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1 Introduction

Wireless ad-hoc and sensor networks are emerging areas of active research.
Since energy is the limiting factor for the operability and lifetime of these
networks, various mechanisms have been developed to conserve energy. These
are collectively called topology control.

In a common formulation, each device represents a point (or node) in the
Euclidean plane, and each node has a disk of a given transmission radius. Two
nodes can communicate with each other if they are located within each other’s
disks; symmetric communication is considered essential to reduce protocol
complexity. We assume that the transmission radius of a node is a controllable
parameter and a monotone function of the electric power given to the node.
Topology control involves assigning a suitable transmission radius to each node
to form a connected network while minimizing some non-decreasing objective
function of the radii.

A primary issue in wireless communication is interference, where communica-
tion between two parties is affected by transmissions from a third party. High
interference increases the probability of packet collisions and therefore packet
retransmission, which can significantly affect the effectiveness of the system
and the energy use. Therefore, it is desirable to keep a low interference at
every node.

Traditionally, interference has been implicitly minimized by reducing the den-
sity or the node degrees in the communication network. By keeping the trans-
mission radii small, we then not only reduce the power consumption but also
the density, and intuitively also the interference. Burkhart et al. [4], however,
showed that low interference is not implied by sparseness. Also, that networks
constructed from nearest-neighbor connections can fail dismally to bound the
interference. On the other hand, they gave experimental results that indi-
cate that graph spanners do help reduce interference in practice. Their work
prompted the explicit study of interference minimization.

Several possible models of interference have been studied. The model of [4]
measures the number of nodes affected by the communication of a single com-
munication link. This was also studied by Moaveni-Nejad and Li [13], who
further introduced the measure of the number of receiving nodes affected by
the communication from a single sender. Both problems were further studied
by Benkert et al. [2]. In both cases, the problems can be solved optimally by
using MST computation.

Von Rickenbach et al. [16] argued that a sender-centric model of interference
was misguided, since the interference was actually felt by the receiver. Fur-
ther, that it was overly sensitive to the addition of single nodes. Instead, the



formulated the problem studied here of minimizing the maximum interference
received at a node. They gave algorithms for the special case where all the
points are located on a line, called the highway model. Their algorithm con-
structs a network with an O(v/A) interference, where A is the interference
of a uniform radius network, and they shoed that there exists an instance
that requires Q(y/n) interference. They also showed that the better of a naive
network and the above O(v/A) interference network attains a O(AY*) approx-
imation ratio. This left open both the question of the hardness of the problem
and of its approximability in more general scenarios.

Further recent work has been done on interference minimization. The related
problem of bounding the average interference received at a node was consid-
ered by Moscibroda and Wattenhofer [14], who gave a nearly tight logarithmic
approximation algorithms. In the same conference proceedings as the original
version of the current paper [5], Bilo and Proietti [3] analyzed the approxima-
bility these interference problems under general distance functions, and gave
logarithmic lower bounds for all of them. Also, for all but our problem, they
gave logarithmic approximation algorithms. Johansson and Carr-Motyckova
[7] introduced interference metrics based on averages over the edges of com-
munication paths between nodes in the network. They gave simulation results
for these and the aforementioned metrics. An upper bound on the approxima-
tion for a different kind of a receiver-centric interference problem was given by
Kuhn et al. [8], where the task is to select a subset of the nodes as backbone
stations and the interference is only caused and measured by the backbone
stations. There is no modeling of a connectivity requirement of this backbone.
They formulated this for arbitrary distance functions as a minimum mem-
bership set cover problem, and gave a logarithmic approximation algorithm,
based on randomized rounding of a linear programming solution.

Our results. We present in this paper the first results on the maximum in-
tereference minimization at receiving nodes in the two-dimensional case. In
particular, we show that we can construct a network with an O(v/A) interfer-
ence for any point set in the plane, extending the theory of [16] to the planar
case (and actually for any constant-dimensional space). The construction is
simple, except that it needs an e-net as its part. If we use the theoretically
optimal e-net as a component, we obtain the O(\/K) bound. We can also use
a random sample as the e-net to obtain a simple and distributed construc-
tion, for a slightly weaker interference bound of O(y/AlogA). Moreover, we
give a network with an O(log(Ryin/d)) interference, where d is the minimum
distance between points and R,,;, is the minimum radius of a uniform-radius
network to attain connectivity. Our results rely on computational geometric
tools such as local neighbor graphs, e-nets, and quad-tree decompositions.



2 Preliminaries

We are given a set V = {vy,Vvs,...,v,} of points in a plane with Euclidean
distance function d. For each v;, we are to assign a positive real number r(v;)
called the transmission radius. This can be viewed as a radius assignment
function r : V' — R, giving the set D = {Dy, D, ..., D,} of disks, where D;
has radius r(v;) and center at v;.

