Scheduling Split Intervals *

Reuven Bar-Yehuda' Magnis M. Halldérsson® Joseph (Seffi) Naor'
Hadas Shachnaif¥ Irina Shapiral

January 30, 2004

Abstract

We consider the problem of scheduling jobs that are given as groups of non-intersecting
segments on the real line. Each job J; is associated with an interval, I;, which consists
of up to t segments, for some ¢t > 1, and a positive weight, w;; two jobs are in conflict
if any of their segments intersect. Such jobs show up in a wide range of applications,
including the transmission of continuous-media data, allocation of linear resources (e.g.
bandwidth in linear processor arrays), and in computational biology/geometry. The
objective is to schedule a subset of non-conflicting jobs of maximum total weight.

Our problem can be formulated as the problem of finding a mazimum weight in-
dependent set in a t-interval graph (the special case of ¢ = 1 is an ordinary interval
graph). We show that, for ¢ > 2, this problem is APX-hard, even for highly restricted
instances. Our main result is a 2¢-approximation algorithm for general instances. This
is based on a novel fractional version of the Local Ratio technique. One implication
of this result is the first constant factor approximation for non-overlapping alignment
of genomic sequences. Previously, the problem was considered only for proper union
graphs, a restricted subclass of ¢-interval graphs, and the best approximation factor
known was (2! + 1 + €)/2, for any € > 0 [7]. Finally, a bi-criteria polynomial time
approximation scheme is developed for the subclass of t-union graphs.

*A preliminary version of this paper appeared in the proceedings of the 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 2002.
fComputer Science Dept., Technion, Haifa 32000, Israel. E-mail: {reuven,naor,hadas,csira}@cs.technion.ac.il.
This research was supported by the fund for the promotion of research at the Technion.
$Dept. of Computer Science, University of Iceland, IS-107 Reykjavik, Iceland, E-mail: mmh@hi.is.
'"Currently on leave at Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ
07974. E-mail: hadas@research.bell-labs.com.

1 Introduction

1.1 Problem Statement and Motivation

We consider the problem of scheduling jobs that are given as groups of non-intersecting
segments on the real line. Each job J; is associated with a t-interval, I;, which consists of
up to t disjoint segments, for some ¢ > 1, and a positive weight, w;; two jobs are in conflict
if any of their segments intersect. The objective is to schedule on a single machine a subset
of non-conflicting jobs whose total weight is maximum.

An instance of our problem can be modeled as the intersection graph of t-intervals,
known as a t-interval graph. Each vertex in the graph corresponds to an interval that
has been “split” into ¢t parts, or segments, such that two vertices v and v intersect if and
only if some segment in the interval corresponding to u intersects with some segment in
the interval corresponding to v (an example is given in Figure 1). Note that 1-interval
graphs are precisely interval graphs. For a given instance of our problem, we seek to find a
mazimum weight independent set (MWIS) in the resulting weighted ¢-interval graph, that
is, a subset of non-adjacent vertices U C V, such that the weight of U is maximized.

We describe below several practical scenarios involving ¢-interval graphs.

Transmission of Continuous-media Data. Traditional multimedia servers transmit
data to the clients by broadcasting video programs at pre-specified times. Modern systems
allow to replace broadcasts with the allocation of video data streams to individual clients
upon request, for some time interval (see, e.g., [32, 6]). In this operation mode, a client may
wish to take a break, and resume viewing the program at some later time. This scenario is
natural, e.g., for video programs that are used in remote education [13].

Suppose that a client starts viewing a program at time #y. At time ¢; the client takes
a break, and resumes viewing the program at to, till the end of the program (at t3). This
scenario can be described by a split interval, I, that consists of two segments: I' = (tg,11)
and I2 = (t2,t3).

The scheduler may get many requests formed as split intervals; each request is associated
with a profit which is gained by the system only if all of the segments corresponding to the
request are scheduled. The goal is to schedule a subset of non-overlapping requests that
maximizes the total profit, i.e., find a MWIS in the intersection graph of the split intervals.

Most of the previous work in this area describe analytic models (e.g., [30]) or experimen-
tal studies, in which VCR-like operations can be used by the clients (see [6, 11, 32, 44]);
however, these studies focus on the efficient use of system resources while supporting such
operations, rather than on the scheduling problem.

) 1 2
a2 b2 b : b
*— 1 2
c d C e 4! P2
2 d? — —
e ° ° e
e —

(a) (b) ()

Figure 1: An example of a 2-interval graph (a), corresponding interval (segment intersection)
graph (b), and interval system (c).

Linear Resource Allocation. Another application is linear resource allocation [22]. Re-
quests for a linear resource can be modeled as intervals on a line; two requests for a resource
can be scheduled together unless their intervals overlap. A disk drive is a linear resource
when requests are for contiguous blocks [36]. A linear array network is a linear resource,
since a request for bandwidth between processors 7 and j requires that bandwidth be allo-
cated on all intervening edges. Consider a computer system that consists of a linear array
network and a large disk. A scheduler must decide when to schedule requests, where each
request may comprise distinct requests to these two linear resources, e.g., “a certain amount
of bandwidth between processors 4 and 7, and a lock on blocks 1000-1200 of the disk”. Two
requests are in conflict if they overlap on the disk or in their bandwidth requirements. Thus,
when the goal is to maximize the amount of requests satisfied by the system, we get an
instance of the MWIS problem on a subclass of 2-interval graphs, known as 2-union graphs
(see in Section 2.1.)

