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lem, is that of vertex coloring an undirected graph with non-negative integers so that
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1 Introduction

The (h, k)-coloring problem, better known as the L(h, k)-
labelling problem, is that of vertex coloring an undirected
graph G with non-negative integers so that adjacent ver-
tices receive colors that differ by at least h and vertices
of distance 2 receive colors that differ by at least k. This
problem was introduced by Griggs and Yeh [6] (in the case
h =2 and k = 1) to model a frequency assignment prob-
lem, where wireless transmitter/receivers must be assigned
frequencies without causing interference.

A large body of research has developed through the
years on (h, k)-coloring problems, particularly in relation
to channel assignment in wireless networks. Most of that
effort has been on two cases. The (1, 1)-coloring problem
is known as the distance-2 coloring problem, which again is
closely related to coloring the square of a graph. The (2, 1)-
coloring problem is also known under the names A-coloring
and radio-coloring. A recent dynamically updated survey
of Calamoneri [3] gives a thorough treatment of known re-
sults on exact solutions and bounds on (h, k)-coloring on
different classes of graphs.

1.1 Owur contributions

We are concerned here with the approximability of the
(h, k)-coloring problem. In particular, we are interested
in how the approximability varies with h and k. Thus,
unlike many treatments where h and k are considered to
be constants, we are primarily concerned with cases where
they are growing functions of n, the number of vertices in
the graph.

*Work partly done while visiting the Graduate School of Infor-
matics, Tokyo Institute of Technology, Oookayama, Meguro, Tokyo
152, Japan.

We give approximation algorithms and give approxima-
tion hardness reductions for (h, k)-coloring on both general
graphs as well as some prominent classes of graphs. Given
that the best performance ratio possible for these classes of
graphs is a polynomial in n, we focus on the exponent for
the polynomial, ignoring lower-order factors. We are able
to derive the best possible exponent for the approximation
of (h, k)-coloring for all values of h and k&, both on general
graphs as well as on bipartite, chordal, and split graphs. A
scaling property shows that it is the ratio between h and
k that matters, which allows us to assume without loss of
generality that k = 1.

For general graphs, the optimal exponent is 1/2 for
h < \/n, and grows after that linearly with h up to h = n.
While the other three classes have the same approxima-
bility for A = 1, they show an interesting divergence as
functions of h. For bipartite graphs the exponent stays
also at 1/2 for h < \/n, but decreases linearly after that.
For chordal and split graphs, the constant decreases uni-
formly with h, with the optimal performance ratio being
about /n/h.

We illustrate the results graphically in Figure 1. We
consider the performance ratio as functions of h, and draw
on a logarithmic scale (with base n). The performance
functions for bipartite, chordal/split, and general graphs
are shown, with the lower and upper bounding matching
in each case.

Our upper bounds are all based on a simple First-Fit
algorithm, sometimes applied to a greedy vertex ordering.
The bounds obtained on that algorithm may be of inde-
pendent interest, as well as the scaling properties derived.
The hardness results utilize the result of Feige and Kilian
[5] of the hardness of computing the chromatic number of a
graph. That result is based on the complexity-theoretic as-
sumption NP # Z PP, that NP does not have polynomial-
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Figure 1: The optimal performance functions for (h, k)-
coloring, with log,, h on z-axis and log,, p(h) on the y-axis

time randomized algorithms. We shall say that a computa-
tion problem is hard if there exists no polynomial-time ran-
domized algorithm for the problem, unless NP = ZPP.

1.2 Previous results

Previous research on (h,k)-coloring problems includes
both exact and inexact bounds on special classes of graphs,
and hardness proofs; see the survey of Calamoneri [3]. The
constructive upper bounds for coloring special classes of
graphs can be viewed as approximation algorithms, while
relative approximation results appear to be rare.

Few approximation results exist on general graphs, or
on classes without constant factor upper bounds. Mostly,
these are restricted to the (1,1)-coloring problem, known
as the distance-2 coloring problem (and closely related to
coloring the square of a graph [2]). McCormick [8] showed
that a greedy algorithm attains an O(y/n)-approximation
(see also [1]). Agnarsson, Greenlaw, and Halldérsson [1]
showed that the problem is hard to approximate within a
factor of n'/2=¢ for any € > 0. This hardness holds also
in the case of bipartite graphs and split graphs.

