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1 Introdu
tion1.1 Problem Statement and MotivationWe 
onsider the problem of s
heduling jobs that are given as groups of non-interse
tingsegments on the real line. Ea
h job Jj is asso
iated with a t-interval, Ij , whi
h 
onsists ofup to t disjoint segments, for some t � 1, and a positive weight, wj ; two jobs are in 
on
i
tif any of their segments interse
t. The obje
tive is to s
hedule on a single ma
hine a subsetof non-
on
i
ting jobs whose total weight is maximum.An instan
e of our problem 
an be modeled as the interse
tion graph of t-intervals,known as a t-interval graph. Ea
h vertex in the graph 
orresponds to an interval thathas been \split" into t parts, or segments, su
h that two verti
es u and v interse
t if andonly if some segment in the interval 
orresponding to u interse
ts with some segment inthe interval 
orresponding to v (an example is given in Figure 1). Note that 1-intervalgraphs are pre
isely interval graphs. For a given instan
e of our problem, we seek to �nd amaximum weight independent set (MWIS) in the resulting weighted t-interval graph, thatis, a subset of non-adja
ent verti
es U � V , su
h that the weight of U is maximized.We des
ribe below several pra
ti
al s
enarios involving t-interval graphs.Transmission of Continuous-media Data. Traditional multimedia servers transmitdata to the 
lients by broad
asting video programs at pre-spe
i�ed times. Modern systemsallow to repla
e broad
asts with the allo
ation of video data streams to individual 
lientsupon request, for some time interval (see, e.g., [32, 6℄). In this operation mode, a 
lient maywish to take a break, and resume viewing the program at some later time. This s
enario isnatural, e.g., for video programs that are used in remote edu
ation [13℄.Suppose that a 
lient starts viewing a program at time t0. At time t1 the 
lient takesa break, and resumes viewing the program at t2, till the end of the program (at t3). Thiss
enario 
an be des
ribed by a split interval, I, that 
onsists of two segments: I1 = (t0; t1)and I2 = (t2; t3).The s
heduler may get many requests formed as split intervals; ea
h request is asso
iatedwith a pro�t whi
h is gained by the system only if all of the segments 
orresponding to therequest are s
heduled. The goal is to s
hedule a subset of non-overlapping requests thatmaximizes the total pro�t, i.e., �nd a MWIS in the interse
tion graph of the split intervals.Most of the previous work in this area des
ribe analyti
 models (e.g., [30℄) or experimen-tal studies, in whi
h VCR-like operations 
an be used by the 
lients (see [6, 11, 32, 44℄);however, these studies fo
us on the eÆ
ient use of system resour
es while supporting su
hoperations, rather than on the s
heduling problem.
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tion)graph (b), and interval system (
).Linear Resour
e Allo
ation. Another appli
ation is linear resour
e allo
ation [22℄. Re-quests for a linear resour
e 
an be modeled as intervals on a line; two requests for a resour
e
an be s
heduled together unless their intervals overlap. A disk drive is a linear resour
ewhen requests are for 
ontiguous blo
ks [36℄. A linear array network is a linear resour
e,sin
e a request for bandwidth between pro
essors i and j requires that bandwidth be allo-
ated on all intervening edges. Consider a 
omputer system that 
onsists of a linear arraynetwork and a large disk. A s
heduler must de
ide when to s
hedule requests, where ea
hrequest may 
omprise distin
t requests to these two linear resour
es, e.g., \a 
ertain amountof bandwidth between pro
essors 4 and 7, and a lo
k on blo
ks 1000-1200 of the disk". Tworequests are in 
on
i
t if they overlap on the disk or in their bandwidth requirements. Thus,when the goal is to maximize the amount of requests satis�ed by the system, we get aninstan
e of the MWIS problem on a sub
lass of 2-interval graphs, known as 2-union graphs(see in Se
tion 2.1.)Genomi
 Sequen
e Similarity. Bafna et al. [2℄ 
onsider determining the similaritybetween a pair of geneti
 sequen
es under large-s
ale mutational operations, in
luding re-versal and transposition. There are non-negative weights atta
hed to pairs of (
ontiguous)subsequen
es that measure their similarity, e.g. derived from lo
al alignment. This is rep-resented as an interse
tion graph of two-dimensional axis-parallel boxes, where a pair ofboxes is independent (or non-adja
ent in the graph) if their proje