We define a wireless network on V' based on r as the graph G(D) = (V, E),
with an undirected edge (v;,v;) if and only if v; € D; and v; € D;. In
other words, v; and v; can directly communicate since they are within the
transmission radius of each other. We say that the network G(D) is feasible
iff it is connected.

The interference of D at a point p is the number of disks in D covering p.
That is,

I(D,p)={i:p € Di}|.

The interference of a network G(D) is ?
max{I(D,p)[p € R*}.

The interference minimization problem is to find a radius assignment that
yields a feasible network with minimum interference.

One natural approach is to increase all radii uniformly until the graph becomes
connected. Let R, be the infimum of the radius such that the network be-
comes connected, and refer to the network with all radii set to R,,;, as the
uniform-radius network. Let A denote the interference of the uniform-radius
network.

Although the problem is clearly an N P-optimization problem, it appears very
difficult to find the optimal wireless network. Indeed, even the special case
where all points V" are located on a line (highway model) is considered difficult
(although NP-hardness result is not known). Thus, we seek a practical solution
with some theoretical quality guarantee, either as an upper bound of the
interference or as an approximation ratio.

3 We can also consider the version where we only consider interference at points of
V', not all points in the plane. The results of this paper carry immediately over to
that model.



2.1 Review for the Highway Model

We briefly review some results for the highway model given by von Rickenbach
et al. [16]. Suppose that points of V' are located on the z-axis in the sorted
order with respect to their z-values.

A naive method is to set r(i) = max(d(v;,v;_1),d(v;, viy1)) fori =1,2,... n,
where we set vo = vy and v, 1 = v,,. It is easy to observe that G(D) asso-
ciated with this radius function is feasible: the network is called the linear
network. The linear network has interference at most A and works well on
typical practical instances, for example, on a randomly distributed point set.
Unfortunately, there is an instance for which the linear network poorly per-
forms. In the exponential chain forming this instance, the points satisfies that
d(vi,viy1) =20 for i = 1,2,...n—1, and it is easy to see that the interference
of the point v; is » — 1 in the linear network.

We can use a hub-connected network to reduce the worst-case interference.
The general idea is as follows. We find a subset W C V' of points called hubs
and first construct a linear network of the hubs. Then, for each v € V'\ W,
we set

r(v) = min d(v,w);

namely, each non-hub connects to its nearest hub. If we select every /n-th
point in V" as a hub, we have a set W of cardinality y/n, and can show that
I(G(D)) = O(y/n) for this network. It has been shown that the minimum in-
terference is Q(y/n) for the exponential chain, thus the hub-connected network
is worst-case optimal. However, for each given instance, we can often design a

network with a better interference. Indeed, there is a simple extension of this
construction with I(G(D)) = VA.

3 Two-Dimensional Ad-Hoc Network with Low Interference

3.1  Two-Dimensional Analogue of the Linear Network

Although the linear network performs poorly in the worst case for the highway
model, it is a basic structure that can also be constructed in a distributed
fashion. That is, each point can connect to its right and left neighbors without
the need for global information.

The first task is to extend this notion to the two-dimensional case, where
there are no clear notions of left and right neighbors. If we sort the points
with respect to z-coordinate, and each point connects to the nearest neighbor



with respect to the z-coordinate, we can obtain a feasible network. However,
this ignores the y-coordinate and usually gives a bad network. Instead, we
would like to use the Euclidean distance to measure the proximity of points.

Indeed, a network in which each node establishes a (two-way) connection with
its nearest neighbor is called a nearest-neighbor forest. The nearest-neighbor
forest need not be connected, however, and we want give a connected network
based on it. The minimum spanning tree MST(S) might be a direct two-
dimensional analogue of the linear network. The wireless version is WMST(S)
in which each node p; has the radius maxg(p, q)emst(s) d(Pi, ¢). The minimum
spanning tree has been widely considered as a structure of ad-hoc wireless
networks, and is reported to work well for practical inputs [4].

Constructing a minimum spanning tree explicitly requires some global infor-
mation. Hence, we want to consider another graph with a more local nature
as a two-dimensional extension of the linear network. We briefly explain the
local neighborhood graph (LNG) [18], which inspires the construction of our
hub-structure network given later.

For each point p € R?, we divide the plane into six cones R;i(p), Ro(p),
..., Rg(p), where Ry (p) is the region such that the argument angle about p is
in the range [(k_;)”, k7). Let nbg(p, V') be the nearest point to p in VN Ry (p).
See Fig. 1. The local neighbor graph LNG(V) is the graph connecting each

v € V to its six local neighbors.

Lemma 3.1 Suppose that u and v are in Ry(p) and d(p,u) < d(p,v). Then,
d(u,v) < d(p,v).

