary power control.

In multi-channel networks, the multiple-message broad-

cast algorithm given in [4] can be adapted to solve the

data aggregation problem in a graph-based interference

model in O(D+∆+ log2 n
F +log n log log n) rounds with

high probability, but it restricts the number of channels

to at most log n. An algorithm for the related broadcast

problem was given in [9] for a similar setting but also

allowing disruptions on channels. The work closest to

ours is a recent treatment of the local information ex-

change problem in multi-channel SINR networks [33],

where Yu et al. gave a distributed algorithm attain-

ing a sub-linear speedup. In the algorithm, the number

of channels that can be used effectively is limited to

O(
√
∆/ log n), resulting in an Ω(log n ·

√
∆ log n) lower

bound on the performance of the algorithm.

Coloring. The distributed node coloring problem has

been extensively studied since the 1980s as a classi-

cal symmetry breaking paradigm [3]. Most work has

been in message passing models that ignore interfer-

ence and collisions. Assuming a graph-based model that

defines only direct interference from neighbors, Mosci-

broda and Wattenhofer [23] gave an O(∆ log n) time

randomized algorithm using O(∆) colors for bounded-

independence graphs, which was lated improved to a

∆ + 1-coloring in O(∆ + log∆ log n) time by Schnei-

der and Wattenhofer [26]. Derbel and Talbi [8] showed

that the algorithm of [23] can also work in the SINR

model with the same time and color bounds. Yu et al.

[32] gave a randomized algorithm with running time

O(∆ log n + log2 n) that achieves a ∆ + 1-coloring in

the SINR model. All of the above results are for wire-

less networks with a single channel, and it appears no

work has previously addressed the coloring problem in

multiple channel networks, let alone in the SINR model.

Backbone Network Construction. Another line of

related work is finding dominating sets and/or a broad-

cast/ aggregation network in a multi-hop scenario. The

work we directly use is that of [25] with an algorithm

that finds a dominating set in the SINR model inO(log n)

time. An algorithm was given in [23] that finds a max-

imal independent set running in O(log2 n) time in the

quasi unit disk model, later converted to the SINR

model in [32]. Broadcast or aggregation networks among

dominators are formed in some works such as [2,13,16,

18,19,30,31]. These works either highly rely on strong

assumptions on the connectivity of the network [30,31],

use precise location information [16,18,19], or arbitrary

power adjustment [2,13]. All these works are only for

single-channel networks.

Roadmap. The formal model, problem definitions

and preliminaries are given in Sec. 2. Sec. 3 contains a

technical overview. In Sec. 4, an algorithm to find ruling

sets is introduced, which is invoked frequently in the

structure construction. The algorithm for constructing

the aggregation structure is given in Sec. 5 and the

data aggregation algorithm in Sec. 6. Sec. 7 contains

the coloring algorithm making use of the aggregation

structure.

2 Model, Problem Formulations and

Preliminaries

The network consists of a set V of n nodes with unique

IDs that are positioned arbitrarily on a plane. We focus

on the setting of a uniform power assignment, where

all nodes use the same transmission power P . For two

nodes u and v, denote by d(u, v) the Euclidean distance

between u and v.

Multiple Communication Channels and Synchro-

nization. Nodes communicate through a shared medium

divided into F non-overlapping channels. Time is di-

vided into synchronized rounds, where each round may

contain a constant number of synchronized slots. All

nodes start the algorithm at the same time. In each

slot of every round, each node can select one of the F
channels and either transmit or listen on that channel.

A node that operates on a channel in a given slot learns

nothing about events on other channels.

Interference and SINR model. Simultaneous trans-

missions on the same channel interfere with each other.

The SINR model captures the interference by stipulat-

ing that a message sent by node u to node v can be

correctly received at v iff (i) u and v operate on the

same channel and v does not transmit, and (ii) the fol-

lowing signal-to-interference-and-noise-ratio (SINR) is

above a hardware-defined threshold β ≥ 1:

SINR(u, v) :=
P/d(u, v)α

N +
∑
w∈S\{u}

P
d(w,v)α

≥ β , (1)

where α > 2 is the “path-loss” constant, N is the am-

bient noise, and S is the set of nodes transmitting si-

multaneously with u.

The transmission range RT is the maximum dis-

tance at which a transmission can be successfully de-

coded (in the absence of other transmissions); by the

SINR condition (1), RT = ( P
β·N )1/α.

We assume that listening nodes can measure the

SINR (only in the case of a successful reception), and
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the total received power. Nodes can also use this fea-

ture to infer (approximate) distances from the sender

of a received message. This power reception feature

is comparable to the RSSI function of actual wireless

motes [25]. In our algorithm, indeed, it is enough to de-

termine whether the SINR (of a successful reception) or

the total received power crosses a single fixed threshold.

It is always of theoretical interest to determine the

tradeoffs between different model assumptions, and to

identify the least set of primitives that suffice for ef-

ficient execution. We posit, however, that the default

model for wireless algorithms in physical models should

feature receiver-side carrier sense ability. Given that

such a feature is so standard in even the cheapest hard-

ware and so easily implementable, it would be coun-

terproductive to exclude it. Note that we assume no

transmitter-side detection ability.

Communication Graph and Notations. For pa-

rameter c, 0 < c < 1, denote Rc := (1 − c)RT . The

communication graph G(V,E) of a given network con-

sists of all network nodes and edges (v, u) such that

d(v, u) ≤ Rε, where 0 < ε < 1 is a fixed model pa-

rameter. Since nodes of distance very close to RT can

only communicate in the absence of other activity in the

network arbitrarily far away, we adopt the standard as-

sumption that a slightly smaller range, Rε, is sufficient

to communicate [2,6,17].

We use standard graph terminology: N(u) is the set

of neighbors of node u; du = |N(u)| is the degree of u;

and ∆ is the maximum degree of a node. The diameter

D of a graph G is the maximum, over all pairs of nodes

u, v, of the shortest hop-distance between u and v.

An r-ball is a disk in the plane of radius r. Denote

by Erv the r-ball centered at node v, and overload the

notation to refer also to the set of nodes in the ball.

A node u is an r-neighbor of (not necessarily distinct)

node v if d(u, v) ≤ r. An r-dominating set is a subset S

of nodes (called dominators) such that each node in V

has an r-neighbor in S. The density of an r-dominating

set is the maximum number of dominators in an r-ball

(over all balls in the plane). A set S of nodes is r-

independent if no two nodes in S are r-neighbors. An r-

independent set S is maximal if it is also r-dominating.