tions on both axes aredisjoint. The maximum global non-overlapping alignment of the sequen
es then 
orrespondsto a maximum weight independent set in the interse
tion graph. More generally, multiplealignment of t sequen
es 
orresponds to the MWIS problem in t-union graphs. Previously,the problem was only 
onsidered in the 
ase where the proje
tions of input boxes did not
ontain one another, i.e., the 
ase of proper t-union graphs. While making the problemeasier, this restri
tion is not intrinsi
 to the biologi
al problem.3



Computational Geometry. The problem of �nding an independent set among a set ofmulti-dimensional axis-parallel boxes is of independent interest in 
omputational geometry.It 
orresponds to the MWIS problem in t-union graphs, a sub
lass of t-interval graphs.1.2 Our ResultsWe provide a 
omprehensive study of the MWIS problem in t-interval graphs. In Se
tion 2,we show that the problem is APX-hard even on highly-restri
ted instan
es, namely, on (2; 2)-union graphs.1 In Se
tion 3 we dis
uss some stru
tural properties of t-interval graphs. Inparti
ular, we derive a bound on the indu
tiveness of a t-interval graph. As a 
orollary, weextend the best bound known on the 
hromati
 number of t-interval graphs of Gy�arf�as [18℄.We show this bound to be asymptoti
ally optimal.In Se
tion 3.2, we study the MWIS problem on 2-interval graphs. We show that a simplegreedy algorithm a
hieves the ratio O(minflogR; logng), where R is the ratio between thelongest and shortest segment in the instan
e.Our main result (in Se
tion 4) is a 2t-approximation algorithm for MWIS in any t-interval graph, for t � 2, whi
h is based on a novel fra
tional version of the Lo
al Ratiote
hnique. (The Lo
al Ratio te
hnique was �rst developed in [4℄ and later extended by [3,5℄.) We use the fra
tional Lo
al Ratio te
hnique to round a fra
tional solution obtained froma linear programming relaxation of our problem. Previously, the problem was 
onsideredonly for proper t-union graphs, a restri
ted sub
lass of t-interval graphs, and the bestapproximation fa
tor known was (2t + 1 + �)=2, for any � > 0 [7℄. We expe
t that ournon-standard use of the Lo
al Ratio te
hnique will �nd more appli
ations. Indeed, re
ently,this te
hnique was used for obtaining improved bounds for MWIS in the interse
tion graphof axis parallel re
tangles in the plane [29℄.As we shall see, the MWIS in t-interval graphs properly in
ludes the k-dimensionalmat
hing problem. For this problem the best known approximation fa
tor is k=2 + �, forany � > 0 [24℄. Hazan, Safra, and S
hwartz [37℄ have re
ently shown that it is hard toapproximate the k-dimensional mat
hing problem within an O(k= log k) ratio unless P =NP. Thus, our results are 
lose to best possible.For the 
lass of t-union graphs, we develop (in Se
tion 5) a bi-
riteria PTAS. Given� > 0, our s
heme �nds a subset of intervals of optimal weight and a s
hedule where ea
hinterval is delayed by at most �TO, assuming that there exists an optimal solution whoselatest 
ompletion time is TO.1See the de�nition in Se
tion 2.1.
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1.3 Related WorkWe mention below several works that are related to ours.Split interval graphs. Many NP-hard problems, in
luding MWIS [15, 16℄, 
an besolved eÆ
iently in interval graphs. Split interval graphs have a long history in graphtheory [42, 17, 38, 43℄, and more re
ently, union graphs have been studied under the nameof multitra
k interval graphs [28, 19, 27℄. We mention some of the main results. Forany �xed t � 2, determining whether a given graph is a t-interval (t-union) graph is NP-
omplete [43℄ ([19℄, respe
tively). 2-union graphs 
ontain trees [42, 28℄ and more generallyall outerplanar graphs [27℄, while 3-interval graphs 
ontain the 
lass of planar graphs [38℄.Graphs of maximum degree � are d12(� + 1)e-interval graphs [17℄. The 
omplete bipartitegraph, Km;n, is a t-interval and t-union graph for t = d(mn+ 1)=(m + n)e [42, 19℄.Union graphs, whi
h 
onstitute a sub-family of split interval graphs, were also 
onsideredin several papers. As mentioned earlier, Bafna et al. [2℄ 
onsidered the problem of �ndinga weighted independent set in t-union graphs in the 
ontext of an appli
ation 
oming from
omputational biology. In fa
t, the union graphs 
onsidered in [2℄ are proper, i.e., there is no