Genomic Sequence Similarity. Bafna et al. [2] consider determining the similarity
between a pair of genetic sequences under large-scale mutational operations, including re-
versal and transposition. There are non-negative weights attached to pairs of (contiguous)
subsequences that measure their similarity, e.g. derived from local alignment. This is rep-
resented as an intersection graph of two-dimensional axis-parallel boxes, where a pair of
boxes is independent (or non-adjacent in the graph) if their projections on both axes are
disjoint. The maximum global non-overlapping alignment of the sequences then corresponds
to a maximum weight independent set in the intersection graph. More generally, multiple
alignment of ¢ sequences corresponds to the MWIS problem in t-union graphs. Previously,
the problem was only considered in the case where the projections of input boxes did not
contain one another, i.e., the case of proper t-union graphs. While making the problem
easier, this restriction is not intrinsic to the biological problem.

Computational Geometry. The problem of finding an independent set among a set of
multi-dimensional axis-parallel boxes is of independent interest in computational geometry.
It corresponds to the MWIS problem in ¢-union graphs, a subclass of ¢t-interval graphs.

1.2 Our Results

We provide a comprehensive study of the MWIS problem in ¢-interval graphs. In Section 2,
we show that the problem is APX-hard even on highly-restricted instances, namely, on (2, 2)-
union graphs.! In Section 3 we discuss some structural properties of ¢-interval graphs. In
particular, we derive a bound on the inductiveness of a t-interval graph. As a corollary, we
extend the best bound known on the chromatic number of ¢-interval graphs of Gyérfas [18].
We show this bound to be asymptotically optimal.

In Section 3.2, we study the MWIS problem on 2-interval graphs. We show that a simple
greedy algorithm achieves the ratio O(min{log R,logn}), where R is the ratio between the
longest and shortest segment in the instance.

Our main result (in Section 4) is a 2t-approximation algorithm for MWIS in any ¢-
interval graph, for ¢ > 2, which is based on a novel fractional version of the Local Ratio
technique. (The Local Ratio technique was first developed in [4] and later extended by [3,
5].) We use the fractional Local Ratio technique to round a fractional solution obtained from
a linear programming relaxation of our problem. Previously, the problem was considered
only for proper t-union graphs, a restricted subclass of ¢-interval graphs, and the best
approximation factor known was (2! + 1 + €)/2, for any € > 0 [7]. We expect that our
non-standard use of the Local Ratio technique will find more applications. Indeed, recently,
this technique was used for obtaining improved bounds for MWIS in the intersection graph
of axis parallel rectangles in the plane [29].

As we shall see, the MWIS in t-interval graphs properly includes the k-dimensional
matching problem. For this problem the best known approximation factor is k/2 + ¢, for
any € > 0 [24]. Hazan, Safra, and Schwartz [37] have recently shown that it is hard to
approximate the k-dimensional matching problem within an O(k/logk) ratio unless P =
NP. Thus, our results are close to best possible.

For the class of ¢-union graphs, we develop (in Section 5) a bi-criteria PTAS. Given
€ > 0, our scheme finds a subset of intervals of optimal weight and a schedule where each
interval is delayed by at most €I, assuming that there exists an optimal solution whose
latest completion time is Tp.

1See the definition in Section 2.1.

1.3 Related Work

We mention below several works that are related to ours.

Split interval graphs. Many NP-hard problems, including MWIS [15, 16], can be
solved efficiently in interval graphs. Split interval graphs have a long history in graph
theory [42, 17, 38, 43|, and more recently, union graphs have been studied under the name
of multitrack interval graphs [28, 19, 27]. We mention some of the main results. For
any fixed ¢ > 2, determining whether a given graph is a t¢-interval (t-union) graph is NP-
complete [43] ([19], respectively). 2-union graphs contain trees [42, 28] and more generally
all outerplanar graphs [27], while 3-interval graphs contain the class of planar graphs [38].
Graphs of maximum degree A are [$(A + 1)]-interval graphs [17]. The complete bipartite
graph, K, p, is a t-interval and ¢-union graph for t = [(mn + 1)/(m + n)] [42, 19].

Union graphs, which constitute a sub-family of split interval graphs, were also considered

in several papers. As mentioned earlier, Bafna et al. [2] considered the problem of finding
a weighted independent set in ¢-union graphs in the context of an application coming from
computational biology. In fact, the union graphs considered in [2] are proper, i.e., there is no
containment between segments. The paper [2] shows that the problem is NP-hard. For the
weighted independent set problem in proper t-union graphs, the paper gives a (2! —141/2)-
approximation algorithm. This is obtained by mapping the problem to finding weighted
independent set in (2! +1)-claw free graphs, noting that t-union graphs are (2! +1)-claw free.
The best factor known is (2! 4 1)/t due to Berman [7]. Recently, Berman et al. showed in [9]
that a simple O(nlogn) algorithm (based on the local ratio technique) yields a factor of 3
for proper 2-union graphs. The algorithm can be extended to yield a (2° — 1)-approximation
for ¢t-union graphs.
Coupled-tasks and flow shop scheduling. The problem of scheduling 2-intervals
(known as coupled-task scheduling) was considered in the area of machine scheduling, with
the objective of minimizing the overall completion time, or makespan (see e.g. [33, 40]).
Relaxed versions of the problem, that require only a lower bound on the time that elapses
between the schedules of the two tasks of each job (also called time-leg problems) were
studied, e.g., in [35, 12, 10].

An instance of our problem can be viewed as an instance of the flow shop problem, in
which the segments and break times are represented by tasks that need to be processed on a
set of m = 2t+1 machines. (The precise transformation is given in Section 5.) In general, the
flow shop problem, where the objective is to minimize the makespan, is NP-complete even
on three machines ([14]). The best result known is O(log?(mu)/ log log(mpu))-approximation
algorithm, where p is the maximum number of operations per job, and m is the number of
machines ([39, 41]). Hall [20] gave a PTAS for this problem in the case where m is fixed
(but arbitrary).