Knowledge of Nodes. Nodes know a polynomial ap-

proximation to n (i.e., the value of log n, up to con-

stant factors). For simplicity of description, we also use

n to denote this estimate. We assume that nodes do not

know the precise value of the SINR parameters α, β and

N but instead know only upper and lower bounds for

the parameters (i.e., αmin and αmax, βmin and βmax,

Nmin and Nmax). For simplicity, we perform calcula-

tions assuming that exact values of these parameters

are known; to deal with uncertainty regarding those

parameters, it suffices to choose their maximal/minimal

values depending on whether upper or lower estimates

are needed. Nodes have no other information, such as

the network topology, their neighbors or their location

coordinates.

Data Aggregation. Initially, each node has a data

value. The data aggregation problem is to compute an

aggregate function (e.g., maximum or average) on the

input data from all nodes in the network, and inform

all nodes of this value as quickly as possible.

Preliminaries. The following Chernoff bounds will be

used in the analyses of algorithms. The proofs of these

bounds can be found in most textbooks on probability

theory or randomized algorithms.

Lemma 1 (Chernoff bounds) Let X1, X2, . . . , Xn be

independent Bernoulli random variables. Let X :=
∑n
i=1Xi

and µ := E[X]. Then, for any δ > 0, it holds that

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
.

More precisely,

Pr[X ≥ 2µ] ≤ (e/4)µ ≤ e−µ/3. (2)

On the other hand,

Pr[X ≤ 1

2
µ] ≤

(
e−1/2

(1/2)1/2

)µ
= (e/2)−µ/2 ≤ e−µ/8 .

(3)

We use a frequently-used argument that shows that

well-separated communication can proceed independently.

The proof of this lemma uses the standard technique of

bounding interference within concentric circles.

Lemma 2 Let r1, r2 be distance parameters such that

r2 ≤ min{
(

α−2
48β(α−1)

) 1
α · r1, RT /2}. Suppose the set SF

of nodes transmitting on a channel F is r1-independent.

Then, the transmission of each node v ∈ SF is received

by all r2-neighbors of v that are listening on F .

Proof By assumption, the set SF satisfies d(u, v) > r1,

for any pair of nodes u, v ∈ SF . For a node w ∈ SF ,

we compute the interference experienced by a node x ∈
QF ∩ Er2w , where QF is the set of nodes selecting to

operate on a channel F . Let Ct be the annulus with

distance from w in the range [tr1, (t + 1)r1) for t ≥ 1.

Without confusion, Ct is also used to denote the set of

nodes in Ct that operate on F . Because any two trans-

mitting nodes are separated by r1, an area argument
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implies that |Ct| ≤ 8(2t+ 1). Then we bound the inter-

ference at a node x ∈ Er2w caused by other transmitters

in SF as follows.

Ix =
∑

y∈SF \{w}

P

dαyx
≤
∞∑
t=1

NβRαT
(tr1)α

· 8(2t+ 1)

≤ 24r−α1 NβRαT

∞∑
t=1

t−α+1

≤ 24r−α1 NβRαT ·
α− 1

α− 2

≤ (
RαT
rα2
− 1)N.

Then by the SINR condition, x can receive the message

sent by u. ut

Given that each node u transmits with a probability

pu, let PFr (v) =
∑
u∈Erv∩QF

pu be the sum of transmis-

sion probabilities of nodes in Erv that operate on chan-

nel F . Using a similar argument as in proving Lemma 2

and further considering the transmission probabilities

of nodes, we can get the following result. Lemma 3 has

been implicitly proved in previous work, such as [11]

(Lemma 4.1 and Lemma 4.2). For completeness, we give

a detailed proof in Appendix A.

Lemma 3 Let R ∈ Ω(RT ) be a distance, F be a chan-

nel and QF the set of nodes operating on the channel.

Suppose that each node v transmits on F with proba-

bility pv, satisfying PFR (v) :=
∑
u∈ERv ∩QF

pu ≤ ψ, for

some constant ψ > 0. Then, whenever a node v trans-

mits on F , with constant probability κ = e−O(ψ), it is

heard by all its R-neighbors ERv ∩QF on the channel.

In this work, we use Lemma 3 for only two differ-

ent distances. So there is a constant lower bound for

the probability of successful transmissions. In the sub-

sequence, we still use κ to denote this lower bound.

3 Technical Overview

Our approach is to build a multi-purpose dissemination

structure that we then use in each of our problems. The

structure has global and local parts, which are linked

through the dominators, the local leaders that collabo-

rate to carry out the global task.

After finding a low-density set of dominators, the

other nodes are partitioned into local clusters, each

headed by a dominator. These clusters are then col-

ored to disperse them, effectively eliminating interfer-

ence from other clusters. The clusters are arranged into

a communication tree to carry out the global task. These

constructions are by now all fairly well known, so we

build on previous work, in particular using the O(log n)-

round clustering process from [25].

Our main contributions are in the treatment of the

intra-cluster aspects. We first estimate the size of each

cluster, in order to adjust the contention. We distribute

the cluster nodes randomly into channels, and run leader

election processes to elect a reporter in each channel in

O(log n) rounds. We then form a binary tree ofO(logF)

levels on the reporters, which is used to aggregate the

data to the dominator. The total time needed for re-

porter election and reporter tree construction isO(log2 n),

while the aggregation cost in the clusters is O(∆/F +

log n log log n). If a logO(1) n-approximation of∆ is known,

the reporter election and the reporter tree construction

can be done in O(∆/F + log n log log n) time as well.

In the algorithm, the lower-case greek letters are

universal constants (to be deduced/selected).

4 Ruling Set Algorithm

We present an algorithm that will be invoked frequently

in subsequent sections. A (r, s)-ruling set is a subset S

of nodes that is both r-independent and s-dominating.

The algorithm presented finds a (r, s)-ruling set, where

r < s < (1− c)RT for some constant c.

The algorithm has two phases. In the first phase,

a constant density (s − r)-dominating set X is found

in O(log n) rounds using the algorithm of Scheideler

et al. [25] (an outline of the algorithm is given in Ap-

pendix B). Let µ denote an upper bound on the den-

sity guaranteed by their algorithm. In the remainder

of this section, we focus on the second phase, comput-

ing a maximal r-independent set S among the domi-

nators. Namely, S is r-independent and each node in

X is within distance r from a node in S. Then, by the

triangular inequality, S forms a s-dominating set of the

full set V of nodes.

The strength of signals and interference can yield

precious indications about the origin of the signal, and

even of interferers.

Definition 1 A clear reception occurs at a node, if:

a) the message originates from an r-neighbor of the

node, and b) the interference sensed is at most Ts =

N ·min{ (RT /r)
α−1

2α , (RT /4r)
α · β}. The latter condition

ensures that no other 4r-neighbor transmitted.

Based on our model assumptions, a node can detect

clear receptions.

The second phase of the algorithm uses three kinds

of messages: Hello, Ack, and In. Let µ′ = ((s +

r)α/(s − r)α), γ = 3/(κ/2µ′)2 = 12µ′2/κ2, where κ is

the constant of Lemma 3. The phase consists of γ lnn

rounds, each consisting of three slots:
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– Slot 1. Each node transmits Hello independently

with probability 1/(2µ′).