ontainment between segments. The paper [2℄ shows that the problem is NP-hard. For theweighted independent set problem in proper t-union graphs, the paper gives a (2t�1+1=2t)-approximation algorithm. This is obtained by mapping the problem to �nding weightedindependent set in (2t+1)-
law free graphs, noting that t-union graphs are (2t+1)-
law free.The best fa
tor known is (2t+1)=t due to Berman [7℄. Re
ently, Berman et al. showed in [9℄that a simple O(n log n) algorithm (based on the lo
al ratio te
hnique) yields a fa
tor of 3for proper 2-union graphs. The algorithm 
an be extended to yield a (2t�1)-approximationfor t-union graphs.Coupled-tasks and 
ow shop s
heduling. The problem of s
heduling 2-intervals(known as 
oupled-task s
heduling) was 
onsidered in the area of ma
hine s
heduling, withthe obje
tive of minimizing the overall 
ompletion time, or makespan (see e.g. [33, 40℄).Relaxed versions of the problem, that require only a lower bound on the time that elapsesbetween the s
hedules of the two tasks of ea
h job (also 
alled time-leg problems) werestudied, e.g., in [35, 12, 10℄.An instan
e of our problem 
an be viewed as an instan
e of the 
ow shop problem, inwhi
h the segments and break times are represented by tasks that need to be pro
essed on aset ofm = 2t+1 ma
hines. (The pre
ise transformation is given in Se
tion 5.) In general, the
ow shop problem, where the obje
tive is to minimize the makespan, is NP-
omplete evenon three ma
hines ([14℄). The best result known is O(log2(m�)= log log(m�))-approximationalgorithm, where � is the maximum number of operations per job, and m is the number ofma
hines ([39, 41℄). Hall [20℄ gave a PTAS for this problem in the 
ase where m is �xed(but arbitrary). 5



2 Preliminaries2.1 De�nitions and NotationLet I be a 
olle
tion of segments (or intervals) on the real line, partitioned into disjointgroups 
ontaining at most t segments, where t � 1. A t-interval graph G = (V;E) is theinterse
tion graph of the groups of segments. Ea
h vertex v 2 V 
orresponds to a group ofsegments, and (u; v) 2 E if one of the segments belonging to the group of u interse
ts somesegment belonging to the group of v. We 
all a vertex in a t-interval graph a split interval.Given a t-interval graph, we assume that ea
h vertex 
an be mapped to a set of segments,i.e., we 
an say that a segment I belongs to a vertex v and denote it by (v; I). A t-intervalgraph is proper if no segment properly 
ontains another segment.In the subfamily of t-union graphs, the segments asso
iated with ea
h vertex 
an belabeled in su
h a way that for any two verti
es u and v, the ith segment of u and the `thsegment of v never interse
t for 1 � i; ` � t, and i 6= `. Union graphs 
orrespond also to
ertain geometri
 interse
tion graphs. The t segments are viewed as intervals on orthogonalaxes, 
orresponding to a t-dimensional box; two boxes interse
t if their proje
tions on anyof the t axes do. We further de�ne sub
lasses of union graphs, where 
oordinates are allintegral. In an (a; b)-union graph, all x-segments are of length a and y-segments of lengthb. Given a graph G = (V;E), we denote by N(v) the set of neighbors of v 2 V , and byN [v℄ the 
losed neighborhood of v, fvg[N(v). A (k+1)-
law is a subgraph 
onsisting of a
enter vertex adja
ent to k+1 mutually non-adja
ent verti
es. A graph is 
alled (k+1)-
lawfree if it does not 
ontain an m-
law, where m � k + 1.Finally, we de�ne our performan
e measures. Denote by OPT an optimal algorithm.The approximation fa
tor of an algorithm A is r if for every �nite input instan
e I,A(I)=OPT (I) � 1=r, where A(I) and OPT (I) are the values of A and OPT on I. A poly-nomial time approximation s
heme (PTAS) is an algorithm A whi
h takes as input both theinstan
e I and an error bound �, has the performan
e guarantee RA(I; �) � (1+�), and runsin time polynomial in jIj. A (�; �) bi-
riteria PTAS is a PTAS whi
h is a �-approximationin one optimization 
riterion, and a (1 + �)-approximation in the other 
riterion.2.2 Hardness ResultsThe independent set problem in interval graphs is easy to solve exa
tly, sin
e interval graphsalways 
ontain a simpli
ial vertex, i.e., a vertex whose neighborhood is a 
lique. In fa
t,most approximation algorithms for independent sets on geometri
 interse
tion graphs arebased on a related relaxed property: there always exists a vertex whose neighborhood doesnot 
ontain a large independent set. We �rst show that for general t-interval graphs thisproperty does not hold. 6



I11 I12 ... I1kI21I31...Ik+11
I21 I22 ... I2kI12I32...Ik+12

... Ik+11 Ik+12 ... Ik+1k.........