Few works have been given on approximation algorithm
for (h, k)-coloring, for other values of h and k. Calam-
oneri and Vocca gave [4] an hy/n(1 + o(n))-approximation
algorithm for (h,k)-coloring with h > k, as well as ap-
proximations of bipartite graphs that are asymptotically
min(h, 2k)y/n and (4/3)A? factors. They observe an equiv-
alence in approximating the (h,k)-coloring problem and
the (1,1)-coloring problem, within a linear factor of h.
That implies, for instance, n'/2~¢ approximation hardness
for (h, k)-coloring bipartite graphs, for h constant, using a
result of [1]. Our results extend this to general values of h.

The results of this work are given in the following sec-
tion. We first derive some properties of rounding the sep-
aration requirements, and then analyze the First-Fit algo-
rithm. We use these in the following subsections to give
upper and lower bounds for approximating (h, k)-colorings
in bipartite graphs, general graphs, and chordal and split
graphs.

2 Approximation Results

The span of an (h, k)-coloring ¢ is the value of the largest
color used, plus one', i.e. max,cy () ¥(v) + 1. Let Ay x(G)
denote the minimum span of an (h, k)-coloring of a graph
G. The performance ratio pa of an (h, k)-coloring algo-
rithm A is the maximum ratio between the maximum and
minimum spans, i.e.,

=pa(n) = max AG)
PA = PAT) = V& =n k(@)

Recall that x(G) denotes the minimum number of colors
in an ordinary coloring of graph G, and a(G) is the size of
the maximum independent set of G.

Let d(v) be the number of neighbors of a vertex v and
let A = A(G) be the maximum degree of the graph. Let
ds(v) be the number of vertices of distance 2 from a vertex
v and Ay = max, d2(v) < A(A — 1) be the maximum of
these values over the vertices in the graph. Let n be the
number of vertices in the graph.

2.1 Scaling properties

We first simplify the problems by showing that it suffices
to consider only a restricted subset of possible colorings,
and that we can omit the factor k& with only a small loss
of performance.

It is well known that by uniformly increasing the gap
between the vertices, one obtains a proper coloring with
larger separations.

Observation 2.1 Consider an (h, k)-coloring ¢ with span
A. Then, the coloring ¥¢', given by ¢'(v) = ¥(v) - t, is an
(h-t, k- t)-coloring with span (A —1)-t+ 1.

The converse holds also when the two separation con-
straints have a common divisor.

Lemma 2.2 Consider an (h-t, k- t)-coloring v with span
A. Then, the coloring v', given by

TR

t
is a valid (h, k)-coloring with span | (A —1)/t] + 1.

Proof. Suppose there are vertices u, v whose colors ¢’ (u),
Y'(v) falsify the claim. Then, either v and v are adjacent
and |¢'(u) — ¢'(v)] < h—1, or u and v share a common
neighbor and [¢'(u) — ¢'(v)| < k. Consider the former
case; the other is identical and will be omitted. Write
Y(u) =t-¢Y'(u) +r, and P(v) =t - ' (v) + ry, for some
0< e,y < £. Then, [(u) — (0)] = |t (¢ (w) — ' (4) +
(ry —my)| < Y (w) ="' ()| + |ry — 1| < t(h—1)+t = th.
Then, u and v are not properly (ht, kt)-colored. This is a

INote that the span is frequently defined to be simply the largest
color used. Our definition matches the size of the color palette used,
including the “holes”. The difference is not significant for the ap-
proximation results presented here.



contradiction; hence, the coloring ' is valid. The largest
color under 9 is A — 1, so the largest color under ¢’ is

[(A=1)/t]. ]
When there is no common divisor, one can create one by

rounding up the values with a small increase in the span.

Lemma 2.3 For any integers h, k, consider an (h,k)-
coloring 1 with span \. Then, for any integer t,

¥ (v) = ¥(v) + [¢(v) - t/h]
is a valid ([h/t]t, k)-coloring with span at most (L+t/h)A.

Proof. Let u and v be adjacent vertices and suppose u
receives the larger color of the two by . So, ¢¥(u) >
¥(v) + h. Then the separation of the vertices under v’ is
at least

' (u) = ¢’ (v)

P(u) = () + [P (w)t/h] = [(v)t/h]
> h+ (@) +h)t/h] = [Y(v)t/h]
= h+t

Furthermore, h +t > | (h+t)/t]t > [h/t]t. Also, any pair
of vertices is separated by no lesser amount under ¢’ than
under ¢. Thus, ¢’ is a valid ([h/t]t, k)-coloring.

The span of 1)’ is the value of the largest color used plus
one, or

(A=D1 +[(A=Dt/h])+1 < X+ [At/h]

L(1+t/h)A].