– Slot 2. If a node gets a clear reception of Hello, it

sends Ack independently with probability 1/(2µ′).

– Slot 3. If a node sent Hello and received Ack from

an r-neighbor, it then joins the set S, transmits In

and halts. Otherwise, the node listens; if it receives

In from an r-neighbor, it halts.

If a node is still active after all γ lnn rounds, it then

enters the set S. This completes the specification of the

second phase, and thus the algorithm.

We first argue the correctness of the last step, when

dominated nodes bow out.

Lemma 4 If a node joins S in a round, then all of its

(still active) r-neighbors halt after that round.

Proof Let Y be the set of nodes that joined S during

the given round, and let u be a node in Y . We claim

that all nodes in Eru receive In message from u. Let

w be a node in Eru and observe that the strength of

the signal from u received on w is at least P/rα. Thus,

it suffices to show the total interference IYu(w) from

Yu = Y \ {u} received by w is at most 1
βP/r

α −N .

Let v be the r-neighbor of u that sent it Ack and y

be a node in Yu. Since v had a clear reception, d(v, y) ≥
4r, while d(v, w) ≤ 2r, since they are both r-neighbors

of u. Thus, d(y, w) ≥ d(y, v)− d(v, w) ≥ 1
2d(y, v). Also,

the interference IYu(v) received by v is then at most

Ts ≤ (RT /r)
α−1

2α N . Hence,

IYu(w) =
∑
y∈Yu

P

d(y, w)α
≤ 2αIYu(v)

≤ 2αTs ≤ ((RT /r)
α − 1)N =

1

β
P/rα −N,

as desired. ut

The main correctness issue is to ensure indepen-

dence. While the above lemma handles nodes that enter

the ruling set during the main rounds, we use a prob-

abilistic argument to argue that neighbors are unlikely

to survive all the rounds to be able to enter the set S

at the end of the execution.

Lemma 5 The algorithm correctly computes a (r, s)-

ruling set S in O(log n) rounds, with high probability.

Proof By definition of the algorithm, the nodes halt by

either joining S or after receiving In from a neighbor.

Thus, the solution is an r-dominating set of X, and

hence a s-dominating set of V . It remains to show that

S is r-independent.

Let u, v be nodes in S, and suppose without loss

of generality that u was added no later than v. If both

joined S during the same round then they must be of

distance at least 3r apart (since an r-neighbor of u ex-

perienced a clear reception). If v joined S later, it must

be more than r away from u, since u notified all its r-

neighbors with an In message, by Lemma 4. Finally, we

show that, with high probability, no r-neighbors remain

active after all the γ lnn rounds.

Let u and v be r-neighbors. Observe that the sum

of transmission probabilities of nodes in any r-ball Erw
is at most 1/2 (as the density in any r-ball is at most µ′

that can be obtained using an area argument and each

node transmits with probability 1/2µ′). This allows us

to apply Lemma 3 to determine successful transmis-

sions. If u transmits a Hello in a given round, then its

neighbors receive it clearly with probability is at least
1

2µ′ · κ, and if a clear reception occurs, then u receives

Ack, also with probability at least 1
2µ′ ·κ. Hence, if both

u and v are active at the beginning of a round, they

stay active after that round with probability at most

1 − (κ/2µ′)2. Thus, the probability that they stay ac-

tive for all γ lnn rounds is at most (1−(κ/2µ′)2)γ lnn ≤
e−3 lnn = n−3. By the union bound, the probability

that some r-adjacent pairs remains active is at most

n−1. ut

5 Aggregation Structure Construction

We give in this section an algorithm to form a hierar-

chical aggregation structure. The algorithm has three

parts: forming a dominating set, coloring the domina-

tors to separate them spatially, and finally forming a

tree of reporters to speed up aggregation using the mul-

tiple channels.

5.1 Communication Backbone

To reduce computation and communication, we con-

struct an overlay in the form of a connected dominat-

ing set. The dominators function as local leaders of their

respective clusters, managing the local computation, as

well as participating in disseminating the information

globally. The dominators are colored to ensure good

spatial separation between clusters of same color, which

in turn allows the local computation to ignore interfer-

ence from other clusters.

5.1.1 Computing a Clustering

We first form a clustering, which is a function assigning

each node a dominator within a specified distance r.
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Let t =
(

α−2
48β(α−1)

)1/α
and rc = min{ t

2t+2 ·Rε/2,
εRT
4 }.

Recall that Rε/2 = (1 − ε
2 )RT . We adapt the algo-

rithm of Scheideler et al. [25] (refer to Appendix B for

an introduction of the algorithm) to compute an rc-

dominating set of constant density. In that algorithm, a

node that receives a message from a dominator becomes

a dominatee; here, we simply additionally require that

the node receive a message from a dominator within

distance rc. Using the same argument as in [25], we

have the following result.

Lemma 6 There is a distributed algorithm running in

time O(log n) that produces, with high probability, an

rc-dominating set of constant density µ, along with the

corresponding clustering function.

5.1.2 Cluster Coloring and a TDMA Scheme of

Clusters

To separate the clusters spatially, we color the domi-

nators so that those within distance Rε/2 are assigned

different colors, as done by the following algorithm.

The algorithm operates in φ phases, where φ is an

upper bound on the number of dominators in any disk

of radius Rε/2. A standard area argument gives an up-

per bound of φ := 4µ(Rε/2 + rc/2)2/r2c ∈ O(1). In each

phase i, dominators that are still not colored compute

a (Rε/2, Rε)-ruling set, using the algorithm of Sec. 4,

and assign the nodes of the ruling set the color i.

The following result follows easily from Lemma 5.

Lemma 7 Given an upper bound φ on the dominator

density, there is an algorithm for coloring the domina-

tors (assigning Rε/2-neighbors different colors) using φ

colors in O(log n) rounds.

The cluster coloring yields the following TDMA scheme

of φ rounds: only nodes in clusters of color i trans-

mit in the i-th round, for i = 1, 2, . . . , φ. A cluster-

ing with a proper coloring as described above is called

well-separated. Lemma 2 and the setting of rc imply the

following result.

Lemma 8 If at most one node transmits in each clus-

ter (on a given channel), and only in clusters of a par-

ticular color, then each such transmission is received by

all nodes within the same cluster.

Thus, when using the TDMA scheme, communica-

tion within clusters can proceed deterministically with-

out concern for outside interference (as long as only one

node transmits in a cluster). For simplicity, in the subse-

quent sections, we implicitly assume that clusters of the

same color execute the algorithm together in the rounds

assigned by the TDMA scheme and only consider the

algorithm execution of the clusters with a particular

color. This assumption incurs an overhead of only a

constant factor φ on the running time.