Proof: Straightforward from the fact that the diameter (distance between
the farthest pair of points) of a fan with the angle 7/3 equals the radius of
the circle. O

The above lemma is known to lead to the fact that LNG(V') contains MST (V)
and is therefore connected [18].

Let Ny (v) = {nbg(v,V)|1 < k < 6} denote the nearest neighbors of v in
each of its cones. Also, let N;,(v) = {w € V|v € N, (w)} be the vertices that
have v has their nearest neighbor. If we set r; = max{d(v;, q)|q € Nou(v;) U
Nin(v;)}, for each i = 1,2,...n, we have a network WLNG(V') that contains
LNG(V) as a subgraph. Note that we need N;,(v) since we need to answer
connection requests from w € N;,(v) to establish the bidirectional connection.

We remark that WLNG(V') can be constructed locally: Each node increases its
radius (up to a given limit) and sends a message until it receives acknowledge-
ment from the local neighbor in each of its six cones, and sends a connection



Fig. 1. Local neighbors of a point and a disk connecting them

request to each local neighbor. Then, each node that receives a connection
request increases the radius until it can reach the sender. We remark that this
method has the weakness that we need to set a limit radius, since if there
is an empty cone, we have to detect it and ignore it to avoid increasing the
radius to infinity. This will be resolved using a localization method given in
the subsequent sections, where the limit of the radius is set to R,,;,, the radius
of the uniform-radius network.

3.2 Hub-Connected Network with O(y/n) Interference

It is known that there is an instance for which any network containing the
nearest-neighbor forest has an (n) interference even though there exists a
constant interference network for the instance [16]. Thus, if every node con-
nects to its nearest neighbor, we can obtain neither a (nontrivial) absolute
interference bound nor a good performance ratio.

In order to attain a better interference bound, we consider a hub-connected
network, where we select a subset W of V' as a set of hubs. We construct
WMST (W) as the core of the network, and propagate the connection around
the core such that each vertex v € V' \ W is connected to its nearest hub.
Note that we may use any connected network on W (e.g., WLNG(W)) as a
core instead of WMST (W) in order to attain our main theoretical result; what
matters only is the choice of W.



3.2.1 Hub Selection Using an e-Net.

To define the set W of hubs we turn to the concept of e-nets. Consider a family
R of regions in the plane. Given a set V' of n points, the pair (V,R) is called
a range space. For any given € < 1, an e-net of the range space (V,R) is a
subset S C V such that any region R € R that contains at least en points of
V' must contain at least one point of S. That is,

VUR|>en = SUR#D

holds for every R € R. The value € can be any positive real number less
than 1 and may depend on the size of V. Intuitively, an e-net is a uniformly
distributed sample of V', but the uniformity is measured using the family R of
regions. For instance, if R is the family of all halfplanes, the set of points on
the boundary of the convex hull of V' becomes an 1/n-net, since any halfplane
containing a point of V' must also contain a point on the convex hull.

The following theory (which the reader need not be familiar with) has nu-
merous applications in computational geometry [1] and learning theory: The
Vapnik-Chervonenkis-dimension (VC dimension) of a range space is the largest
size of a subset A € V such that all subsets of A are attained as an intersection
of A and a region in R. If the V'C dimension is low (say, a constant), we can
always obtain a small e-net (see [11] for example).

Here, we consider a range space associated with a family of regular triangles.
Here, a triangle means the closed region bounded by its three edges. Consider
the regular triangle P; spanned by (0,0), (1,0), (1/2,4/3/2). Let P, be the
reflected image of P; with respect to the z-axis. The family P; (resp. Pz) is the
set of all translated and scaled copies of P; (resp. P;). Concretely, let P;(p, s)
be the triangle spanned by p, p + (s,0), p + (5/2,v/3s/2) that is obtained by
translating P; by a vector p and scaled by s (fixing p as its vertex). Then,
P ={Pi(p,s) : p € R?, s € R}, and Ps is the set of reflected triangles of
those in P;. Let P = P; U Ps.

First, we give a weaker bound on the size of an e-net of P. Although this will
be slightly improved later, the following result is useful since we do not need
any complicated algorithm to find the e-net. In particular, this gives an easy
local (fully distributed) algorithm. The following theorem is a fundamental
theorem in learning theory and computational geometry [10,9].

Theorem 3.2 Let (V,R) be a range space with V' finite and of finite VC-
dimension d. Then, a random sample S C V of size C(d)rlogr is a 1/r-net
for (V,R) with probability whose complement to 1 is exponentially small in r.
The constant C'(d) depends only on d.

It is known that the VC dimension of the set of all triangles in the plane



is finite [10]. Therefore, the VC dimension of P is also finite, since the VC
dimension of a subfamily is at most that of the original family. Thus, we
obtain the following corollary:

Corollary 3.3 A random sample of size ce *loge ! becomes an e-net for P
with high probability if ¢ is a sufficient large constant.