2 Preliminaries

2.1 Definitions and Notation

Let Z be a collection of segments (or intervals) on the real line, partitioned into disjoint
groups containing at most ¢ segments, where t > 1. A ¢-interval graph G = (V, E) is the
intersection graph of the groups of segments. Each vertex v € V' corresponds to a group of
segments, and (u,v) € F if one of the segments belonging to the group of u intersects some
segment belonging to the group of v. We call a vertex in a #-interval graph a split interval.
Given a t-interval graph, we assume that each vertex can be mapped to a set of segments,
i.e., we can say that a segment I belongs to a vertex v and denote it by (v,). A t-interval
graph is proper if no segment properly contains another segment.

In the subfamily of ¢-union graphs, the segments associated with each vertex can be
labeled in such a way that for any two vertices v and v, the ith segment of u and the £th
segment of v never intersect for 1 < 4,£ < ¢, and ¢ # £. Union graphs correspond also to
certain geometric intersection graphs. The ¢ segments are viewed as intervals on orthogonal
axes, corresponding to a t-dimensional box; two boxes intersect if their projections on any
of the ¢ axes do. We further define subclasses of union graphs, where coordinates are all
integral. In an (a,b)-union graph, all z-segments are of length a and y-segments of length
b.

Given a graph G = (V, E), we denote by N(v) the set of neighbors of v € V', and by
NJv] the closed neighborhood of v, {v} UN (v). A (k+ 1)-claw is a subgraph consisting of a
center vertex adjacent to k+ 1 mutually non-adjacent vertices. A graph is called (k+1)-claw
free if it does not contain an m-claw, where m > k + 1.

Finally, we define our performance measures. Denote by OPT an optimal algorithm.
The approzimation factor of an algorithm A is r if for every finite input instance I,
A(I)JOPT(I) > 1/r, where A(I) and OPT(I) are the values of A and OPT on I. A poly-
nomial time approximation scheme (PTAS) is an algorithm A4 which takes as input both the
instance I and an error bound e, has the performance guarantee R4(1,¢) < (1+¢), and runs
in time polynomial in |I|. A (f3,€) bi-criteria PTAS is a PTAS which is a S-approximation
in one optimization criterion, and a (1 + €)-approximation in the other criterion.

2.2 Hardness Results

The independent set problem in interval graphs is easy to solve exactly, since interval graphs
always contain a simplicial vertex, i.e., a vertex whose neighborhood is a clique. In fact,
most approximation algorithms for independent sets on geometric intersection graphs are
based on a related relaxed property: there always exists a vertex whose neighborhood does
not contain a large independent set. We first show that for general t-interval graphs this
property does not hold.

noBo Ak 5o ko LS/ S i

It I I
Iy & I3
i i s

Figure 2: An example of a 2-interval graph, in which every vertex has k independent
neighbors.

Observation 2.1 For any n > 2, there exists a 2-interval graph G on n vertices, in which
every verter has Q(y/n) independent neighbors.

Proof: For agivenn > 2, let k = |(v/4n + 1—1)/2|. We show how to construct a 2-interval
graph, in which every vertex has k independent neighbors. We construct the graph from
(k+1) subsets of intervals; each subset consists of k intervals, and each interval is composed
of two segments. We denote the jth interval in subset ¢ by I f.

The graph is constructed as follows. Proceeding from left to right, we place under the
intervals of subset Z, If,...,Iﬁ the /th intervals of subsets 1,...,k + 1, i.e., I},...,If"’l,
excluding Iy . This is repeated for £ =1,..., k. Finally, under the intervals of the (k¥+1)-th
subset, we place the intervals Iy o, 1 < ¢ < k (see Figure 2).

Thus, we get that any interval If with £ # j, intersects k non-intersecting intervals of
subset j, and Iy, intersects k non-intersecting intervals of subset & + 1.

Note that since k(k + 1) < n, we may have some remaining intervals, which are not
contained in any subset. We can place each such interval I under any of the subsets ¢,
1 < ¢ < k+1, providing that interval k£ independent neighbors. L]

We note that we can modify the above construction to hold for 2-union graphs. We now
give a hardness result for a highly restricted class of proper 2-union graphs.

Theorem 2.2 The MWIS problem is APX-hard on (2,2)-union graphs.

We first observe that (2,2)-union graphs include the class of graphs of maximum degree
3. The theorem follows from the fact that the (unweighted) MIS problem is APX-hard on
degree-3 graphs (see [8, 23]).

The linear arboricity la(G) of a graph G is the minimum number of classes in a partition
of E(G) such that each class induces a collection of paths (or a linear forest). Paths can be
represented as special interval graphs, where each interval represents a length-2 half-closed

interval between integral endpoints. Indeed, any path {vg,v1,ve,...} can be represented by
the intervals [0,2),[1,3),[2,4), and so on. Thus, a union of a pair of linear forests can be
represented as a (2,2)-union graph. Akiyama, Exoo and Harary [1] showed that la(G) = 2
for graphs of maximum degree three. The following lemma, and the above theorem, then
hold.

Lemma 2.3 (2,2)-union graphs include the class of degree-3 graphs.

Segments of unit size, whose start points are integral, are called wunit segments. The
k-dimensional matching problem is defined as follows. The input is k-uniform k-partite
hypergraph H = (V1,..., Vi, E). The output is a matching of maximum cardinality.

For some k > 1, let S = {1,2,...,n}, and let C be a collection of subsets of S, where
each subset is of size at most k. The k-set packing problem is that of finding a maximum
cardinality sub-collection C' C C, such that the intersection of any two sets in C’ is empty.
In the weighted version, each subset has a weight, and we seek a sub-collection C’ of max-
imum weight. Note that the k-set packing problem properly contains the k-dimensional
matching problem as a special case.