5.2 Reporter Tree Construction in Clusters

The tree construction proceeds in three steps. We first

estimate the number of nodes in the cluster, which de-

termines the number of channels to which to assign the

nodes randomly. Within each channel, a leader known

as a reporter is then elected. Finally, the reporters au-

tomatically organize themselves into a complete binary

tree, using the channel number as a heap number in the

tree.

Denote by Cv the cluster consisting of dominator v

and its dominatees. Denote by fv = min{d|Cv|/(c1 log n)e,F}
the number of channels used in cluster Cv, where c1 =

24. The setting of fv ensures (by Chernoff bound) that,

with high probability, each channel is assigned at least

one node.

The following theorem summarizing the results of

this subsection follows from Lemmas 12, 13, and 14

given later.

Theorem 1 Suppose clusters are well-separated. There

is an algorithm that for each cluster elects a reporter

on each of its channels and organizes them into a com-

plete binary tree, using O(log2 n) rounds with high prob-

ability. If a logO(1) n-approximation of ∆ is given, then

O(∆/F + log n · log log n) rounds suffice.

Since the number of channels used in a cluster de-

pends on its size, we first need to approximate that

quantity and make it known to all dominatees.

5.2.1 Cluster Size Approximation

Suppose an upper bound ∆̂ on the size of any cluster is

known. Consider the following Cluster-Size-Approximation

(CSA) problem: Given a set of nodes partitioned into

well-separated clusters, each of size at most ∆̂, com-

pute a constant approximation of the cluster size and

disseminate it to all nodes in the cluster. In the most

general case, ∆̂ can be taken to be n.

5.2.1.1 Cluster Size Approximation with Large ∆̂

The CSA algorithm uses only the first channel, i.e., all

nodes operate on a single channel. The stage is divided

into dlog ∆̂e phases, each of which contains γ1 lnn + 1

rounds, where γ1 is a constant to be determined.

In all but the last round of a phase, each domina-

tee u transmits with a specified probability, while the
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dominators listen. In rounds of phase j, the common

transmission probability pj is 1
∆̂
·2j−2. Namely, the ini-

tial probability is 1/2∆̂, and the probability is doubled

after each phase. In the last round of each phase, the

dominator sends out a notification if it received enough

messages from the nodes in its cluster, in which case

all the nodes terminate the algorithm. If a dominator

receives at least ω1 lnn messages in phase j from nodes

in its cluster, where ω1 = 36, then it settles for the esti-

mate of ˆ|Cv| := d∆̂ · 2−j+1e for the number of nodes in

its cluster. Note that, if the contention Pc(v) is constant

when the algorithm terminates, then |Ĉv| = Θ(|Cv|), a

constant approximation of the true cluster size.

We start with preliminary results before deriving

the main result on CSA.

Lemma 9 Let v be a dominator and consider a phase

of the CSA algorithm. The following holds with probabil-

ity 1− n−3: If Pc(v) < ω1/(4γ1), then v receives fewer

than ω1 lnn messages in the phase, while if Pc(v) ∈
(1/4, 1/2] and Pc(w) ≤ 1/2 for every dominator w, then

v receives at least ω1 lnn messages.

Proof Suppose first that Pc(v) < ω1/(4γ1). The dom-

inator v receives a message in a round with proba-

bility at most Pc(v), and therefore receives at most

γ1 lnn · ω1/(4γ1) = ω1

4 lnn messages during the phase,

in expectation. By Chernoff bound (2) using ω1 = 36,

it holds with probability 1−n−3 that v receives at most
ω1

2 lnn messages.

Suppose now that Pc(v) ∈ (1/4, 1/2] and that Pc(w) ≤
1/2 for every dominator w. By Lemma 3, if a dominatee

transmits in a round, its dominator receives the mes-

sage with constant probability κ. The probability that

v receives some message in a given round of the phase

is then at least
∑
w∈Cv pw · κ = κ · Pc(v) ≥ κ/4. Then

during the first γ1 lnn rounds of phase j, v receives at

least expected κ
4 · γ1 lnn messages from its dominatees.

Setting γ1 ≥ 2ω1 · 4
κ , it follows from Chernoff bound

(3) that v receives at least ω1 lnn messages during the

first subphase, with probability 1−n−3, in which case it

notifies its dominatees to terminate the algorithm. ut

Lemma 10 With a known upper bound ∆̂ on the max-

imum cluster size, the CSA algorithm approximates the

size of each cluster within a constant factor in O(log ∆̂ ·
log n) rounds, with high probability. Using the naive

bound of ∆̂ ≤ n, the running time is O(log2 n).

Proof By the first part of Lemma 9, using union bounds,

it holds with probability at least 1−1/n that whenever

a dominator v explicitly terminates the algorithm, then

ω1/(4γ1) ≤ Pc(v) ≤ 1
2 . Assume that v terminates the

algorithm in phase j. The transmission probability dur-

ing phase j is pj = 1
2∆̂
· 2j−1. Then, |Cv| = Pc(v)

1
2∆̂
·2j−1 ∈

[2∆̂·2−j+1·ω1/4γ1, 2∆̂·2−j ]. Hence, |Ĉv| = d∆̂·2−j+1e ∈
Θ(|Cv|). In other words, the estimate |Ĉv| obtained is

always a constant approximation of the true cluster size

|Cv|. The algorithm is run for at most log ∆̂ = O(log n)

phases, for a O(log2 n) bound on the time complexity.

It remains to argue that the algorithm is explicitly ter-

minated.

By applying the union bounds on the second part of

Lemma 9, it holds with probability at least 1−1/n that

Pc(v) ≤ 1/2 is satisfied for every vertex in each phase.

Initially, p1 = 1/2∆̂, for each dominatee u, in which

case Pc(v) ≤ 1/2 is satisfied. If the algorithm operates

for all the dlog ∆̂e phases, then pj ≥ 1/4 in the last

phase j, in which case Pc(v) ≥ 1/4. Thus, for each

dominator v, there is a phase in which the conditions

of the second part of Lemma 9 are satisfied, in which

case the dominator terminates the algorithm, with high

probability. ut

5.2.1.2 Cluster Size Approximation with Small ∆̂

For the case that ∆̂ ≤ F logc n, for constant c ≥ 1,

the Cluster-Size-Approximation problem can be solved

more efficiently. The basic process is as follows: First,

each dominatee selects a channel uniformly at random.

Then, on each channel, the nodes selecting that channel

elect a leader and execute the CSA algorithm to obtain

constant approximation of the number of dominatees

in the channel. Finally, the dominator obtains a con-

stant approximation of the cluster size by polling the

estimates from the leaders on each channel, and sends

the estimate to its dominatees on the first channel in

the last round. The detailed algorithm and analysis of

the following result are given in the Appendix C.