A family R of regions is said to be a family of pseudo-disks if for any three
non-collinear points in the plane, there exists a unique R € R such that those
three points are on the boundary of R. The following better bound is known
for a family of pseudo-disks.

Theorem 3.4 [12] For any point set V', there is an e-net of size O(1/€) for
a family of pseudo-disks.

Consider the family P, for £k = 1,2, say, & = 1. We say that a point set
satisfies the non-degeneracy condition if no two points lie on a horizontal line,
a vertical line, or a line with argument angle 7 /3. It is easy to see that for any
three points satisfying the non-degeneracy condition, there exists at most one
P € Py such that the triple of points are on the boundary of P. Thus, P; has
a property that is very similar to pseudo-disks, but there may be noncollinear
triplets that are not contained on the boundary of any P € P. Nevertheless,
we have the following theorem that improves slightly on Corollary 3.3:

Theorem 3.5 There exists a polynomial-time computable e-net of size O(1/¢)

for (V,P).

This theorem is of independent interest within computational geometry. In
comparison with the random sampling method of Corollary 3.3, the construc-
tion of the e-nets is quite complicated and also difficult to compute in a dis-
tributed fashion. Thus, the random sampling method is preferable in practice,
and the rest of the paper is complete without Theorem 3.5 if we increase
the interference by a v/logn factor (see Theorem 3.7 and Theorem 3.8). We
therefore give the construction of an e-net establishing Theorem 3.5 in a later
section for readers interested in computational geometric theory.

3.2.2 The Hub-Connected Network.

The construction is as follows: We first compute an vn='-net W of V of size
O(y/n) using Theorem 3.5, by setting e = v/n—L. We then form any connected
network on W (e.g., WMST(W)), and let ro(w) be the transmission radius of
w € W in that network.

We call the elements of W hubs. For each non-hub v € V' \ W, we find its
nearest hub, denoted by hub(v), and set r(v) = d(v, hub(v)). For each hub



Fig. 2. No disk around a point outside the region P(w) can reach p

w € W, define the set N(w) = {v € V' \ W|hub(v) = w} of nodes using that
hub, and set r(w) = max{ro(w), max,cn(w)d(v,w)}. This determines r for
each element of V', giving a wireless network GHUB(V').

Lemma 3.6 GHUB(V) is connected.

Proof: Since WMST (W) is connected, the subgraph of GHUB(V') induced by
W is connected. Since other nodes are all connected to nodes in W, GHUB(V)
is connected. O

Theorem 3.7 The interference of GHUB(V) is O(y/n).

Proof: Let ¢ be a suitable constant such that |W| < ¢y/n. We claim that
any point p € R? is covered by at most (¢ + 6)y/n disks, or, more precisely,
by 6+/n disks excluding those around elements of .

Consider the cusp Ri(p) whose argument angle interval is [0,7/3). By sym-
metry, it suffices to show that at most y/n points in R;(p) can contain p in
their disks. If there is no hub in R;(p), then R;(p) cannot contain more than
/n points because W is a Vvn=T-net, and we are done. Otherwise, we can
assume there is at least one hub in R;(p) (see Fig. 2). Consider a hub w # p
in R;(p). We draw a line of argument angle 27/3 through w such that it
makes a regular triangle P(w) € P; together with the two boundary lines of
Ry (p). We select the hub w such that P(w) is minimized. Then, P(w) does
not contain a hub in its interior, and hence P(w) can contain at most y/n
elements of V. Consider any point x € V in R;(p) \ P(w). Then, we can see
that d(x,w) < d(x, p) analogously to Lemma 3.1. Since r(x) is the distance
to its nearest hub, r(x) < d(x,w) < d(x,p). Thus, p is not in the disk of x.
We can deal with the other five cusps similarly. This completes the proof. O

We can use a random sample as the set of hubs to obtain a slightly weaker

10



result.

Theorem 3.8 If we use a random sample of size \/nlogn as the set W of
hubs in the above construction, the interference of GHUB(V) is O(y/nlogn)
with high probability.

Proof: From Corollary 3.3, the random sample is an O(y/n~!log n)-net with
high probability. The rest of the analysis is analogous to Theorem 3.7. O

If we use a random sample for the hub set W as in Theorem 3.8 and use
WLNG (W) instead of WMST (W) (recall that any connected network on W
can be used), the corresponding version of GHUB(V) can be constructed in a
distributed fashion: First, each point recognizes itself as a hub with probability
vn~tlogn independently. This determines the set W of hubs. Next, each
point of V' \ W independently finds its nearest hub by enlarging its radius
until it receives a response from a hub node. Each hub enlarges its radius, if
necessary, to the distance to the furthest node that requests a connection to
it. In parallel, WLNG(W) is constructed, and its construction can be done
locally as discussed before.