O

Corollary 2.4 The (h, k)-coloring problem is equally hard
to approzimate as the ([h/k],1)-coloring problem, within
a factor of 2.

Proof. Use the preceding two lemmas, with ¢ = k in the
second lemma, we see that An (h, k)-coloring with span A
can be turned in polynomial time into a ([h/k], 1)-coloring
with span at most 2A/k. Also, by Lemma 2.2, a ([h/k])-
coloring with span A’ can be turned in polynomial time
into a ([h/k]k, 1)-coloring, which also is an (h, k)-coloring,
with span A'k. Thus, any transformation between the two
problems can only lose a factor of at most 2. O

In particular, (h, k)-coloring problems with h < k reduce
to the (1,1)-coloring problem within a constant approxi-
mation factor.

2.2 Analysis of First-Fit

The First-Fit (FF) algorithm is one of the simplest coloring
strategies. Processing the vertices in an arbitrary order,
each vertex is assigned the smallest color compatible with
its neighborhood. For the (h,k)-coloring problem, that
means satisfying the distance constraints to the previously
colored neighbors as well as previously colored vertices of
distance two.

First-Fit is an online algorithm, so the upper bounds
proven also give upper bounds on the competitive ratio of
online coloring algorithms. It can also be a component of
a distributed strategy, when complemented by a synchro-
nization primitive.

Lemma 2.5 The span of a First-Fit (h, k)-coloring of a
graph G is at most

FF(G)

IN

max](d3 (v) = d(v) - (2K — 1) + d(v) - (2 — 1)

< Ay-(2k—-1)+A-(2h —2k) + 1.
Further, FF(G) < (n—1)-h+1.

Proof. Each neighbors u of v can cause at most 2h — 1
colors to be unavailable for v to use: h—1 above, h—1 colors
below, and then the color u. Similarly, the ds(v) — d(v)
distance-2 neighbors of v that are not neighbors of v can
each make 2k — 1 unavailable. Finally, there is the single
color used by v. ]

Lemma 2.6 For any graph G, the minimum span of an
(h, k)-coloring of G is bounded below by

Mk(G) > (A=1)-k+h+1.

Proof. Each of the A neighbors of a maximum degree ver-
tex v, as well as v itself, must be mutually & colors apart,
using at least Ak + 1 colors. The separation from v to its
nearest colored neighbor must be an additional h — k. [

Theorem 2.7 The performance ratio of First-Fit, de-
noted as ppr, is at most O(min(A, h/k + +/n)). Further-
more, this is tight within a constant factor, for any com-
bination of the parameters, even in the case of bipartite
graphs.

Proof. By Corollary 2.4, we may assume without loss of
generality that £ = 1. Let G be a graph with n vertices
and maximum degree A, FF(G) be the span of a First-Fit

(h, 1)-coloring of G, and Ap1(G) be the minimum span.

Let ppr = maxg ilj((%)).

By Lemmas 2.5 and 2.6, we have that FF(G) <
min(n, (A —1)A)+A-(2h— 1)+ 1 and Ay 1(G) > A+ h.
Now, (A —1)A/A = A —1 and A(2h —1)/h < 2A, so
FF(G)/ n1(G) < 2A. Also, if A > h+ /n, we have that

FF(G)
Mot (G)

n+ A(2h — 1)
A

< <Vn+ (2 —1).

To see that these bounds are tight, consider the bi-
partite graph B, , which consists of a complete bi-
partite graph K,,,, from which a perfect matching
has been removed. Namely, B, , contains vertices
UL, U2, . vy U, U1, V2, ..., U, and edges (u;,v;) for all i #
j. When the vertices are ordered w1, v1, Uz, V2, - - ., Uy, U,
First-Fit will assign the colors 0,0, h, h, ..., (m—1)h, (m —

1)h, while an optimal coloring uses colors 0,1,...,m —



1,m—14+h,m—1+h+1,...,2(m— 1)+ h. The ratio be-
tween the two spans is at least min(h/2,m —1). By letting
m range from \/n to n/2 and adding edges and degree-1
vertices to allow A to range from m to n —m, we obtain a
tight bound for the second part of the claim. U

2.3 Bipartite graphs

The bound on First-Fit of Lemma 2.5 gives a good upper
bound for bipartite graphs when h/k < /n. We now give
a matching hardness result for this case.

Theorem 2.8 The (h,k)-coloring problem with h/k <
/1 is hard to approximate on bipartite graphs within a
factor of n'/?=¢, for any € > 0.