Lemma 11 Given knowledge of ∆̂ satisfying ∆̂ ≤ F logc n

for some constant c ≥ 1, we can get a constant approx-

imation of the size of each cluster in O(log n · log log n)

rounds, with high probability.

We can combine the two cluster size estimation pro-

cedures if ∆̂ is a logĉ n-approximation of ∆ for some

constant ĉ ≥ 0: When ∆̂/F ≤ logĉ+2 n, Lemma 11

gives a bound of O(log n · log log n) rounds, while oth-

erwise the bound of Lemma 10 is O(log2 n) = O(∆/F)

rounds. Hence, based on Lemmas 10 and 11, we have

the following result.

Lemma 12 There is a constant-approximation algo-

rithm for Cluster-Size-Approximation that runs in

O(log2 n) rounds, with high probability. When given a

logO(1) n-approximation of ∆, there is a constant-

approximation algorithm that runs in O(∆/F + log n ·
log log n) rounds, with high probability.
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For simplification, we shall simply use |Cv| to de-

note the size estimate |Ĉv| derived for cluster Cv. Since

it is a constant approximation, it will not affect the

asymptotic running times.

5.2.2 Reporter Election and Aggregation Tree

Formation

In this stage, reporters are elected in each cluster simul-

taneously by running the ruling set algorithm of Sec. 4.

For a cluster Cv, a reporter is elected on each of the

channels F1, F2, . . . , Ffv . In particular, on a channel Fi,

the nodes in Cv selecting Fi execute the (r, s)-ruling set

algorithm with parameters r = rc and s = 2rc, where rc
is the radius used to compute the clustering. To argue

correctness, it suffices in light of Lemma 5 to show that

every channel gets assigned some node. The expected

number of nodes in Cv choosing a channel is |Cv|/fv.
Chernoff bound (3) and the union bound then imply

the desired result with high probability.

Lemma 13 In each cluster Cv, with high probability,

exactly one reporter is elected on each of the fv channels

in O(log n) rounds.

We refer to dominatees that are not reporters as

followers. Thus, Cv is partitioned into one dominator,

fv reporters, and |Cv|−fv−1 followers. In subsequence,

we use Xv = {u1, . . . , ufv} and Yv to denote the sets of

reporters and followers in Cv, respectively, where ui is

the reporter elected on channel Fi. Let u0 = v refer to

the dominator. We define a complete binary tree rooted

at the dominator, with the reporters ordered in level-

order, like a binary heap. Thus, ubk/2c is the parent of

uk in the tree, for k = 1, . . . , fv.

Once the reporters are elected, the aggregation tree

is then ready to use.

Lemma 14 A complete binary tree of blog(fv + 1)c
levels is constructed on the reporters for each cluster

Cv. Operating on well-separated clusters, it can per-

form a convergecast operation deterministically in time

2blog(fv + 1)c.

6 Data Aggregation

The data aggregation algorithm consists of three pro-

cedures executed in parallel: The intra-cluster aggrega-

tion involves two processes: a) collecting the data from

followers to the reporters, b) aggregating the data of

dominatees using the reporter tree to the dominator,

and finally aggregating the data among the dominators.

The first two procedures can together be referred to

as intra-cluster aggregation, while the last one is inter-

cluster aggregation. In each round there are five slots

for these three procedures: a pair of send/acknowledge

slots for each of the first two, and a single slot for the

last one.

Aggregation from Followers to Reporters. The

execution of this process is divided into phases, each

with Γ + 1 rounds, where Γ := γ2 lnn and γ2 is to be

determined. For a cluster Cv, the first fv channels are

used for transmissions. The first channel is special in

that the dominator listens on it to estimate the con-

tention. In each phase, the operations of nodes are as

follows:

(i) A follower u ∈ Yv, in each of the first Γ rounds,

selects one of the first fv channels uniformly at ran-

dom, transmits on the selected channel with a specified

probability pu in the first slot, and listens in the second

slot for an acknowledgement (ack) from its reporter.

Initially, pu is set as pu = λfv/|Cv| with λ = 1/2. If u

receives an ack, it halts.

In the last round, u listens on the first channel. Af-

ter each phase, if u receives a backoff message from its

dominator in the last round, it keeps pu unchanged, and

doubles pu otherwise.

(ii) A reporter w ∈ Xv operates on the channel

where it is elected. In each of the first Γ rounds, w

listens in the first slot. If it receives a message from a

follower in its cluster, it returns an acknowledgement in

the second slot. In the last round, w does nothing.

(iii) The dominator v listens on the first channel

during the first Γ rounds. In the last round it transmits

a backoff message if and only if it heard at least Ω :=

ω2 lnn messages from followers during the preceding

rounds.

In the above algorithm, we set the constant param-

eters as follows: ω2 = 96/κ1 and γ2 = 8ω2/κ1, where

κ1 ≤ 1 is a constant that will be given in Lemma 15 of

the analysis.

Aggregation on Reporter Tree. The execution of

this process is divided into phases, where each phase

contains blog(F + 1)c − 1 rounds.

For a cluster Cv, the first fv channels are used for

transmissions. As before, use Xv = {u1, . . . , ufv} to de-

note the set of reporters and Tv to denote the reporter

tree. We enumerate the levels of Tv from bottom, i.e.,

with the leaves at level 1.

In the s-th round of a phase, nodes at level s and

s + 1 of Tv execute the algorithm to aggregate from

level s to level s+1, while other nodes keep silent. Each

reporter uk at level s operates on the same channel as

its parent, i.e., on the channel bk/2c. If k is odd (even),

then uk transmits its data to its parent ubk/2c in the

third (fourth) slot of round s, respectively.
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Inter-cluster Aggregation. In this procedure, we use

a known approach for disseminating data on a constant-

density backbone network (e.g., see Section 5.2 in [2]).

The basic idea of the algorithm is to use flooding (with

continuous constant-probability transmissions) to pro-

duce an aggregation/broadcast tree, with which data

can be aggregated and then broadcast to all nodes in

O(D + log n) rounds with high probability.

6.1 Analysis

The main effort of the analysis is on the first procedure,

aggregating from the followers to reporters. We address

the other two in the final theorem.

To bound the time spent on aggregating from the

followers we show that we maintain linear throughput

while the contention is high enough. Namely, while the

contention is above a fixed constant threshold, each re-

porter makes progress with constant probability, where

progress means aggregating a message from one more

follower. To this end, we show that contention always

remains bounded from above, and whenever it becomes

low, the transmission probabilities double. When the

contention dips below the threshold, we need only dou-

bly logarithmic number of phases to increase the trans-

mission probabilities to constant and aggregate the re-

maining followers.

The sum of transmission probabilities of followers in

a cluster is referred to as the contention in the cluster,

and denoted by Pc(v) =
∑
u∈Yv pu.