Lemma 2.4 The k-set packing problem is equivalent to MWIS in the special class of k-
interval graphs of unit segments.

Proof: There is a bijective mapping between unit segments and the set S, where [¢,7 + 1)
maps to ¢, for all values of . Thus, there is a bijective mapping between sets of up to k
elements from S and sets of up to £ unit segments.]

Similarly, the k-dimensional matching problem is equivalent to MWIS in the special
class of k-union graphs of unit segments. The former problem is NP-hard to approximate
within factor O(k/log k) [37], while the best known ratio is k/2 + ¢, for any € > 0 [24] . We
note that the 2-set packing problem is equivalent to the (polynomially solvable) edge cover
problem, while 3-dimensional matching is APX-hard [34].

Corollary 2.5 MWIS in (1,1)-interval graphs is polynomial solvable. MWIS in (1,1,1)-
unton graphs is APX-hard.

The correspondence between (1,1)-union graphs to line graphs of bipartite graphs, and
the resulting polynomial solvability of MWIS, was shown by Halldérsson et al. [22].

3 Greedy algorithms

3.1 Coloring t-Interval Graphs

For a t-interval graph G, let G* denote the graph formed by the intersection of the segments
of the intervals (see in Figure 1(c)). The clique number, w(G*), denotes the maximum

number of segments crossing a point on the real line.

Theorem 3.1 For any t-interval graph G, there is a vertex v in G such that
d(v) < 2t(w(G*) = 1).

Proof: Since each vertex in G corresponds to up to t vertices of G*, |V (G*)| < t- |V (G)|,
and since each edge in G corresponds to one or more edges in G*, |E(G)| < |E(G*)|. Since
G* is an interval graph, there is a simplicial ordering of the graph so that each vertex v; has
at most w(G*) — 1 neighbors among the vertices v;;1,.... Thus, the number of edges in G*
is at most (w(G*) — 1)|V(G*)]; in fact, it must be strictly less, since the last few vertices
have no later neighbors. It follows that the average degree of GG is bounded by

- 2|E(GQ)| |E(G*)]
d(G) = <2t < 2t(w(G*) —1).
D= W) =Hvee <MY
Hence, the minimum degree of G is at most 2¢(w(G*) — 1) — 1. O

This leads to a simple coloring algorithm: find a vertex v satisfying the lemma, color
the remaining graph G\ v, and finally color v with the smallest color not used by previously
colored neighbors. This results in a 2t(w(G*) — 1)-coloring.

The above gives a 2t-approximation for coloring ¢-interval graphs via a greedy algorithm.
Gyarfas [18] showed that the chromatic number of a t-interval graph G is at most 2¢(w(G) —
1), where w(@G) is the clique number of the graph.

Corollary 3.2 A greedy algorithm colors G using 2t(w(G*) — 1) colors.

Observe that this bound is obtained without knowledge of the underlying interval repre-
sentation of G*; this is important since deducing the representation is known to be NP-hard
[43]. We show that this is about the best bound on x(G) one can obtain in terms of w(G*),
within a constant factor.

Lemma 3.3 For infinitely many t, there is a proper t-interval graph G such that w(G) =
(t — Dw(G™).

Proof: Let p be a prime number and let £ = p+ 1. We construct a t-interval graph G with
n = p? intervals. The graph is based on a collection of nt segments, that are organized into
nt/p = p(p+ 1) groups of p identical segments. We refer to each group as a segment clique,
and presume that it refers to a unique unit interval on the real line. We specify the graph
by specifying the intervals contained in each segment clique.

Let Cj;, 0 <i<p,je{0,...,p— 1,00} be the collection of segment cliques. Let I ,,
0 < x,y < p be the set of intervals. Define, for ¢,5 =0,1,...,p— 1,

Cij = {Iz,iztjmodp : 0 < & < p},

and Cj o0 = {liy : 0 <y < p}. Observe that for each ¢, there is exactly one j < oo such
that C; ; contains I, , (namely, where j = y — iz mod p). Hence, in addition to Cy o0, Iz
appears in exactly p segment cliques. Thus, the intersection graph is a ¢-interval graph.
Consider arbitrary distinct intervals I, and I,/ ./, where x' > z. We show that they are
contained in the same clique and thus the corresponding nodes in the graph are adjacent.
The lemma then follows. If = 2/, then both intervals are contained in Cj . Otherwise,
let 9 = 2’ — 2 and yg = ¢/ — y mod p. Let 4 be the solution to the linear modular equation
Yo = i - xo(modp), which exists since p is prime and zg is non-zero. Let j = y — iz mod p.
Then, C; ; contains I, since y = iz + j(modp). Also, it contains I ,, since y' = y+yo =
(iz + 7) + (izg) =12’ + j(modp). O

3.2 Greedy Independent Set Algorithms

In this section, we study a greedy algorithm for the special case where ¢t = 2, in order to
motivate the use of more complicated techniques in later sections.

Recall from Observation 2.1 that, in 2-interval graphs, the neighborhood of every vertex
may include many independent vertices. Thus, purely greedy methods are bound to fail.
Consider, for instance, the optimal greedy algorithm for independent sets in interval graphs
that iteratively adds the interval with the leftmost right endpoint. An analogous method for
2-interval graph could be to iteratively select the interval with the leftmost right endpoint
of the first segment, among all intervals that do not intersect previously chosen intervals.
This algorithm, which we call Sort-and-Select, cannot be expected to perform well on all
2-interval graphs. However, it performs well under certain circumstances, which allows us
to partition the instance into well solvable subcases.

Theorem 3.4 Let G be a 2-interval graph where

e the first segment is no shorter than the second, and
e the ratio between the shortest and longest second segment is at most 2.

Then, the approzimation factor of Sort-and-Select is 4.