I11I22...IkkFigure 2: An example of a 2-interval graph, in whi
h every vertex has k independentneighbors.Observation 2.1 For any n � 2, there exists a 2-interval graph G on n verti
es, in whi
hevery vertex has 
(pn) independent neighbors.Proof: For a given n � 2, let k = b(p4n+ 1�1)=2
. We show how to 
onstru
t a 2-intervalgraph, in whi
h every vertex has k independent neighbors. We 
onstru
t the graph from(k+1) subsets of intervals; ea
h subset 
onsists of k intervals, and ea
h interval is 
omposedof two segments. We denote the jth interval in subset ` by Ij̀ .The graph is 
onstru
ted as follows. Pro
eeding from left to right, we pla
e under theintervals of subset `, I1̀; : : : ; Ik̀ the `th intervals of subsets 1; : : : ; k + 1, i.e., I 1̀; : : : ; Ik+1` ,ex
luding I`;`. This is repeated for ` = 1; : : : ; k. Finally, under the intervals of the (k+1)-thsubset, we pla
e the intervals I`;`, 1 � ` � k (see Figure 2).Thus, we get that any interval Ij̀ with ` 6= j, interse
ts k non-interse
ting intervals ofsubset j, and I`;` interse
ts k non-interse
ting intervals of subset k + 1.Note that sin
e k(k + 1) � n, we may have some remaining intervals, whi
h are not
ontained in any subset. We 
an pla
e ea
h su
h interval I under any of the subsets `,1 � ` � k + 1, providing that interval k independent neighbors.We note that we 
an modify the above 
onstru
tion to hold for 2-union graphs. We nowgive a hardness result for a highly restri
ted 
lass of proper 2-union graphs.Theorem 2.2 The MWIS problem is APX-hard on (2; 2)-union graphs.We �rst observe that (2; 2)-union graphs in
lude the 
lass of graphs of maximum degree3. The theorem follows from the fa
t that the (unweighted) MIS problem is APX-hard ondegree-3 graphs (see [8, 23℄).The linear arbori
ity la(G) of a graph G is the minimum number of 
lasses in a partitionof E(G) su
h that ea
h 
lass indu
es a 
olle
tion of paths (or a linear forest). Paths 
an berepresented as spe
ial interval graphs, where ea
h interval represents a length-2 half-
losed7



interval between integral endpoints. Indeed, any path fv0; v1; v2; : : :g 
an be represented bythe intervals [0; 2); [1; 3); [2; 4), and so on. Thus, a union of a pair of linear forests 
an berepresented as a (2; 2)-union graph. Akiyama, Exoo and Harary [1℄ showed that la(G) = 2for graphs of maximum degree three. The following lemma, and the above theorem, thenhold.Lemma 2.3 (2; 2)-union graphs in
lude the 
lass of degree-3 graphs.Segments of unit size, whose start points are integral, are 
alled unit segments. Thek-dimensional mat
hing problem is de�ned as follows. The input is k-uniform k-partitehypergraph H = (V1; : : : ; Vk; E). The output is a mat
hing of maximum 
ardinality.For some k > 1, let S = f1; 2; : : : ; ng, and let C be a 
olle
tion of subsets of S, whereea
h subset is of size at most k. The k-set pa
king problem is that of �nding a maximum
ardinality sub-
olle
tion C 0 � C, su
h that the interse
tion of any two sets in C 0 is empty.In the weighted version, ea
h subset has a weight, and we seek a sub-
olle
tion C 0 of max-imum weight. Note that the k-set pa
king problem properly 
ontains the k-dimensionalmat
hing problem as a spe
ial 
ase.Lemma 2.4 The k-set pa
king problem is equivalent to MWIS in the spe
ial 
lass of k-interval graphs of unit segments.Proof: There is a bije
tive mapping between unit segments and the set S, where [i; i + 1)maps to i, for all values of i. Thus, there is a bije
tive mapping between sets of up to kelements from S and sets of up to k unit segments.Similarly, the k-dimensional mat
hing problem is equivalent to MWIS in the spe
ial
lass of k-union graphs of unit segments. The former problem is NP-hard to approximatewithin fa
tor O(k= log k) [37℄, while the best known ratio is k=2+ �, for any � > 0 [24℄ . Wenote that the 2-set pa
king problem is equivalent to the (polynomially solvable) edge 
overproblem, while 3-dimensional mat
hing is APX-hard [34℄.Corollary 2.5 MWIS in (1; 1)-interval graphs is polynomial solvable. MWIS in (1; 1; 1)-union graphs is APX-hard.The 
orresponden
e between (1; 1)-union graphs to line graphs of bipartite graphs, andthe resulting polynomial solvability of MWIS, was shown by Halld�orsson et al. [22℄.
8



3 Greedy algorithms3.1 Coloring t-Interval GraphsFor a t-interval graph G, let G� denote the graph formed by the interse
tion of the segmentsof the intervals (see in Figure 1(
)). The 
lique number, !(G�), denotes the maximumnumber of segments 
rossing a point on the real line.Theorem 3.1 For any t-interval graph G, there is a vertex v in G su
h thatd(v) � 2t(!(G�)� 1):Proof: Sin
e ea
h vertex in G 
orresponds to up to t verti