4 A Network with O(v/A) Interference

Let us consider the uniform-radius network G, in which each disk has the
same radius R,,;,. Recall that A is the interference of Gy. Although A can
become as large as 2(n), it can in practice be much smaller than n, or even
Vv/n. We show a construction of a network where the interference is O(v/A).

We use a standard localization method by bucketing. By scaling, we can as-
sume that R,,;, = 1 to eliminate one parameter. We partition the plane into
unit square buckets by an orthogonal grid. For simplicity of argument, we
assume that there are no points on boundaries of buckets; this assumption is
easy to remove. We say that two buckets B and B’ are adjacent if there exists
v € B and v' € B’ such that the edge (v,v') is in Gj.

Lemma 4.1 (1) For each bucket, an adjacent bucket must be one of its eight
neighbors in the grid.
(2) Each bucket contains O(A) points.

Proof: Statement 1 is obvious, since the distance from any point in B to
any bucket other than the eight neighbors is more than 1. For statement 2,
suppose that a bucket contains more than 4A points. We refine the buckets
into four sub-buckets of size 0.5 x 0.5. One of the sub-bucket contains more
than A points, and the center of the sub-bucket is covered by the unit disk

11



about each point in its sub-bucket. This contradicts the assumption that the
interference of Gy is A. O

Our construction is as follows: First, in each bucket B, we give a network with
interference O(v/A) using the construction given in the previous subsection,
and set the radius of each point accordingly. Note that none of the disks in
the construction has a radius larger than v/2. Second, for each adjacent pair
B, B' of buckets, select exactly one edge (v,v') € Gy connecting them. We
call v and v’ connectors. We enlarge the radius of each connector to 1 (if its
current radius is less than 1) .

Now, we have defined all the radii, and accordingly we have a network LHUB(V).

Theorem 4.2 The network LHUB(V) is connected, and its interference is

O(VA).

Proof: The network is connected within each bucket, and the connection
between buckets is the same as in Gy. Thus, it is connected. For each point
p, it is interfered by points of at most 21 buckets (the neighbor buckets of
Manhattan distance at most 2), since the radius of the largest disk is at most
V2. Each bucket contributes only O(\/Z), excluding connectors. Also, there
are only a constant number of connectors in these buckets. Thus, we have the
theorem. O

We remark that we obtain a O(y/Alog A) interference if we use the construc-
tion given in Theorem 3.8 for the network in each bucket.

5 A Hierarchical Construction

The GHUB network has two layers: hubs and non-hubs. The LHUB network
has three layers: connectors, hubs in buckets, and others. One might think a
better structure could be obtained if we increase the number of layers. The
lower bound of Q(v/A) for the one-dimensional model shows however that we
have a tight bound as a function of n or A. Still, this can be advantageous in
practice, as we can see if we measure interference using a different parameter.

Let d be the minimum distance between two points in V. Below, we give a
network whose interference is O (log(Rynin/d))-approximate, where R,,;, is the
radius to give the uniform-radius network. As before, we scale the problem
such that R,,;, = 1.

The same localization method as in Section 4 works here, so we may assume
that all points are located in a unit square. Our approach is based on quad-

12



tree decomposition. We adopt the convention that each square in the quad-tree
decomposition includes its lower edge and its right edge, together with its lower
two corner vertices.

We repeat the following process starting from k = 0, where U(S) = V if k = 0:

Quad-tree decomposition process: Given a square S of size 27% x 27% and

aset U(S) C VNS, do the following.

(1) If U(S) = 0, terminate the process.

(2) Otherwise, select a representative point p(S) € V/(S) arbitrarily, and
remove p(.S) from U(S).

(3) Partition S into four quadrants of size 2~+1) x 2=(+1) The point set
U(S) is partitioned accordingly. The at most four non-empty quadrants
obtained are called children of S.

(4) Apply the process iteratively to each child.

We call S’ the parent of S if S is one of the children of S’, and denote S’ =
parent(S). We also say that p(S) is a child (resp. parent) of p(S’) if S is
a child (resp. parent) of S’. For the representative point p(S) of S, we set
r(p(S)) = max{diag(S), d(p(S), p(parent(S))}, where diag(S) is the length
of the diagonal of the square S. Thus, we have assigned a radius to each point
of V, and have a network QUAD(V').

Theorem 5.1 QUAD(V) is connected, and its interference is O(logd™"),
where d is the minimum distance between points of V.

Proof: Since r(p(S)) > diag(S), the disk of p(S) contains all of its children.
Also, r(p(S)) > d(p(S), p(parent(S))) means that the disk also contains its
parent. Thus, the points are connected via the tree structure of the parent-
child relation.