Definition 2 (Bounded Contention) Bounded Con-

tention is achieved in a given round if the contention

in each cluster is at most half the number of channels

alotted, i.e., Pc(v) ≤ λfv = 1
2fv, for each cluster Cv.

Even if the contention in each cluster is bounded, we

cannot directly use the result in Lemma 3, as the con-

tention on a particular channel may not be constant

bounded. But because followers select the operating

channel uniformly at random, it can be seen that the

expected contention on each channel can be bounded

by λ. This is enough to use the interference bounding

technique used for proving Lemma 3, and we can get

the following Lemma 15.

We say a follower succeeds (to transmit) if its mes-

sage is properly received by a reporter on a channel.

The proof detail is omitted because it is very similar to

the standard argument given in [11] (Lemma 4.1 and

Lemma 4.2).

Lemma 15 Assuming Bounded Contention holds, when-

ever a follower transmits, it succeeds with probability at

least κ1, for a universal constant κ1 > 0.

The TDMA scheme ensures that when a follower

succeeds, it receives the ack message in the subsequent

slot, as argued in Lemma 8.

Using Lemma 15, we can argue the Bounded Con-

tention property.

Lemma 16 Bounded Contention holds in every round,

with probability 1− n−1.

Proof We prove the Lemma by contradiction. Assume

that cluster Cv is the first one to violate the Bounded

Contention property, and that the violating phase is j.

The initial transmission probability implies that j > 1.

We focus on phase j − 1. In this phase, by assump-

tion, we have Pc(y) ≤ λfy for each cluster Cy, and

since the transmission probability of followers is at most

doubled between phases, Pc(v) ∈ (λfv/2, λfv]. The ex-

pected number of transmissions by followers in Cv dur-

ing phase j−1 is then at least λfv/2 ·Γ . Since Bounded

Contention holds in phase j − 1, each transmission is

successful with some constant probability κ1. Hence,

there are λ/2·Γκ1 = 8
4ω2 lnn = 2Ω successful transmis-

sions on each channel, in expectation. Using Chernoff

bound (3), the dominator v receives at least Ω trans-

missions with probability 1 − n−3 (as ω2 ≥ 12). Then,

by Lemma 8, v sends a backoff message to all the follow-

ers, who keep their transmission probability unchanged

after this phase j − 1. As a result, the λfv bound will

not be broken in phase j, which contradicts with our

assumption. So Cv cannot be the first violating cluster

with probability 1 − n−3. The Lemma is then proved

by the union bound. ut

A phase is increasing if the transmission probabil-

ity of the followers in Cv is doubled after the phase,
i.e., the dominator v receives less than ω2 lnn messages,

and otherwise it is unchanging. Let N j
v denote the to-

tal number of transmissions by followers in Cv during

phase j. A transmission by a follower u ∈ Yv is success-

ful if u succeeds in transmitting the data to a reporter.

Lemma 17 Consider a cluster Cv. If a phase j is un-

changing, then, with probability at least 1 − n−3, there

are at least Ω/4 = ω2

4 fv lnn transmissions in the phase,

of which at least 12fv lnn are successful.

Proof Suppose there are fewer than Ω/4 transmissions

in phase j. Then, since channels are chosen with equal

probability, the expected number of transmissions in

the first channel is at most ω2

4 lnn. Then, by Chernoff

bound (2) (since ω2 ≥ 36), at most ω2

2 lnn transmis-

sions are made in the channel, with probability 1−n−3,

which implies that the phase is increasing. Thus, the

first part of the lemma holds: if a phase if unchanging,

then at least Ω/4 transmissions occur. By Lemma 15,
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the expected number of successful transmissions is then

at least Ω/4 · κ1 = (ω2fv lnn/4) · κ1 = 24fv lnn. Using

Chernoff bound (3), the number of successful transmis-

sions is at least 12fv lnn, with probability 1−O(n−3).

ut

Based on above analysis, we can now get the result

for the first procedure.

Lemma 18 In each cluster, the data of all followers

can be aggregated to the reporters in O(∆F+log n log log n)

rounds, with probability 1−O(n−1).

Proof Consider a cluster Cv. There are at most

O(|Cv|/(12fv lnn)) = O(1 + ∆/(F log n)) unchanging

phases, by Lemma 17, with probability 1 − n−3. Also,

when the transmission probability of a follower is in-

creased to a constant λ/2 in a phase, it can success-

fully send its data to a reporter with probability λκ1/2

in each round of the phase by Lemma 15, and the

γ2 lnn ≥ 3 lnn
λκ1/2

rounds in the phase ensure success-

ful transmission with high probability. Hence, there are

at most O(log(|Cv|/fv)) = O(log(∆/F) + log log n) in-

creasing phases for each cluster, given the initial trans-

mission probability of followers. Combined, the number

of phases is O(∆/(F log n) + log(∆/F) + log logn) =

O(∆/(F log n)+log log n), and thus the number of rounds

is O(∆/F + log n log log n), with probability 1 − n−3.

The lemma then follows from the union bound over the

clusters. ut

Theorem 2 Data aggregation can be accomplished in

O(D+ ∆
F +log n log log n) rounds, with high probability.

Proof We can combine the high probability bounds on

each of the three procedures. By Lemma 18, the aggre-

gation from followers to reporters is achieved in O(∆F +

log n log log n) rounds (with probability 1−O(n−1)). In

each cluster Cv, the data aggregation from the reporters

to the dominator can be accomplished inO(logF) rounds.

Namely, the construction of the aggregation tree en-

sures that when a reporter transmits, it is the only one

from the same cluster in the same channel, and thus, by

Lemma 8, each transmission is successful. The number

of rounds to aggregate from reporters to dominator then

equals the height of the tree, or blog(F + 1)c. Finally,

Theorem 3 in [2] achieves (the inter-cluster) aggrega-

tion on the dominators in O(D + log n) rounds. ut

7 Coloring

Using the aggregation structure, the data of dominatees

can be efficiently aggregated to a dominator, as shown

in Sec. 6. This aggregation structure can be used to

solve fundamental problems other than data aggrega-

tion, which we illustrate on the node coloring problem.

Algorithm. In the constructed aggregation structure,

the dominators are colored with cluster colors 1, 2, . . . , φ

for some constant φ such that dominators within dis-

tance Rε/2 receive different cluster colors (refer to Sec.

5.1.2). We then allocate to each dominator of cluster

color i the sequence of colors kφ + i : k = 0, 1, 2, . . . to

assign to its cluster nodes.

Operating on each cluster Cv, the algorithm consists

of four procedures:

1. The followers execute the data aggregation algo-

rithm of Sec. 6 to send their IDs to the reporters,

by which each reporter will acquire the knowledge of

all of its followers. An aggregation tree on all nodes

in Cv is then constructed based on the reporter tree

by adding links that connect each reporter and the

followers following it.