es of G�, jV (G�)j � t � jV (G)j,and sin
e ea
h edge in G 
orresponds to one or more edges in G�, jE(G)j � jE(G�)j. Sin
eG� is an interval graph, there is a simpli
ial ordering of the graph so that ea
h vertex vi hasat most !(G�)� 1 neighbors among the verti
es vi+1; : : :. Thus, the number of edges in G�is at most (!(G�) � 1)jV (G�)j; in fa
t, it must be stri
tly less, sin
e the last few verti
eshave no later neighbors. It follows that the average degree of G is bounded byd(G) = 2jE(G)jjV (G)j � 2t jE(G�)jjV (G�)j < 2t(!(G�)� 1):Hen
e, the minimum degree of G is at most 2t(!(G�)� 1)� 1.This leads to a simple 
oloring algorithm: �nd a vertex v satisfying the lemma, 
olorthe remaining graph Gnv, and �nally 
olor v with the smallest 
olor not used by previously
olored neighbors. This results in a 2t(!(G�)� 1)-
oloring.The above gives a 2t-approximation for 
oloring t-interval graphs via a greedy algorithm.Gy�arf�as [18℄ showed that the 
hromati
 number of a t-interval graph G is at most 2t(!(G)�1), where !(G) is the 
lique number of the graph.Corollary 3.2 A greedy algorithm 
olors G using 2t(!(G�)� 1) 
olors.Observe that this bound is obtained without knowledge of the underlying interval repre-sentation of G�; this is important sin
e dedu
ing the representation is known to be NP-hard[43℄. We show that this is about the best bound on �(G) one 
an obtain in terms of !(G�),within a 
onstant fa
tor.Lemma 3.3 For in�nitely many t, there is a proper t-interval graph G su
h that !(G) =(t� 1)!(G�). 9



Proof: Let p be a prime number and let t = p+1. We 
onstru
t a t-interval graph G withn = p2 intervals. The graph is based on a 
olle
tion of nt segments, that are organized intont=p = p(p+1) groups of p identi
al segments. We refer to ea
h group as a segment 
lique,and presume that it refers to a unique unit interval on the real line. We spe
ify the graphby spe
ifying the intervals 
ontained in ea
h segment 
lique.Let Ci;j, 0 � i < p, j 2 f0; : : : ; p� 1;1g be the 
olle
tion of segment 
liques. Let Ix;y,0 � x; y < p be the set of intervals. De�ne, for i; j = 0; 1; : : : ; p� 1,Ci;j = fIx; ix+j mod p : 0 � x < pg;and Ci;1 = fIi;y : 0 � y < pg. Observe that for ea
h i, there is exa
tly one j < 1 su
hthat Ci;j 
ontains Ix;y (namely, where j = y � ix mod p). Hen
e, in addition to Cx;1, Ix;yappears in exa
tly p segment 
liques. Thus, the interse
tion graph is a t-interval graph.Consider arbitrary distin
t intervals Ix;y and Ix0;y0 , where x0 � x. We show that they are
ontained in the same 
lique and thus the 
orresponding nodes in the graph are adja
ent.The lemma then follows. If x = x0, then both intervals are 
ontained in Cx;1. Otherwise,let x0 = x0 � x and y0 = y0 � y mod p. Let i be the solution to the linear modular equationy0 � i � x0(modp), whi
h exists sin
e p is prime and x0 is non-zero. Let j = y � ix mod p.Then, Ci;j 
ontains Ix;y sin
e y � ix+ j(modp). Also, it 
ontains Ix0;y0 , sin
e y0 = y+ y0 �(ix+ j) + (ix0) � ix0 + j(modp).3.2 Greedy Independent Set AlgorithmsIn this se
tion, we study a greedy algorithm for the spe
ial 
ase where t = 2, in order tomotivate the use of more 
ompli
ated te
hniques in later se
tions.Re
all from Observation 2.1 that, in 2-interval graphs, the neighborhood of every vertexmay in
lude many independent verti
es. Thus, purely greedy methods are bound to fail.Consider, for instan
e, the optimal greedy algorithm for independent sets in interval graphsthat iteratively adds the interval with the leftmost right endpoint. An analogous method for2-interval graph 
ould be to iteratively sele
t the interval with the leftmost right endpointof the �rst segment, among all intervals that do not interse
t previously 
hosen intervals.This algorithm, whi
h we 
all Sort-and-Sele
t, 
annot be expe
ted to perform well on all2-interval graphs. However, it performs well under 
ertain 
ir
umstan
es, whi
h allows usto partition the instan
e into well solvable sub
ases.Theorem 3.4 Let G be a 2-interval graph where� the �rst segment is no shorter than the se
ond, and� the ratio between the shortest and longest se
ond segment is at most 2.Then, the approximation fa
tor of Sort-and-Sele
t is 4.10



Proof: Let I be the interval 
hosen �rst by Sort-and-Sele
t. We 
laim that I interse
ts atmost 4 independent intervals. Namely, the se
ond segment of I is at most twi
e the lengthof the shortest segment in the graph; as a result, it interse
ts at most three independentsegments/verti
es. Also, sin
e the �rst segment is furthest to the left of all segments in thegraph, it does not interse
t two independent verti
es. Thus, among the intervals eliminatedby the addition of I to the solution, the optimal solution 