10

Proof: Let I be the interval chosen first by Sort-and-Select. We claim that I intersects at
most 4 independent intervals. Namely, the second segment of I is at most twice the length
of the shortest segment in the graph; as a result, it intersects at most three independent
segments/vertices. Also, since the first segment is furthest to the left of all segments in the
graph, it does not intersect two independent vertices. Thus, among the intervals eliminated
by the addition of I to the solution, the optimal solution can contain at most 4. By
induction, the algorithm then achieves an approximation factor of 4.]

Using the Local-Ratio technique, which is discussed in depth in the next section, one
can obtain the same factor for the weighted case. Also, by a similar argument, one can
argue a factor of 3 for the case of proper 2-interval graphs.

Given a general 2-interval graph, we first divide the intervals into those where the first
segment is shorter than the second segment and those where the first segment is at least
as long as the second. This gives us two instances, which can be viewed as symmetric by
reversing the direction of the real line. Thus, by increasing the approximation factor by a
factor of 2, we can assume that in our instance the first segments are no shorter than the
second segments.

We can partition the instance into log R sub-instances, or buckets, where R is the ratio
between the longest to shortest (S) second segment. Then, bucket G; consists of intervals
with second segments in the range [2¢715,2¢S], fori = 1,2,..., [log R]. Each bucket satisfies
the conditions of Theorem 3.4; thus, the largest of the independent sets found in each bucket
by Sort-and-Select, is a 8log R approximation.

Note that we can represent the n second segments in the input by 2n endpoints on the
line, and define the length of each segment as the number of endpoints that lie between its
left and right endpoints plus one. Then, the maximal possible length of a segment is 2n — 1,
and the number of buckets is B = min{log R,log(2n — 1)}. Hence, we obtain the following
result.

Theorem 3.5 There is a greedy partitioning algorithm that approzimates the mazimum
independent set in 2-interval graphs within a factor of O(min{log R,log2n}).

4 A 2t-approximation Algorithm

In this section we describe a 2t-approximation algorithm for the maximum weight indepen-
dent set problem in a ¢-interval graph G = (V, E). The algorithm is based on rounding
a fractional solution derived from a linear programming relaxation of the problem. The
standard linear programming relaxation of the maximum weight independent set problem
is the following. For each v € V, let z(v) be the linear relaxation of the indicator variable

11

for v, i.e., whether v belongs to the independent set. Let w,x € RVl be a weight vector
and a relaxed indicator vector, respectively.

maximize w-x subject to:
for each clique C € G : Z z(v) <1
vel

A feasible solution for the above linear program, whose value is an upper bound on the
maximum weight independent set problem in the graph, can be obtained from the Lovész
J-function [31]. However, as we shall see, it is not necessary to optimize over all cliques in
the case of t-interval graphs. We say that a clique C in the graph is an interval clique if
for every vertex v € C, there is a segment (v, I) such that the intersection of ((v,I)|v € C)
is non-empty. We now further relax the maximum weight independent set problem and
consider only interval cliques. For each vertex v € V and segment I € v, let (v, I) denotes
the value of segment I.

(P) maximize w-x subject to:

for each interval clique C: Z z(v,I) < 1
(v,I)eC

foreachveVandI €v: z(v,I)—z(v) > 0

foreachveVandI €v: z(v),z(v,I) > 0

Notice that the number of interval cliques in a t-interval graph is linear in the number of
segments, and therefore an optimal solution to (P) can be computed in polynomial time.

The heart of our rounding algorithm is the following lemma. It can be viewed as a
fractional analog of Theorem 3.1.

Lemma 4.1 Letx be a feasible solution to (P). Then, there exists a vertezv € V satisfying:

Z z(u) <2t

uEN[v]

Proof: For two adjacent vertices u and v, define y(u,v) = z(v) - (u). Define y(u,u) =
z(u)?. For a segment I, let R(I) be the interval clique defined by the right endpoint of I
(I € R(I)). We prove the claim using a weighted averaging argument, where the weights
are the values y(u,v) for all pairs of adjacent vertices, u and v.

Consider the sum 37, cy 3 ,cnpy Y(u,v). An upper bound on this sum can be obtained
as follows. For each v € V', consider all segments I € v, and for each (v, T), add up y(u,v)
for all (u, J) that intersect with (v, I) (including (v, I)). In fact, it suffices to add up y(u,v)

12

only for segments (u,.J) such that (u,J) € R(I), and then multiply the total sum by 2.
This suffices since: (a) If, for segments (v, I) and (u,J), the right endpoint of I precedes
the right endpoint of J, then (v,I) “sees” (v,J) and vice-versa. Since y(u,v) = y(v,u),
each of them contributes the same value to the other. (b) For segments (v,I) and (u,J),
the constraints of (P) imply that z(v,I) = z(v) and z(u,J) = z(u). Hence, the mutual
contribution of two segments (u,J) and (v,) that intersect depends only on u and v, i.e.,
it is y(u, v). Thus,

ZZyuv <2 ZZ Z y(u,v)

veEV uEN|v] veV Icv (u,J)ER(I)
Since
> ywo)< o) Y ww) <a)
(u,J)ER(I) (u,J)ER(I)
we get that
Z Z y(u,v) < 2t- Z z(v)
veEV uEN|v] veV

Hence, there exists a vertex v satisfying
Z y(u,v) < 2t-z(v). (1)
uEN[v]

If we factor out z(v) from both sides of (1) we obtain the statement of the lemma. L

We now define a fractional version of the Local Ratio technique. The proof of the next
lemma is immediate.

Lemma 4.2 Let x be a feasible solution to (P). Let wy and we be a decomposition of the
weight vector w such that w = wy + wa. Let r > 0. Suppose that y is a feasible integral
solution vector to (P) satisfying: wy -y > r(wy-x) and wg -y > r(wga - x). Then,

w-y > r(w-x).
The rounding algorithm will apply a Local Ratio decomposition of the weight vector

w with respect to an optimal solution x to linear program (P). The algorithm proceeds as
follows.