Proof. We use a hardness construction from [1] for the
distance-2 coloring problem.

Given a graph G on N vertices, we construct a graph H
that contains IV copies u; ¢ of each vertex v; in G along with
additional vertices =1, %a,...,Zn. Let n = N2 + N denote
the number of vertices in H; thus, N = y/n(1l —o(1)). A
copy of vertex v; is adjacent to x; if and only if {v;,v;} is
an edge in G or if ¢« = j. Formally, let

{zi,ui;:1<4,j <N}, and
Ui ujit - {vi,v;} € E(G) ori = j}}

Observe that vertices u; ¢ and u; , must receive different
colors in an (h, 1)-coloring of H iff they are copies of the
same or adjacent vertices in G. Thus, Ay 1(H) > n/a(G).
On the other hand, given a coloring ¢ of G, there ex-
ists a valid (h,1)-coloring of H formed as follows: Use
the color N - ¢(v;) + £ on each vertex u; ¢, and the col-
ors (h + N - x(G)) + ¢(v;) on each vertex x;. The
h + N - x(G) term ensures a proper separation between
adjacent vertices in H, the ¢ term ensures a separation
between copies of the same vertex, and ¢-terms ensures
a separation between copies corresponding to distinct ver-
tices in G. This coloring has a span of h + (N + 1)x(G);
hence, Ap1(G) < (N +1)x(G) + h.

The hardness construction for graph coloring of Feige
and Kilian [5] shows that for any e > 0, it is hard to distin-
guish between graph instances G on N vertices with the fol-
lowing two cases: a) a(G) < N€¢, and b) x(G) < N¢. When
a) holds, then A1 (H) > n/N¢ = Q(n'~¢/?), while when
b) holds, then A, 1 (H) < O(N't€ 4+ h) = O(n'/?t</2 4 h).
Thus, it is hard to distinguish between graphs for which
(h, 1)-colorings require O(n'/2*¢/2 4+ h) colors or Q(n'~</?)
colors. Thus, for any h < /n, we obtain a gap of
min(n'/?=¢ n'=¢/h) = n'/?>=< for any § > 0. For h > \/n,
we obtain a gap of Q(n'~¢/2/h). O

E(H) =

For larger values of h/k, the performance ratio decreases
linearly.

Theorem 2.9 For any h,k, possibly functions of n, the
(h, k)-coloring problem can be approzimated within a factor
of O(min(y/n,n/(h/k))) on bipartite graphs.

Proof. By Corollary 2.4, we may assume without loss
of generality that ¥ = 1. Given a bipartite graph G =
(U,V,E), we color U and V separately, and separate the
color sets by a distance of h. The coloring of each set corre-
sponds to a distance-2 coloring of the induced subgraphs,
which requires at most Ay + 1 colors. In total, the algo-
rithm uses at most 2As + 2 + h < 2A2 + h colors, and
trivially also at most n colors. Compared with the easy
lower bound of A + h, this gives a performance ratio of at
most min(2A,n/h, /n). U

For h > \/n, the reduction of the proof of Theorem 2.8
gives a lower bound of Q(n'~¢/h).

2.4 General graphs

We shall assume in this section that k = 1, by reference to
Corollary 2.4.

The results of Theorems 2.7 and 2.8 essentially conclude
the cases where h < y/n. For general graphs, we can obtain
improved hardness results when h is large.

Theorem 2.10 The (h,1)-coloring problem is hard to ap-
prozimate within a factor of h/n, for anye > 0 and h < n.

Proof. Recall the Feige-Kilian gap. We show that on the
same graph, we obtain a gap of nearly Q(h).

When a(G) < nf, we have that any set of h con-
secutive colors of an (h,1)-coloring can contain at most
a(@G)-vertices. Thus the span of the coloring is at least
nh/a(G) > n'=¢h.

When x(G) < nf, we can construct an (h, 1)-coloring by
coloring the vertices in order of their ordinary color, using
a new color for each vertex, but adding a separation of h
when a new color class is considered. This gives a span of
at most n + (x(G) — 1)h < n +nch. The gap between the
two ratios is therefore at least min(n'=2¢, h/n¢). O

This hardness result is matched by the linear upper
bound of Theorem 2.7 on the performance ratio of First-Fit
for h > /n.

When h is huge, the (h,1)-coloring problem essentially
reduces to ordinary graph coloring.

Lemma 2.11 Consider the (h,1)-coloring problem for a
graph G where h > Ay(G). Then, the (h,1)-coloring and
the ordinary coloring problems are equivalent for G, within
a constant factor.