an 
ontain at most 4. Byindu
tion, the algorithm then a
hieves an approximation fa
tor of 4.Using the Lo
al-Ratio te
hnique, whi
h is dis
ussed in depth in the next se
tion, one
an obtain the same fa
tor for the weighted 
ase. Also, by a similar argument, one 
anargue a fa
tor of 3 for the 
ase of proper 2-interval graphs.Given a general 2-interval graph, we �rst divide the intervals into those where the �rstsegment is shorter than the se
ond segment and those where the �rst segment is at leastas long as the se
ond. This gives us two instan
es, whi
h 
an be viewed as symmetri
 byreversing the dire
tion of the real line. Thus, by in
reasing the approximation fa
tor by afa
tor of 2, we 
an assume that in our instan
e the �rst segments are no shorter than these
ond segments.We 
an partition the instan
e into logR sub-instan
es, or bu
kets, where R is the ratiobetween the longest to shortest (S) se
ond segment. Then, bu
ket Gi 
onsists of intervalswith se
ond segments in the range [2i�1S; 2iS℄, for i = 1; 2; : : : ; dlogRe. Ea
h bu
ket satis�esthe 
onditions of Theorem 3.4; thus, the largest of the independent sets found in ea
h bu
ketby Sort-and-Sele
t, is a 8 logR approximation.Note that we 
an represent the n se
ond segments in the input by 2n endpoints on theline, and de�ne the length of ea
h segment as the number of endpoints that lie between itsleft and right endpoints plus one. Then, the maximal possible length of a segment is 2n�1,and the number of bu
kets is B = minflogR; log(2n� 1)g. Hen
e, we obtain the followingresult.Theorem 3.5 There is a greedy partitioning algorithm that approximates the maximumindependent set in 2-interval graphs within a fa
tor of O(minflogR; log 2ng).4 A 2t-approximation AlgorithmIn this se
tion we des
ribe a 2t-approximation algorithm for the maximum weight indepen-dent set problem in a t-interval graph G = (V;E). The algorithm is based on roundinga fra
tional solution derived from a linear programming relaxation of the problem. Thestandard linear programming relaxation of the maximum weight independent set problemis the following. For ea
h v 2 V , let x(v) be the linear relaxation of the indi
ator variable11



for v, i.e., whether v belongs to the independent set. Let w;x 2 IRjV j be a weight ve
torand a relaxed indi
ator ve
tor, respe
tively.maximize w � x subje
t to :for ea
h 
lique C 2 G : Xv2C x(v) � 1A feasible solution for the above linear program, whose value is an upper bound on themaximum weight independent set problem in the graph, 
an be obtained from the Lov�asz#-fun
tion [31℄. However, as we shall see, it is not ne
essary to optimize over all 
liques inthe 
ase of t-interval graphs. We say that a 
lique C in the graph is an interval 
lique iffor every vertex v 2 C, there is a segment (v; I) su
h that the interse
tion of ((v; I)jv 2 C)is non-empty. We now further relax the maximum weight independent set problem and
onsider only interval 
liques. For ea
h vertex v 2 V and segment I 2 v, let x(v; I) denotesthe value of segment I. (P) maximize w � x subje
t to :for ea
h interval 
lique C: X(v;I)2C x(v; I) � 1for ea
h v 2 V and I 2 v: x(v; I)� x(v) � 0for ea
h v 2 V and I 2 v: x(v); x(v; I) � 0Noti
e that the number of interval 
liques in a t-interval graph is linear in the number ofsegments, and therefore an optimal solution to (P) 
an be 
omputed in polynomial time.The heart of our rounding algorithm is the following lemma. It 
an be viewed as afra
tional analog of Theorem 3.1.Lemma 4.1 Let x be a feasible solution to (P). Then, there exists a vertex v 2 V satisfying:Xu2N [v℄x(u) � 2tProof: For two adja
ent verti
es u and v, de�ne y(u; v) = x(v) � x(u). De�ne y(u; u) =x(u)2. For a segment I, let R(I) be the interval 
lique de�ned by the right endpoint of I(I 2 R(I)). We prove the 
laim using a weighted averaging argument, where the weightsare the values y(u; v) for all pairs of adja
ent verti
es, u and v.Consider the sum Pv2V Pu2N [v℄ y(u; v): An upper bound on this sum 
an be obtainedas follows. For ea
h v 2 V , 
onsider all segments I 2 v, and for ea
h (v; I), add up y(u; v)for all (u; J) that interse
t with (v; I) (in
luding (v; I)). In fa
t, it suÆ
es to add up y(u; v)12



only for segments (u; J) su
h that (u; J) 2 R(I), and then multiply the total sum by 2.This suÆ
es sin
e: (a) If, for segments (v; I) and (u; J), the right endpoint of I pre
edesthe right endpoint of J , then (v; I) \sees" (v; J) and vi
e-versa. Sin
e y(u; v) = y(v; u),ea
h of them 
ontributes the same value to the other. (b) For segments (v; I) and (u; J),the 
onstraints of (P) imply that x(v; I) = x(v) and x(u; J) = x(u). Hen
e, the mutual
ontribution of two segments (u; J) and (v; I) that interse