Now, let us analyze the interference at a point p. There are at most O(logd™")
different sizes of squares in the quad tree decompositions, since the diagonal
length of the parent square of a smallest square must be at least d (otherwise,
it can contain only one point). Consider a bucket size 2%, and analyze how
many representative points of such buckets can interfere with p. The radius
r(p(9)) of a representative point of a square S of this size is at most 27#1/2,
since the distance from the representative point to any point in the parent
square is at most diag(parent(S)) = 27%¥1\/2. Thus, p(S) can interfere with
p only if S intersects with the circle of radius 27¥t11/2 about p. It is easy to
see that there are only a constant number of such squares of this size. Thus,
the interference at p is O(logd™"). O

In a practical implementation, we should apply a routine to shrink each disk

13



as much as possible while keeping the connection to its parent and children.

6 Construction of a Small-Size e-Net

Here, we give a constructive proof of Theorem 3.5. It suffices to show the
following:

Theorem 6.1 There exists a polynomial-time computable e-net of (V, Ps)-

Although the above theorem can be generalized for a family of all trans-
lated/scaled copies of any given convex region, we focus here on P; (i.e., the
region of translated and scaled copies of a given regular triangle) to avoid
unnecessary abstraction. We remark that it is not difficult to observe that the
construction gives a polynomial time algorithm using the fact that a general-
ized Voronoi diagram can be constructed in O(nlogn) time [17]. However, we
only show the construction algorithm and its correctness, and omit the time
complexity analysis.

We modify the argument of [12] for a range space of pseudodisks so that it
works for our range space. The modification itself is not a major one, but we
give the whole argument in order to make the paper self-contained. We remark
that the published conference version of [12] has an error in its proof, and a
corrected proof is in an unpublished manuscript*.

For simplicity, we assume the non-degeneracy condition that no two points of
V' lie on a horizontal line, a vertical line, or a line with argument angle /3.
We call a member of Py a range, since we will use use the term “triangle” later
for general triangles. For a range P € Py, we define Int(P) to be its interior.
The boundary of P is 9(P) = P\ Int(P).

The following lemma holds in a more general setting where P is a convex body
and P’ is its scaled and translated copy. It is an easy exercise to prove it for
our ranges (i.e., isothetic regular triangles) by a case study.

Lemma 6.2 For any pair P and P' of ranges, P\ P’ is connected, and
J(P) N O(P') has at most two connected components. Moreover, under the
non-degeneracy condition, given any set A of three points of V', there is at
most one range containing A on its boundary.

Given a point set S, we call a range P an empty range (with respect to S) if
it contains no point of S in its interior. A pair of points (p,p’) of S is called

4 This information, together with the address of the web page containing it, was
given to the authors by J. Matousek.
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Fig. 3. A set of three points not contained on the boundary of any range.

a Delauney pair if there exists an empty range P containing p and p’ on its
boundary. A Delauney pair is called extremal if, for any number N > 0, there
is an empty range P containing the pair on its boundary such that the area
of P is larger than N.

Let DT'(S) be the graph consisting of a point set S (as the vertex set) and the
set of all Delauney pairs (as the edge set). We draw each edge as the straight
line segment between vertices.

Lemma 6.3 Edges of DT(S) intersect only at their endpoints.

Proof: Let e and f be edges intersecting at an interior point. Let P and P’
be empty ranges containing e = (p, p’) and f = (q, q’), respectively. Because
S is nondegenerate, we can shrink P (resp. P’) if necessary such that they
contain no point in S\ {p,p’} (resp. S\ {q,q’}). By the definition of empty
ranges, q and ¢ (resp. p and p’) are outside the interior of P (resp. P’). Let
the edge e intersect (P N P’) at points v; and vy and f intersect O(P N P’)
at w; and ws. If e and f intersect in the interior, these four points appear
in a clockwise alternating order along O(P N P’), e.g. as vy, wy, Vg, we, since
PN P is convex. Thus, (PUP')\ Int(PNP’') has four connected components.
However, Lemma 6.2 implies that (P U P’) \ Int(P N P’) has at most two
connected components. We have a contradiction. O

Thus, DT(S) gives a planar graph drawing. Indeed, it is the dual of the gen-
eralized Voronoi diagram [17]. We would like to claim that DT(S) is a tri-
angulation of S. This is known to hold for pseudo disks (assuming a suitable
non-degeneracy condition) [12]. Unfortunately, P; does not satisfy the condi-
tion of pseudo disks, and DT'(S) is not always a triangulation. Indeed, the set
S of three black points in Fig. 3 does not have a range containing it on the
boundary, and DT'(S) has only two edges, thus is not a triangulation.
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Fig. 4. Triangulation is obtained by adding the point set X.