2. Each reporter forwards the number of nodes in its

subtree (including the reporters and the followers)

to its parent in the reporter tree.

3. The color range (the range of k, which determines

the set of available colors) of each reporter and its

followers is then disseminated to each reporter via

the reporter tree. In particular, on the reporter tree,

each node u (recall that the root is the dominator)

determines the color ranges of its two children based

on the color range assigned to u and the number of

nodes in the subtree of its children. The distribution

of the color range uses an inverse process to the

aggregation on the reporter tree given in Sec. 6.

4. For a reporter u, let Bu denote the set of colors

assigned to it (which can be derived using the color

range assigned to u). Each reporter u then assigns

a different color in Bu to each of its followers and

announces the color assignment one by one to its

followers.

Because the first procedure uses a randomized al-

gorithm, and the other three procedures are done by

letting nodes execute the deterministic TDMA scheme

given in Section 5.1, to avoid the interference between

the executions of different procedures among clusters,

we run procedures in separate slots of each round. Specif-

ically, in each round, there are four slots for the execu-

tion of each of the four procedures.

Analysis.

Lemma 19 For each cluster Cv, after O(∆/F +

log n log log n) rounds, each node in Cv will get a dif-

ferent color with high probability. And the total number

of colors used is O(∆).
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Proof As for the time complexity, the first procedure

takes O(∆/F + log n log log n) rounds, with high prob-

ability, by Lemma 18; the second and third procedures

take O(logF) rounds, or proportional to the height

of the tree (using Lemma 14); and finally, the fourth

procedure takes as many rounds as a reporter has fol-

lowers, or O(|Cv|/fv + log n), since these messages are

successfully received because the reporters transmit on

different channels. Because nodes have a constant ap-

proximation of |Cv|, and knowledge of n (a polynomial

estimate) and the number of channels F , they can each

determine the completion time of each procedure.

The time bound can be obtained by the execution

time of each procedure. We next show that each node in

Cv gets a different color and the total number of colors

used is O(∆).

By Lemma 18, each follower can send its ID to a

reporter with high probability. We claim that each fol-

lower transmits its ID to only one reporter. This fol-

lows from Lemma 8. By this Lemma, once a follower

transmits a message to a reporter, it will receive an ack

message in the same round. Hence, the sets of followers

of reporters are disjoint. With this claim, we can see

that the aggregation tree on all nodes in Cv is correctly

constructed in the first procedure, i.e., every node is in

the tree and has exactly one parent. Then in the sec-

ond procedure, each reporter will get the exact number

of nodes in its subtree by the analysis in Theorem 2.

Based on this knowledge and because the aggregation

tree is correctly constructed, after the third procedure,

reporters will get disjoint color ranges and the number

of colors used is |Cv| ∈ O(∆). Hence, after the fourth

procedure, each node will get a different color. ut

Theorem 3 A proper coloring with O(∆) colors can

be computed in O(∆F + log n log logn) rounds with high

probability.

Proof The total time used for the coloring is given in

Lemma 19. By the algorithm, it is easy to see that the

total number of colors used is φ ·O(∆) ∈ O(∆).

We next show the correctness of the coloring al-

gorithm. For any two neighboring nodes u, v that are

in different clusters, their dominators have distance at

most εRT /4 + Rε + εRT /4 = Rε/2. By the algorithm,

the color sets given to the clusters in which u, v stay

are disjoint. Hence, u, v will not get the same color. For

any pair of neighboring nodes in the same cluster, they

will also be assigned different colors by Lemma 19. ut
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A Proof of Lemma 3

Proof (Proof of Lemma 3) We divide the proof into two parts:
we first compute the interference experienced by every node
u ∈ QF ∩ERv caused by nodes outside the region EρRv , where
ρ ≥ 1 is a constant that will be determined later; and we then
consider the probability that there are no other transmitters
in QF ∩ EρRv .

We first compute the interference experienced by u that
is caused by nodes outside EρRv . Let Ct be the ring with dis-
tance from v in the range [tρR, (t+ 1)ρR) for t ≥ 1. Without
confusion, Ct is also used to denote the set of nodes in Ct
that operate on F . Let Mt be maximal R-independent set in
Ct. Hence, any pair of nodes in Mt are separated by a dis-

tance at least R. Because disks E
R/2
w for w ∈Mt are disjoint,

an area argument implies that |Mt| ≤ 4(2t+ 1)ρ(ρ+ 1).

Denote by T the set of nodes outside EρRv that select the
same channel and transmit simultaneously with v. Then, we
bound the expected interference Iu experienced by u caused
by nodes in T as follows.

E[Iu] =
∑
w∈T

P

dαwu
· pw

≤
∞∑
t=1

NβRαT
((tρ− 1)R)α

∑
y∈Mt

∑
w∈ER

y

pw

≤
∞∑
t=1

NβRαT
((tρ− 1)R)α

· 4(2t+ 1)ρ(ρ+ 1) · ψ

≤
24 · 2αNβRαTψ

Rα
· ρ2−α

∞∑
t=1

t−α+1

≤
24 · 2αNβRαTψ

Rα
· ρ2−α ·

α− 1

α− 2

≤
1

2
(
P

βRα
−N)

(4)

The last inequality holds by setting ρ ≥
(

48·2αNβRα
T
ψ

Rα
· α−1
α−2

) 1

α−2 ·
( P
βRα

− N)−1/(α−2). Using Markov inequality, with proba-

bility at least 1
2

, Iu is at most P
βRα

−N .

We next compute the probability that there are no other
transmitters in EρRv . By standard argument, EρRv can be
covered with at most (2ρ + 1)2 disks of radius R. Since by
assumption, the sum of the transmission probabilities in each
disk is at most ψ, the sum of transmission probabilities in
EρRv is at most (2ρ + 1)2ψ. The probability of the event A

that there are no other transmitters in QF ∩ EρRv can then
be bounded below by:

Pr[A] ≥
∏
y∈M

∏
w∈QF∩EρRy

(1− pw)

≥ (1/4)
∑
w∈QF ∩E

ρR
y
pw ≥ (1/4)(2ρ+1)2ψ.

(5)

Setting κ = 1
2
· (1/4)(2ρ+1)2ψ ∈ Ω(1), we get that with prob-

ability κ, the interference at every node u ∈ QF ∩ EρRv is at
most P

βRα
− N . By the SINR condition, u will then receive

the message of v. ut

B Dominating Set Algorithm

For completeness, we introduce the dominating set algorithm,
the TWIN protocol, given by Scheideler et al. [25].