t depends only on u and v, i.e.,it is y(u; v). Thus, Xv2V Xu2N [v℄ y(u; v) � 2 �Xv2V XI2v X(u;J)2R(I) y(u; v)Sin
e X(u;J)2R(I) y(u; v) � x(v) � X(u;J)2R(I) x(u) � x(v)we get that Xv2V Xu2N [v℄ y(u; v) � 2t �Xv2V x(v):Hen
e, there exists a vertex v satisfyingXu2N [v℄ y(u; v) � 2t � x(v): (1)If we fa
tor out x(v) from both sides of (1) we obtain the statement of the lemma.We now de�ne a fra
tional version of the Lo
al Ratio te
hnique. The proof of the nextlemma is immediate.Lemma 4.2 Let x be a feasible solution to (P). Let w1 and w2 be a de
omposition of theweight ve
tor w su
h that w = w1 +w2. Let r > 0. Suppose that y is a feasible integralsolution ve
tor to (P) satisfying: w1 � y � r(w1 � x) and w2 � y � r(w2 � x). Then,w � y � r(w � x):The rounding algorithm will apply a Lo
al Ratio de
omposition of the weight ve
torw with respe
t to an optimal solution x to linear program (P). The algorithm pro
eeds asfollows.1. Delete all verti
es with non-positive weight. If no verti
es remain, return the emptyset.2. Let v0 2 V be a vertex satisfying Pu2N [v0℄ x(u) � 2t. De
ompose w by w = w1+w2as follows: w1(u) = ( w(v0) if u 2 N [v0℄;0 otherwise:(In the de
omposition, the 
omponent w2 may be non-positive.)13



3. Solve the problem re
ursively usingw2 as the weight ve
tor. Let I 0 be the independentset returned.4. If I 0 [ fv0g is an independent set, return I = I 0 [ fv0g. Otherwise, return I = I 0.Clearly, the set I is an independent set. We now analyze the quality of the solutionprodu
ed by the algorithm.Theorem 4.3 Let x be an optimal solution to linear program (P). Then, it holds for theindependent set I 
omputed by the algorithm that w(I) � 12t �w � xProof: The proof is by indu
tion on the number of re
ursive 
alls. At the basis of there
ursion, the independent set returned is optimal (and hen
e a 2t-approximation), sin
e noverti
es remain. Clearly, the �rst step in whi
h verti
es of non-positive weight are deleted
annot de
rease the RHS above. We now prove the indu
tive step. Let y and y0 be theindi
ator ve
tors of the sets I and I 0, respe
tively. Assume that w2 � y0 � (1=2t) �w2 � x:Sin
e w2(v0) = 0, it also holds that w2 � y � (1=2t) �w2 � x: From Step (4) of the algorithmit follows that at least one vertex from N [v0℄ belongs to I. Hen
e, w1 � y � (1=2t) �w1 � x:Thus, by Lemma 4.2, it follows that w � y � 12t �w � xWe have thus proved that I is a 2t-approximate solution to the MWIS problem.We now outline an alternative way of using Lemma 4.1 to obtain the same approximationfa
tor. Given an optimal solution x to linear program (P), a multi
oloring of V by a set Xis a mapping  : V ! X su
h that j (v)j = x(v) for ea
h vertex v, and x(v) \ x(u) = ;for ea
h edge (u; v) 2 E(G). Sin
e x is a feasible solution to (P), a repeated appli
ation ofLemma 4.1 results in a multi
oloring with values in the 
losed interval [0; 2t℄.To view this as a multi
oloring, it may be easier to dis
retize the instan
e within anydesired pre
ision by multiplying the x(v)'s by a suÆ
iently large integer L. Then the valuesassigned are positive integers in the range 1; : : : ; 2tL. A 
ontinuous viewpoint is to assignea
h vertex a 
olle
tion of 
ontiguous segments; if we use Lemma 4.1 to assign the valuesone by one, we 
an always guarantee that a vertex v 
an be mapped to segments from [0; 2t℄of 
ombined length x(v) without overlapping any of the segments to whi
h its neighbors aremapped to. In fa
t, by always mapping a vertex to the smallest available values, we neednever use more than n disjoint segments for any vertex.Let 0 = z0 < z1 < � � � < zk�1 denote the values where the multi
oloring 
hanges, and letzk = 2t. Thus, the 
oloring remains un
hanged in the segment [zi; zi+1), i = 0; : : : ; k � 1.Consider the sets Si = fv 2 V : xi 2  (v)g, for i = 0; : : : ; k � 1. Sin
e  is a multi
oloring,the Si's are independent sets in G. Let I be the set Si of maximum weight, Pv2Si w(v).14



Theorem 4.4 w(I) is a 2t-approximate independent set.Proof: Observe that the amount of 
olor values to whi
h vertex v is mapped is x(v), andwe 
an represent them by PSi3v(zi � zi+1) = x(v). We have thatXv2V w(v)x(v) = Xv2V w(v)XSi3v(zi+1 � zi) =XSi (zi+1 � zi)Xv2Si w(v)= k�1Xi=0(zi+1 � zi)w(Si) � k�1Xi=0(zi+1 � zi)w(I) = 2tw(I):
5 A Bi-
riteria Approximation S
heme for Union GraphsRe
all that MWIS is APX-hard already on (2; 2)-union graphs. We 
onsider below the largersub
lass of t-union graphs in whi
h the possible number of segment lengths is bounded bysome 
onstant. For this sub
lass we develop a bi-
riteria PTAS, whi
h �nds an MWIS byallowing some delays in the s
hedule.Let 
i denote the number of distin