Proof. Consider an ordinary vertex coloring ¢ of G that
uses x(G) < A < hcolors. Also, let ¢ be a proper distance-
2 coloring of G, using at most As+1 < min(A(A—1)+1,n)
colors. Form an (h, 1)-coloring ¥’ of G by

P! (v) =2k () + ¢(v).

Then, vertices v and v assigned different color by ¢ are
separated by at least 2h — |p(u) — ¢(v)| > 2h — Ay > h



colors under ¢'. Also, vertices of distance 2 have a different
¢-value, and will therefore be assigned different colors in
Y'. The span of this coloring is at most 2h(x + 1).

On the other hand, by Lemma 2.2, an (h, 1)-coloring v’
of G of span A can be turned into an ordinary coloring by

b(v) = [2¢'(v)/h]

with span at most 2A/h. It follows that Ap1(G) =
6(hx(G)). Hence, the approximabilities of graph color-
ing and (h, 1)-coloring with A > A are equivalent within a
constant factor. U

In particular, we can state that (h,k)-coloring is
O(n(loglogn)?/log® n)-approximable, given the best per-
formance ratio currently known for graph coloring of [7].

2.5 Chordal graphs

A graph G = (V,E) is chordal iff there is a simplicial
ordering vi,vs,...,v, of the vertices so that each vertex
v; forms a clique with its neigbors v; of higher index, j >
i. First-Fit is known to be an optimal coloring algorithm
when applied on a reverse simplicial ordering of a chordal
graph. We find that it also gives close to the best possible
performance ratio for (h, k)-coloring chordal graphs.

Theorem 2.12 First-Fit applied on a reverse simplicial
ordering of a chordal graph attains a performance ratio of

O(+\/nk/h) for (h,k)-coloring.

Proof. In a reverse simplicial ordering, each vertex is pre-
ceded by at most w — 1 of its neighbors, where w = x(G) is
the clique number of the chordal graph. Further, it is pre-
ceded by at most min(n, (w — 1)(A — 1)) distance-2 neigh-
bors. As in previous arguments for FF, the color used on
a vertex v is at most 2h — 1 times the number of previ-
ously colored neighbors plus 2k — 1 times the number of
previously colored distance-2 neighbors plus one. Thus,
the number of colors used is at most

FF(G) < 2h(w — 1) + 2kmin(n, (w — 1)(A = 1)) + 1.

An optimal (h,1)-coloring uses at least h(w — 1) + 1
colors (forced by a maximum clique), and also at least
EA + 1 colors (forced by a largest neighborhood). This
means that the performance ratio of F'F' is at most

2h(w—1)4+1 2kmin(n, (w—1)A)
prE hw—-1)+1 ' max(h(w — 1), kA)
< 242 min(%, %)

A

< 2+ 2y/nk/h,

where the last inequality is obtained by taking the geomet-
ric mean of the two terms. [

We give a nearly matching lower bound, again modifying
the hardness construction of [1]. It holds for a restricted
subclass of chordal graphs called split graphs. A graph is
a split graph if its vertex set is a union of a clique and an
independent set.

Theorem 2.13 The (h, 1)-coloring problem is hard to ap-
prozimate on split graphs within a factor of (n/h)'/>=¢, for
any € > 0.

Proof. Given a graph G on N vertices, construct a graph
H that contains hV copies u; ¢ of each vertex v; in G along
with an additional clique on N vertices z1,zs,...,zN. Let
n = hN? + N denote the number of vertices in H; thus,
N = /n/h(1 —o(1)). A copy of vertex v; is adjacent to
the j-th clique vertex x; if and only if {v;,v;} is an edge
in G orif i =j.

Observe that vertices u; ¢ and u;  must receive different
colors in an (h,1)-coloring of H iff they are copies of the
same or adjacent vertices in G. Thus, Ay 1(H) > n/a(G).
On the other hand, given a coloring ¢ of G, there exists a
valid (h,1)-coloring of H formed as follows: Use the color
jh on vertex z;, for j = 1,...,N, and the color Nh +
Nh - ¢(v;) + € on vertex u;y, for each i = 1,...,N and
£=1,...,Nh. This coloring has a span of 2Nh+ Nhyx(G);
hence, Ap1(G) < Nh(x(G) +2).

If a(G) < N¢ then M\ (G) > n'~ <% while if
X(G) < N¢, then A\, 1(G) < h(n/h)Y/?*</2. Hence, by
the Feige and Kilian result, there is an approximation gap

of (n/h)/?>~¢. O
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