1. Delete all vertices with non-positive weight. If no vertices remain, return the empty
set.

2. Let v € V be a vertex satisfying D ueN[v] z(u) < 2t. Decompose w by w = wy + wa
as follows:

] w(') if u € N[v'],
wi(u) = { 0 otherwise.

(In the decomposition, the component we may be non-positive.)

13

3. Solve the problem recursively using wg as the weight vector. Let Z' be the independent
set returned.

4. If 7' U {v'} is an independent set, return Z = Z' U {v'}. Otherwise, return Z = 7'.

Clearly, the set Z is an independent set. We now analyze the quality of the solution
produced by the algorithm.

Theorem 4.3 Let x be an optimal solution to linear program (P). Then, it holds for the
independent set I computed by the algorithm that w(Z) > % “W - X

Proof: The proof is by induction on the number of recursive calls. At the basis of the
recursion, the independent set returned is optimal (and hence a 2t-approximation), since no
vertices remain. Clearly, the first step in which vertices of non-positive weight are deleted
cannot decrease the RHS above. We now prove the inductive step. Let y and y’ be the
indicator vectors of the sets Z and 7', respectively. Assume that wa -y’ > (1/2t) - wp - x.
Since wq(v') = 0, it also holds that wg -y > (1/2t) - wg - x. From Step (4) of the algorithm
it follows that at least one vertex from N[v'] belongs to Z. Hence, wy -y > (1/2t) - wq - x.
Thus, by Lemma 4.2, it follows that

1
W.y22_t.w.x

We have thus proved that Z is a 2¢-approximate solution to the MWIS problem. L]

We now outline an alternative way of using Lemma 4.1 to obtain the same approximation
factor. Given an optimal solution x to linear program (P), a multicoloring of V' by a set X
is a mapping ¢ : V — X such that |[¢(v)| = z(v) for each vertex v, and z(v) N z(u) = 0
for each edge (u,v) € E(G). Since x is a feasible solution to (P), a repeated application of
Lemma 4.1 results in a multicoloring with values in the closed interval [0, 2¢].

To view this as a multicoloring, it may be easier to discretize the instance within any
desired precision by multiplying the x(v)’s by a sufficiently large integer L. Then the values
assigned are positive integers in the range 1,...,2¢tL. A continuous viewpoint is to assign
each vertex a collection of contiguous segments; if we use Lemma 4.1 to assign the values
one by one, we can always guarantee that a vertex v can be mapped to segments from [0, 2¢]
of combined length z(v) without overlapping any of the segments to which its neighbors are
mapped to. In fact, by always mapping a vertex to the smallest available values, we need
never use more than n disjoint segments for any vertex.

Let 0 = zp < 21 < --- < zx_1 denote the values where the multicoloring changes, and let
2, = 2t. Thus, the coloring remains unchanged in the segment [z;,2;41), 4 =0,...,k — 1.
Consider the sets S; ={v € V : z; € ¥(v)}, for i =0,...,k — 1. Since 9 is a multicoloring,
the S;’s are independent sets in G. Let Z be the set S; of maximum weight, 3, 5. w(v).

14

Theorem 4.4 w(Z) is a 2t-approzimate independent set.

Proof: Observe that the amount of color values to which vertex v is mapped is z(v), and
we can represent them by > g 5, (2; — 2ziy1) = x(v). We have that

S wew) = Y w) Y (@ - z) = Y (an1 - 2) Y wlo)

veV veV Sidv S; veS;
k—1 k-1
= Z('Zi-l-l - zl)w(Sl) S Z(zi-i-l — zi)w(I) == th(I).
i=0 1=0

5 A Bi-criteria Approximation Scheme for Union Graphs

Recall that MWIS is APX-hard already on (2, 2)-union graphs. We consider below the larger
subclass of t-union graphs in which the possible number of segment lengths is bounded by
some constant. For this subclass we develop a bi-criteria PTAS, which finds an MWIS by
allowing some delays in the schedule.

Let ¢; denote the number of distinct lengths of the i-th segment, 1 < ¢ < ¢, where
t is some constant. Recall that, in the flow shop problem, we are given a set of n jobs,
Ji,...,Jp that need to be processed on m machines, M, ..., My,; each job, J;, consists
of m operations, Oj1,...,0;m, where O;; must be processed without interruptions on the
machine M;, for p;; time units. Any machine, M;, can either process a single operation at a
time, or an unbounded number of operations; in the latter case we call M; a non-bottleneck
machine. Each job may be processed by at most one machine at any time. For a given
schedule, let C; be the completion time of J;. The objective is to minimize the mazimum
the optimal

completion time (or makespan), given by C,q; = max; Cj. Denote by Cy, ..

makespan.

An instance of our problem can be transformed to an instance of the flow shop prob-
lem, where each job has 2¢ 4+ 1 operations, and the machines Mo;11, 0 < ¢ < ¢t — 1, are
non-bottleneck machines. In our transformation, we apply some ideas from [25, 21, 26]. We
represent each t-interval, I;, as a job Jj;, where each segment is associated with an “opera-
tion” of the job. In addition, we simulate the breaks with operations of the same lengths
that need to be processed on non-bottleneck machines. Similarly, to include the release
time r; of I, we add to J; the operation O, whose length is equal to r;; the machine M;
is a non-bottleneck machine. Thus, if I; has ¢ segments, J; has 2¢ operations.