t lengths of the i-th segment, 1 � i � t, wheret is some 
onstant. Re
all that, in the 
ow shop problem, we are given a set of n jobs,J1; : : : ; Jn that need to be pro
essed on m ma
hines, M1; : : : ;Mm; ea
h job, Jj , 
onsistsof m operations, Oj;1; : : : ; Oj;m, where Oj;i must be pro
essed without interruptions on thema
hineMi, for pj;i time units. Any ma
hine, Mi, 
an either pro
ess a single operation at atime, or an unbounded number of operations; in the latter 
ase we 
all Mi a non-bottlene
kma
hine. Ea
h job may be pro
essed by at most one ma
hine at any time. For a givens
hedule, let Cj be the 
ompletion time of Jj . The obje
tive is to minimize the maximum
ompletion time (or makespan), given by Cmax = maxj Cj. Denote by C�max the optimalmakespan.An instan
e of our problem 
an be transformed to an instan
e of the 
ow shop prob-lem, where ea
h job has 2t + 1 operations, and the ma
hines M2i+1, 0 � i � t � 1, arenon-bottlene
k ma
hines. In our transformation, we apply some ideas from [25, 21, 26℄. Werepresent ea
h t-interval, Ij , as a job Jj , where ea
h segment is asso
iated with an \opera-tion" of the job. In addition, we simulate the breaks with operations of the same lengthsthat need to be pro
essed on non-bottlene
k ma
hines. Similarly, to in
lude the releasetime rj of Ij , we add to Jj the operation Oj;1, whose length is equal to rj; the ma
hine M1is a non-bottlene
k ma
hine. Thus, if Ij has t segments, Jj has 2t operations.Re
all that, in a union graph, ea
h interval has a due date, dj, that is equal to its releasetime plus the sum of its pro
essing times and break times. To simulate these due dateswe de�ne a delivery time, qj, for ea
h job, Jj . Let qj = �dj. We add to Jj the operation15



Oj;(2t+1), where pj;(2t+1) = qj, and M2t+1 is a non-bottlene
k ma
hine. Our obje
tivethen is to minimize the maximum delivery 
ompletion time, given by maxjfCj + qjg =maxjfCj � djg. This is equivalent to minimizing the maximum lateness of any job, givenby Lj = Cj � dj . Hen
e, our obje
tive 
an be viewed as minimization of Lmax = maxj Lj .Denote by TO the maximum 
ompletion time of an optimal solution for the MWISinstan
e. Sin
e we look for a MWIS that 
an be s
heduled with maximum lateness at most�TO, we slightly modify the de�nition of lateness. Let ~dj = dj�TO; then, for any j, ~dj � 0.By setting qj = � ~dj , we get that all the delivery times are positive. The maximum latenessis now given by Lmax = maxjfCj � dj + TOg. Indeed, for any job Jj , Cj � dj, thereforeLmax � TO, and sin
e in any optimal s
hedule there are no \late" jobs, the minimal latenessis L�max = TO.Our s
heme uses as pro
edure a PTAS for �nding a (1 + �)-approximation for the 
owshop makespan problem with a �xed number of ma
hines (see, e.g., [20℄). We representa t-interval Ij by a (2t + 1)-ve
tor (pj;1; : : : ; pj;2t+1), where pj;1 is the release time, pj;2i(pj;2i+1), is the length of the i-th segment (break), 1 � i < t, and pj;2t+1 (= qj) is thedelivery time of the 
orresponding job, Jj .We summarize below the steps of our s
heme, whi
h gets as parameters the value of TOand some � > 0.1. We s
ale the parameter values for Jj ; that is, we divide the pro
essing and releasetimes by TO, and round ea
h release time down and ea
h break time up to the nearestmultiple of �.2. We guess O, the number of intervals s
heduled by OPT ;3. We guess the subset SO of O intervals of maximal weight, s
heduled by OPT . Thisis done by guessing the set of ve
tors representing SO, among whi
h we 
hoose thesubset of intervals of maximum weight.4. Using a PTAS for minimizing the makespan in the 
ow shop instan
e of SO, we �nda s
hedule of SO for whi
h Lmax � (1 + �)L�max.Note that due to the above rounding, we need to add � to the release times; also, ea
hbreak time may delay the optimal 
ompletion time by �, therefore, by taking �0 = �=2twe guarantee that the delay of ea
h interval is at most (1 + �) times TO. Finally, we setLj = Lj � TO; thus, the maximum lateness of any job in our s
hedule is equal to at most�TO = �C�max.For the 
omplexity of the s
heme, note that Steps 1: and 2: take linear time, andsin
e the possible number of ve
tors (pj;1; : : : pj;2t+1) is (2t=�)tQti=1 
i, we 
an guess SO inO(n(ttQti=1 
i)=�t) steps. This is multiplied by the 
omplexity of the PTAS for 
ow shop.16



Theorem 5.1 Let t � 1 be some �xed 
onstant. Given a t-union graph with 
onstantnumber of distin
t segment lengths, let W be the weight of an optimal MWIS, whose latest
ompletion time is TO. Then, for any � > 0, there is a PTAS that s
hedules an independentset of weight at least W, su
h that any interval is late by at most �TO.A
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