We slightly modify the sets V' and S to resolve the above problem. We add
a set X of three “extra” points qi,qz,qs to V. Let ¢ be a horizontal line
that contains V' in its lower halfplane. The points q; and qs are on the line
¢, the point qs lies below /¢, and the three form vertices of a regular triangle
(actually, one in Py). We take these three points sufficiently far from V" so that
X satisfies the following conditions:

(1) The triangle spanned by X contains all the points of V.

(2) For any range P, we have a range P’ C P such that P’'NV = PNV, and
P'NnX =0.

(3) For any pair of points in X, there is a range P containing them on the
boundary and containing no other point of V.

(4) For any extremal pair (p, p’) of a subset S of V|, we have a range P with
the largest size such that Int(P)N (SUX) =0 and {p,p’} € IP. Note
that a point of X must lie on the boundary of P, and intuitively, the
point prevents (p,p’) to be an extremal pair in S U X.

We fix such an X. We write S for S U X for a subset S of V, and consider

DT (S) instead of DT'(S). For the point set of Fig. 3, we obtain a triangulation
by adding X (the three white points) as shown in Fig. 4.

Lemma 6.4 DT(S’) is a triangulation of the vertex set S in the triangle
spanned by X.

Proof: Consider two points p,p’ € S forming a Delauney pair. Given an
empty range that has p and p’ on its boundary, we can first shrink it so that
one of p and p’ comes to a vertex of the range. Thus, we can assume that
P = AABC is an empty range such that p = A, and hence p’ is on the
edge BC' because of nondegeneracy condition. We can grow P keeping the
Delauney pair on the boundary. Indeed, there are two possibilities: one is the
case where the triangle grows fixing B, and the other is the case where it
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Fig. 5. Greedy procedure to find a maximal family of disjoint subsets of size dn.

grows fixing C'. Since we have X in 51 (p,p') cannot be an extremal pair in S.
Thus, we have two triangles in DT'(S) that have pp’ as their edges. Because
of the non-crossing property of edges (Lemma 6.3), there is exactly one such

triangle on each side of pp’. Thus, DT'(S) is connected and each interior face

of the planar graph DT'(S) must be a triangle. Thus, DT'(S) is a triangulation
of the triangle spanned by X. O

We call DT'(S) the generalized Delauney triangulation of S. For each triangle
in DT'(S), the unique range P containing the three vertices of the triangle on
its boundary is called its Vorono: range® . Note that a Voronoi range contains

no point of S in its interior.

Let § = €/5. We greedily find a maximal family of disjoint subsets { Sy, Ss, ..., Sk}
of V such that |S;| = dn and there exists a range P; such that P,NV = S,.
Fig. 5 shows such a family where on = 5.

Let S = UF_|S;, and form DT(S). Any range P containing dn or more points
of V must contain a point of S, since otherwise our family of subsets is not

maximal. Thus, for each triangle in DT'(S), there are at most dn points of V'
in its Voronoi range. Let. D; be the subgraph of DT(S) induced by S;. Each
triangle in D; contains no point of V' in its interior: It cannot contain a point
of S because of the definition of DT(S), and it cannot contain a point of
V'\ S since it is contained in the range P; considered in the greedy process.
The subgraph D; is connected; otherwise, we can show that there is an empty
range corresponding to an Delauney edge connecting two points in S'\ S;, and

the intersection of the empty range and P; violates Lemma 6.2.

Moreover, the union R of the triangles in D; is simply connected. Here, a closed
region in a plane is simply connected if it is connected and its complement is
connected. R is in the convex hull of S;. If the complement of R has more than
one connected components, one connected component contains the exterior of

® This is an analogue of a Voronoi circle for an ordinary Voronoi diagram.
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Fig. 6. Corridors in DT(S).

the convex hull, and the others (called holes) lies in the convex hull. A hole is
a union of triangels of DT'(S), and it must contain a triangle that has a point
of V'\ S; as a vertex. Thus, the convex hull contains a point of V'\ S;. This is a
contradiction, since the range P; defining S; in the greedy procedure contains

the convex hull of S;, and all points in P, must be in S;.

We use k + 3 colors to give a distinct color to each set S; and to each of the
three points of X. The points in V' \ S are colorless. We give corresponding
colors to vertices of S. For two colors c1, C2, a triangle is called (¢, ¢y)-colored
if its vertices use exactly those two colors.

For a fixed pair (¢, ¢3) of colors, we divide the set of (¢, ¢y)-colored triangles
into maximal connected chains of triangles such that each pair of consecutive
triangles share a bicolored edge. Such a maximal chain is called a corridor.

Lemma 6.5 There are O(k) corridors.