In the TWIN protocol, a node can either be inactive or
active, and active nodes are either singles or twins, as will
be explained later. The active nodes eventually converge to a
dominating set. Each round of the TWIN protocol consists of
three stages. In Stage 1, the active twins send out an ACTIVE
signal with a certain probability so that inactive nodes or
active singles can learn about active twins in their vicinity. In
Stage 2, those nodes v that have not yet found an active twin
in their vicinity probe the wireless medium and adjust their
probabilities pv so that in most rounds the contention within
the transmission range of any node is constant bounded. In
Stage 3, the non-twin nodes that were able to receive each
other’s signal in Stage 2 acknowledge this to each other to
be sure to form active twins. In order to become an active
single, each node v maintains a counter acc(v) ≥ 0. Each
time pv = p̂, the maximum transmission probability a node
can have, it sets acc(v) := acc(v) + 4, and each time pv < p̂,
it sets acc(v) := max{acc(v) − 1, 0}. A node is an active
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single as long as acc(v) > 0. The details of each stage is
given as follows. Initially, all nodes are inactive and acc(v) =
0 for every node v. The probability pv may be set to any
value x with 0 < x ≤ p̂. Let Ts = (P/ρRαT ), where P is the
transmission power of nodes, ρ is a small constant in (0,1),
and RT is the transmission range of nodes.

– Stage 1: Announcing active twins
This stage consists of one time slot. In that time slot, each
active twin v decides with probability 1/D to send out an
ACTIVE signal, where the constant D is an upper bound
on the maximum density of twins determined in the anal-
ysis. Each inactive node or active single v that receives
an ACTIVE signal from a r-neighbor stops executing the
protocol (since it is covered) and sets acc(v) := 0 (i.e.,
becomes inactive).

– Stage 2: Guessing the right density
This stage consists of two time slots. Each inactive node
or active single v still participating in the protocol chooses
one of the two time slots of this stage uniformly at ran-
dom, say, slot s. For slot s, v decides with probability
pv to send a PING signal. If v sends a PING signal, it
senses the wireless channel with threshold Ts in the al-
ternative slot, s̄. Otherwise, it senses the wireless channel
with threshold Ts in both slots. If it does not sense any-
thing in either case, it sets pv := min{(1 + γ)pv, p̂}, and
otherwise it sets pv := (1 + γ)−1pv for some constants
p̂ < 1 and 0 < γ < 1. Whereas γ may be set to any
constant value, the analysis requires that p̂ to be a small
enough constant. If pv = p̂, then acc(v) := acc(v) + 4,
(i.e., v becomes or remains an active single) and other-
wise acc(v) := max{acc(v)− 1, 0}.

– Stage 3: Forming new twins
This stage consists of two time slots. Every inactive node
or active single v that sent a PING signal in some slot s
and received a PING signal in the alternative slot s̄ does
the following. It sends an ACK signal in slot s of this
stage and listens to the wireless channel in slot s̄ of this
stage. If it receives an ACK signal in slot s̄, it becomes
an active twin.

With the above algorithm, the following result was ob-
tained in [25].

Theorem 4 The TWIN protocol can compute a dominating
set of constant density in O(logn) rounds with high probabil-
ity.

C Cluster Size Approximation with Small ∆̂

When the contention is known to be small relative to the
number of channels, we can reduce the time complexity for
computing the cluster size. Here we consider the case that
∆̂ ≤ F logc n for some constant c ≥ 1.

Algorithm. For each cluster Cv, the algorithm consists
of four procedures:

1. Initially, each dominatee in Cv selects a channel from
F uniformly at random. On each channel, the nodes select-
ing the channel elect a leader by executing the ruling-set al-
gorithm given in Sec. 4. This procedure consists of γ3 lnn
rounds, where γ3 is set to be a sufficiently large constant
such that there are enough rounds for the execution of the
algorithm in Sec. 4.

2. On each channel, nodes execute the CSA Algorithm
with ∆̂ = γ3 lnc n, where the leader functions as the domina-
tor on the channel.

3. The leaders aggregate the number of nodes that se-
lected the channels they dominate. This procedure consists of
O(logF) rounds. In particular, denote by Uv = {x1, . . . , xF}
the set of leaders in cluster Cv. Note that there may be some
channels without nodes selecting it and thus without leaders
elected on them. Hence, there may be some nodes xi missing.
For each channel that does not have nodes, we add an aux-
iliary node, and it will be introduced how to deal with these
auxiliary nodes in the aggregation process.

We first construct a binary tree on these F nodes rooted
at the dominator using the same manner as the reporter tree
construction in Sec. 5.2. Then we use the data aggregation
algorithm on the reporter tree given in Sec. 6 to aggregate the
number of nodes to the dominator. Specifically, we need to
handle here the auxiliary nodes. The solution is to divide each
slot in each round into two sub-slots (recall that there are two
slots in each round for the data aggregation on reporter trees),
and make a parent send the ack message when it receives
a message from its children. For each node xj transmits, if
it does not receive the ack message from its parent, which
means that its parent is an auxiliary node, xj will function
as its parent in the subsequent aggregation process.

4. Finally, in a single round, v broadcasts the estimate of
the cluster size to its dominatees on the first channel.

Analysis.
Proof of Lemma 11. Consider a cluster Cv. We analyze

the four procedures one by one. We first bound the number
of nodes operating on each channel in the first procedure.

Claim For a cluster Cv, in the first procedure, there are at
most 2 lnc n nodes on each channel with probability 1−n−2.

Proof Because dominatees select channels uniformly at ran-
dom, the expected number of dominatees selecting each chan-
nel is at most lnc n. Consider a channel F . Using Chernoff
bound (3), we get that the number of dominatees selecting F
is at most twice the expectation, with probability 1 − n−3.
By the union bound on all channels, the result follows.

A channel F is nonempty with respect to a cluster Cv if
there are dominatees in Cv selecting it in the first procedure.
Using a similar argument for proving Lemma 13, we have the
following result for the first procedure.

Claim For each cluster and each nonempty channel F , ex-
actly one leader is elected on F in O(logn) rounds, with
probability 1− n−2.

Using a similar argument for proving Lemma 10, we have
the following result for the second procedure.

Claim Each leader in each cluster can get an absolute con-
stant approximation of the number of dominatees selecting its
channel in O(logn log logn) rounds, with probability 1−n−2.

By Lemma 8, a node will receive an ack message after it
sends a message to its parent if its parent is not an auxiliary
node. Hence, the auxiliary nodes will not affect the aggre-
gation process in the third procedure. Hence, we have the
following result.

Claim For a cluster Cv, the estimates of leaders will be ag-
gregated to the dominator v in O(logF) rounds.

After the estimates of leaders are aggregated to the dom-
inator, the dominator v will get a constant approximation of
the cluster size by Claim C. Then in the fourth procedure, v
can send the estimate of the cluster size to all dominatees by
Lemma 8. Adding the time used in each procedure, each node
in cluster Cv will get a constant approximation of the cluster
size in O(logn log logn) rounds with probability 1−O(n−2).
The result is then proved by the union bound. ut