Recall that, in a union graph, each interval has a due date, d;, that is equal to its release
time plus the sum of its processing times and break times. To simulate these due dates
we define a delivery time, g;, for each job, J;. Let ¢ = —d;. We add to J; the operation

15

Oj,2t41), where pj 1) = ¢j, and My is a non-bottleneck machine. Our objective
then is to minimize the maximum delivery completion time, given by max;{C; + ¢;} =
max;{C;j — d;}. This is equivalent to minimizing the maximum lateness of any job, given
by L; = Cj — d;. Hence, our objective can be viewed as minimization of L,q, = max; L;.

Denote by T the maximum completion time of an optimal solution for the MWIS
instance. Since we look for a MWIS that can be scheduled with maximum lateness at most
€To, we slightly modify the definition of lateness. Let Jj = dj — Tp; then, for any j, Jj <0.
By setting g; = —Jj, we get that all the delivery times are positive. The maximum lateness
is now given by Ly, = max;{C; — dj + To}. Indeed, for any job J;, C; > dj, therefore
Lyax > To, and since in any optimal schedule there are no “late” jobs, the minimal lateness
is Ly, .. = To.

Our scheme uses as procedure a PTAS for finding a (1 + €)-approximation for the flow
shop makespan problem with a fixed number of machines (see, e.g., [20]). We represent
a t-interval I; by a (2t + 1)-vector (pj1,...,pj2t4+1), where p;; is the release time, p;o;
(pj2i+1), is the length of the i-th segment (break), 1 < ¢ < ¢, and pj241 (= g;) is the
delivery time of the corresponding job, J;.

We summarize below the steps of our scheme, which gets as parameters the value of T
and some € > 0.

1. We scale the parameter values for Jj; that is, we divide the processing and release
times by T, and round each release time down and each break time up to the nearest
multiple of e.

2. We guess O, the number of intervals scheduled by OPT};

3. We guess the subset Sp of O intervals of maximal weight, scheduled by OPT'. This
is done by guessing the set of vectors representing S, among which we choose the
subset of intervals of maximum weight.

4. Using a PTAS for minimizing the makespan in the flow shop instance of Sp, we find
a schedule of Sy for which Ly, < (1 + €))L}

— mazx-*

Note that due to the above rounding, we need to add € to the release times; also, each
break time may delay the optimal completion time by €, therefore, by taking € = €/2t
we guarantee that the delay of each interval is at most (1 + €) times Tp. Finally, we set
L; = L;j — To; thus, the maximum lateness of any job in our schedule is equal to at most
eTo = €Cypn-

For the complexity of the scheme, note that Steps 1. and 2. take linear time, and
since the possible number of vectors (pj1,...pjoi+1) is (2t/€)! [t ¢;, we can guess So in

t
O(n(tt [Tici e/ 6t) steps. This is multiplied by the complexity of the PTAS for flow shop.

16

Theorem 5.1 Let t > 1 be some fized constant. Given a t-union graph with constant

number of distinct segment lengths, let W be the weight of an optimal MWIS, whose latest

completion time is To. Then, for any € > 0, there is o PTAS that schedules an independent

set of weight at least W, such that any interval is late by at most €Tp.

Acknowledgments. We thank Yossi Azar for many helpful comments on this paper.

References

[1]

2]

J. Akiyama, G. Exoo, F. Harary. “Covering and packing in graphs III, cyclic and acyclic
invariants”, Math. Slovaca Vol. 30 (1980), 405-417.

V. Bafna, B. Narayanan, and R. Ravi. “Nonoverlapping Local Alignments (Weighted
Independent Sets of Axis Parallel Rectangles)”. In Discrete Applied Mathematics,
vol. 71, Special issue on Computational Molecular Biology, 1996, pp. 41-53.

V. Bafna, P. Berman, and T. Fujito. “A 2-approximation Algorithm for the Undirected
Feedback Vertex Set Problem,” SIAM J. on Disc. Mathematics, vol. 12, pp. 289-297,
1999.

R. Bar-Yehuda and S. Even. “A Local Ratio Theorem for Approximating the Weighted
Vertex Cover Problem,” Annals of Discrete Mathematics, vol. 25, pp. 27-46, 1985.

A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. “A Unified Approach
to Approximating Resource Allocation and Scheduling”. Journal of the ACM, 48:1069-
1090, 2001.

P. Basu, A. Narayanan, R. Krishnan, and T. D. C. Little. “An Implementation of
Dynamic Service Aggregation for Interactive Video Delivery”. In Proc. of SPIE - Mul-
timedia Computing and Networking, San Jose, CA, January 1998.

P. Berman. “A d/2 Approximation for Maximum Weight Independent Set in d-Claw
Free Graphs”. Nordic Journal of Computing, vol. 7, 2000, p. 178.

P. Berman, and T. Fujito. “Approximating Independent Sets in Degree 3 Graphs”.
In Proc. of the 4th Workshop on Algorithms and Data Structures (WADS’95) Lecture
Notes in Computer Science, 955, Springer-Verlag, 1995, pp. 449-460.

P. Berman, B. DasGupta, S. Muthukrishnan. “Simple approximation algorithm for
nonoverlapping local alignments”. In Proc. of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithms 2002, pp. 677-678.

17

[10]

[19]

[20]

[21]

22]

[23]

P. Brucker, T. Hilbig, and J. Hurink. “A Branch and Bound Algorithm for a Single-
Machine Scheduling problem with Positive and Negative Time-Lags”. In Discrete Ap-
plied Mathematics, vol. 94, 1999, pp. 77-99.

A. Dan, P. Shahabuddin, and D. Sitaram. “Channel Allocation Under Batching and
VCR Control in Movie-On-Demand Servers”, IBM Research Report RC19588, May
1994.

M. Dell‘Amico. “Shop Problems with Two machines and Time Lags”. In Operations
Research, vol. 44, no. 5, 1996, pp. 777-787.