Proof:

Since the union of triangles in D; is simply connected, for each i = 1,2,...,k,
we can contract each S; of DT(S) into a point such that all bicolored edges in
each corridor (say, corresponding colors of S; and S;) are replaced by an edge
between S; and S;. This graph has k vertices, where each three-colored triangle
remains a face in the new graph, while all other triangles are contracted. Thus,
each face of the graph has three sides. Although this graph may have multiple
edges as seen in Figure 7, it has at most 3f/2 edges, where f is the number of

faces. The number of edges is then O(k), and the number of corridors is also
O(k). O
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Fig. 7. The triangulation (where k = 3 and the triangulations of S; (i = 1,2, 3) are
symbolized by ovals) given in the left picture is contracted to the graph given in the
right.

The corridors are greedily refined into subcorridors containing at most dn
points of V' (indeed, they are colorless) in its triangles. Because the dual
graph of each corridor is a tree of degree at most three, we can decompose
it into O(3%) subcorridors if the corridor has M triangles. The vertex set of
subcorridors consists of two monochromatic chains (possibly degenerated to
points) in D(S), and thus they have at most four endpoints. Let Z be the set

of all endpoints of all subcorridors in DT'(S).
Theorem 6.6 Z is an e-net of VU X, and its size is O(1/e).

Proof: The number of sub-corridors is O(k+5) = O(1/¢). Thus | Z] = O(1/e).
Consider any range P containing more than en points of VUX. We assume that
P contains no point of Z and derive contradiction. Without loss of generality,
we assume that P contains at least one point in S; (colored red, striped in
Fig. 8). P\ P; has at most one connected component because of Lemma 6.2,
and let Y be the set of points in the component. If Y = (), P contains only
red points, in which case it can have at most dn points; this is a contradiction.
Thus, Y is nonempty.

Let C' be the red monochromatic chain in the union of corridors. Since P\ P,
is connected, there is a unique connected component C; of C' N P such that
the other side has at least one point of (thus, all points of) Y. C; must be a
subchain of a red chain C,.4 of a subcorridor, since P contains no point of Z.
Let Cye be the partner chain of the subcorridor, colored blue, the color of the
set Sy. If Cypue intersects P (including the case that P contains no blue points
but only intersect edges), there is no non-blue point below Cy,. (i.e., different
side from C,..4), since otherwise P\ P, must have two connected components,
contradicting Lemma 6.2. Let € = (prea, Doiwe) a0d f = (Gred, Qoiue) be bicolored
edges at the two ends of the subcorridor. The subcorridor is bounded by C.q,
Chiue, € and f as shown in Fig. 9.
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Fig. 8. Intersection of P and Py, and the set Y (points in the shaded region).

If e intersects P, it must cut P into two pieces, since none of the endpoints
of e are in P. Let R, be the piece in the different side from the subcorridor.
Similarly, we define R;.

Let @ be the Voronoi range corresponding to the triangle containing e on the
boundary (one of shaded triangles in Fig. 9) that is not in the corridor. If
R.\ @ # (), then P\ @ has two connected components, one on each side of
the edge e, contradicting Lemma 6.2. Thus, R, € @), and R, has at most in
points. Ry also has at most dn points.

The set of points in P consists of five parts. The part above or on C,.4 only has
red points, thus at most on points. The part below or on Cj,. only has blue
points, thus at most n points. Each of R, and Ry has at most dn (colorless)
points. Finally, the subcorridor has at most dn (colorless) points. Thus, P has
at most bdn = en points. O

Fig. 9. A subcorridor intersecting P.
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We finally show that Z \ X is an ¢'-net of V' if en < €'n — 3. Consequently, we
have an e-net of size O(1/¢) for the range space (Py, V). Indeed, suppose we
have a range P that contains €'n points of V' but no point in Z \ X. Then, it
must contain one or more points of X. We can shrink P such that only the
points of X go outside of it. This new range contains €'n — 3 points of V' and
no point of Z. This contradicts the fact that Z is an e-net of V U X.

7 Concluding Remarks

The theory can easily be generalized to any constant dimensional space, except
that we know only a O(e~'log ' e~') bound for e-nets of higher dimensional
analogues of “range spaces of regular simplices”. This leads to the construction
of a network with an O(y/nlogn) interference bound of a point set embedded
in d-dimensional space, if d is a constant.

We can suggest several practical improvements to the method. For example,
in the construction of QUAD(V'), we can stop the partitioning if |U(S)| = 1,
and otherwise partition U(S) without selecting a representative point until
there are at least two empty buckets. Also, we can mix the two methods: In
each square S, we can replace the structure of the QUAD(S) network within
S by LHUB(S), if it gives a better interference.

There are several open problems. One may observe that the exponential chain
instance attains a Q(y/log(Rmnin/d)) lower bound in the highway model. We
conjecture that this lower bound is tight, although we currently have only
the O(log(Rnin/d)) upper bound given in this paper. Moreover, while for the
highway model, the better of a linear network and a hub network attains a
O(A'*)-approximation ratio to the optimal network, analogous result has not
yet been obtained for the two-dimensional case.
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