“Distance Learning on the Net”. http://www.hoyle.com/distance.html.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, 1979.

F. Gavril. “Algorithms for Minimum Coloring, Maximum Clique, Minimum Coloring by
Cliques, and Maximum Independent Set of a Chordal Graph”. In SIAM J. Computing,
vol. 1, No. 2, 1972, pp. 180-187.

M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

J. R. Griggs, and D. B. West. “Extremal Values of the Interval Number of a Graph”.
In STAM J. Algebraic and Discrete Methods, 1980, vol. 1, No. 1, pp. 1-7.

A. Gyarfas. “On the chromatic number of multiple interval graphs and overlap graphs”.
In Discrete Math. 55 (1985), 161-166.

A. Gyéarfas and D. B. West. “Multitrack Interval Graphs”. Congr. Numer. 109 (1995),
109-116.

L. A. Hall. “Approximability of Flow Shop Scheduling”. In Mathematical Programming,
1998, vol. 82, pp. 175-190.

L. A. Hall, and D. B. Shmoys. “Approximation Algorithms for Constrained Scheduling
Problems”. In Proc. of the IEEE 30th Annual Symposium on Foundations of Computer
Science, 1989, pp. 134-139.

M. M. Halldérsson, S. Rajagopalan, H. Shachnai, and A. Tomkins. “Scheduling Mul-
tiple Resources”. Manuscript, 1999.

M. M. Halldérsson, K. Yoshihara. “Approximation Algorithms for Maximum Indepen-
dent Set Problem on Cubic Graphs”, In ISAAC ’95, LNCS 1004, 152-161.

18

[24]

C. A. J. Hurkens, and A. Schrijver. “On the size of systems of sets every t of which have
an SDR, with an application to the worst-case ratio of heuristics for packing problems”.
SIAM J. Discrete Math., vol 2, 1989, pp. 68-72.

K. Jansen, R. Solis-Oba, and M. Sviridenko. “Makespan Minimization in Job Shops:
A Polynomial Time Approximation Scheme”. In Proc. of the 31th Annual ACM Sym-
posium on Theory of Computing, 1999, pp. 394-399.

D. Karger, C. Stein, and J. Wein. “Scheduling Algorithms”. Algorithms and Theory of
Computation Handbook, CRC Press, 1997.

A. V. Kostochka and D. B. West. “Every outerplanar graph is the union of two interval
graphs”. Congr. Numer. 139 (1999), 5-8.

N. Kumar and N. Deo. “Multidimensional interval graphs”. Congr. Numer. 102 (1994),
45-56.

L. Lewin-Eytan, J. Naor and A. Orda, “Routing and admission control in networks with
advance reservations”, In Proceedings of the 5th International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization (APPROX), 2002, pp. 215-228.

M. Y. Y. Leung, C. S. Lui, L. Golubchik, “Use of Analytical Performance Models
for System Sizing and Resource Allocation in Interactive Video-on-Demand Systems
Employing Data Sharing Techniques”. In IEEE Trans. Knowl. Data Eng, 14(3), 2002,
pp. 615-637.

L. Lovasz, “On the Shannon capacity of a graph”, In IEEE Transactions on Informa-
tion Theory, vol. 25, 1979, pp. 1-7.

C. Martin, P. S. Narayanan, B. Ozden, R. Rastogi, and A. Silberschatz. “The Fellini
Multimedia Storage Server”. In Multimedia Information Storage and Management,
Kluwer Academic Publishers, 1996.

A.J. Orman, and C.N. Potts. “On the Complexity of Coupled-Task Scheduling”. In
Discrete Applied Mathematics, vol. 72, 1997, pp. 141-154.

C. H. Papadimitriou, and M. Yannakakis. “Optimization, approximation, and com-
plexity classes”. In J. Computer and System Sciences, 1991, vol. 43, pp. 425-440.

A. H. G. Rinnooy Kan. Machine Scheduling Problems. Martinus Nijhoff, The Hague,
1976.

D. Rotem, and S. Seshadri. “Analysis of Disk Arm Movement for Retrieval of Large
Objects”. In Proc. of Principles of Database Systems, 1992.

19

[37]

[38]

[39]

[41]

[42]

[43]

[44]

E. Hazan, S. Safra, and O. Schwartz. “On the Hardness of Approximating k-
Dimensional Matching”. Electronic Colloquium on Computational Complexity, TR03-
020, 2003.

E. R. Scheinerman and D. B. West. “The interval number of a planar graph — three
intervals suffice”. J. Combin. Theory (B) 35 (1983), 224-239.

J. P. Schmidt, A. Siegel, and A. Srinivasan. “Chernoff-Hoeffding Bounds for Appli-
cations with Limited Independence”. In SIAM J. Discrete Math., vol. 6, 1995, pp.
223-250.

R. D. Shapiro. “Scheduling Coupled Tasks”. In Naval Research Logistics Quarterly,
vol. 27, 1980, 489-498.

D. B. Shmoys, C. Stein, and J. Wein. “Improved Approximation Algorithms for Shop
Scheduling Problems”. In STAM J. Computing, vol. 23, 1994, pp. 617-632.

W. T. Trotter, Jr.and F. Harary. “On Double and Multiple Interval Graphs”. In Journal
of Graph Theory, vol. 3, 1979, pp. 205-211.

D. B. West, and D.B. Shmoys. “Recognizing Graphs with Fixed Interval Number is
NP-Complete”. In Discrete Applied Mathematics, vol. 8, 1984, pp. 295-305.

P.S. Yu, J. L. Wolf, and H. Shachnai. “Design and Analysis of a Look_ahead Scheduling
Scheme to Support Pause-Resume Video-on-Demand Applications”. In ACM Multime-
dia Systems Journal, vol. 3, 1995, pp. 137-149.

20

