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tionThe (h; k)-
oloring problem, better known as the L(h; k)-labelling problem, is that of vertex 
oloring an undire
tedgraph G with non-negative integers so that adja
ent ver-ti
es re
eive 
olors that di�er by at least h and verti
esof distan
e 2 re
eive 
olors that di�er by at least k. Thisproblem was introdu
ed by Griggs and Yeh [6℄ (in the 
aseh = 2 and k = 1) to model a frequen
y assignment prob-lem, where wireless transmitter/re
eivers must be assignedfrequen
ies without 
ausing interferen
e.A large body of resear
h has developed through theyears on (h; k)-
oloring problems, parti
ularly in relationto 
hannel assignment in wireless networks. Most of thate�ort has been on two 
ases. The (1; 1)-
oloring problemis known as the distan
e-2 
oloring problem, whi
h again is
losely related to 
oloring the square of a graph. The (2; 1)-
oloring problem is also known under the names �-
oloringand radio-
oloring. A re
ent dynami
ally updated surveyof Calamoneri [3℄ gives a thorough treatment of known re-sults on exa
t solutions and bounds on (h; k)-
oloring ondi�erent 
lasses of graphs.1.1 Our 
ontributionsWe are 
on
erned here with the approximability of the(h; k)-
oloring problem. In parti
ular, we are interestedin how the approximability varies with h and k. Thus,unlike many treatments where h and k are 
onsidered tobe 
onstants, we are primarily 
on
erned with 
ases wherethey are growing fun
tions of n, the number of verti
es inthe graph.�Work partly done while visiting the Graduate S
hool of Infor-mati
s, Tokyo Institute of Te
hnology, Oookayama, Meguro, Tokyo152, Japan.

We give approximation algorithms and give approxima-tion hardness redu
tions for (h; k)-
oloring on both generalgraphs as well as some prominent 
lasses of graphs. Giventhat the best performan
e ratio possible for these 
lasses ofgraphs is a polynomial in n, we fo
us on the exponent forthe polynomial, ignoring lower-order fa
tors. We are ableto derive the best possible exponent for the approximationof (h; k)-
oloring for all values of h and k, both on generalgraphs as well as on bipartite, 
hordal, and split graphs. As
aling property shows that it is the ratio between h andk that matters, whi
h allows us to assume without loss ofgenerality that k = 1.For general graphs, the optimal exponent is 1=2 forh � pn, and grows after that linearly with h up to h = n.While the other three 
lasses have the same approxima-bility for h = 1, they show an interesting divergen
e asfun
tions of h. For bipartite graphs the exponent staysalso at 1=2 for h � pn, but de
reases linearly after that.For 
hordal and split graphs, the 
onstant de
reases uni-formly with h, with the optimal performan
e ratio beingabout pn=h.We illustrate the results graphi
ally in Figure 1. We
onsider the performan
e ratio as fun
tions of h, and drawon a logarithmi
 s
ale (with base n). The performan
efun
tions for bipartite, 
hordal/split, and general graphsare shown, with the lower and upper bounding mat
hingin ea
h 
ase.Our upper bounds are all based on a simple First-Fitalgorithm, sometimes applied to a greedy vertex ordering.The bounds obtained on that algorithm may be of inde-pendent interest, as well as the s
aling properties derived.The hardness results utilize the result of Feige and Kilian[5℄ of the hardness of 
omputing the 
hromati
 number of agraph. That result is based on the 
omplexity-theoreti
 as-sumption NP 6= ZPP , that NP does not have polynomial-1
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Figure 1: The optimal performan
e fun
tions for (h; k)-
oloring, with logn h on x-axis and logn �(h) on the y-axistime randomized algorithms. We shall say that a 
omputa-tion problem is hard if there exists no polynomial-time ran-domized algorithm for the problem, unless NP = ZPP .1.2 Previous resultsPrevious resear
h on (h; k)-
oloring problems in
ludesboth exa
t and inexa
t bounds on spe
ial 
lasses of graphs,and hardness proofs; see the survey of Calamoneri [3℄. The
onstru
tive upper bounds for 
oloring spe
ial 
lasses ofgraphs 
an be viewed as approximation algorithms, whilerelative approximation results appear to be rare.Few approximation results exist on general graphs, oron 
lasses without 
onstant fa
tor upper bounds. Mostly,these are restri
ted to the (1; 1)-
oloring problem, knownas the distan
e-2 
oloring problem (and 
losely related to
oloring the square of a graph [2℄). M
Cormi
k [8℄ showedthat a greedy algorithm attains an O(pn)-approximation(see also [1℄). Agnarsson, Greenlaw, and Halld�orsson [1℄showed that the problem is hard to approximate within afa
tor of n1=2��, for any � > 0. This hardness holds alsoin the 
ase of bipartite graphs and split graphs.Few works have been given on approximation algorithmfor (h; k)-
oloring, for other values of h and k. Calam-oneri and Vo

a gave [4℄ an hpn(1 + o(n))-approximationalgorithm for (h; k)-
oloring with h > k, as well as ap-proximations of bipartite graphs that are asymptoti
allymin(h; 2k)pn and (4=3)�2 fa
tors. They observe an equiv-alen
e in approximating the (h; k)-
oloring problem andthe (1; 1)-
oloring problem, within a linear fa
tor of h.That implies, for instan
e, n1=2�� approximation hardnessfor (h; k)-
oloring bipartite graphs, for h 
onstant, using aresult of [1℄. Our results extend this to general values of h.The results of this work are given in the following se
-tion. We �rst derive some properties of rounding the sep-aration requirements, and then analyze the First-Fit algo-rithm. We use these in the following subse
tions to giveupper and lower bounds for approximating (h; k)-
oloringsin bipartite graphs, general graphs, and 
hordal and splitgraphs.

2 Approximation ResultsThe span of an (h; k)-
oloring  is the value of the largest
olor used, plus one1, i.e. maxv2V (G)  (v)+1. Let �h;k(G)denote the minimum span of an (h; k)-
oloring of a graphG. The performan
e ratio �A of an (h; k)-
oloring algo-rithm A is the maximum ratio between the maximum andminimum spans, i.e.,�A = �A(n) = maxG;jV (G)j=n A(G)�h;k(G) :Re
all that �(G) denotes the minimum number of 
olorsin an ordinary 
oloring of graph G, and �(G) is the size ofthe maximum independent set of G.Let d(v) be the number of neighbors of a vertex v andlet � = �(G) be the maximum degree of the graph. Letd2(v) be the number of verti
es of distan
e 2 from a vertexv and �2 = maxv d2(v) � �(� � 1) be the maximum ofthese values over the verti
es in the graph. Let n be thenumber of verti
es in the graph.2.1 S
aling propertiesWe �rst simplify the problems by showing that it suÆ
esto 
onsider only a restri
ted subset of possible 
olorings,and that we 
an omit the fa
tor k with only a small lossof performan
e.It is well known that by uniformly in
reasing the gapbetween the verti
es, one obtains a proper 
oloring withlarger separations.Observation 2.1 Consider an (h; k)-
oloring  with span�. Then, the 
oloring  0, given by  0(v) =  (v) � t, is an(h � t; k � t)-
oloring with span (�� 1) � t+ 1.The 
onverse holds also when the two separation 
on-straints have a 
ommon divisor.Lemma 2.2 Consider an (h � t; k � t)-
oloring  with span�. Then, the 
oloring  0, given by 0(v) = � (v)t � ;is a valid (h; k)-
oloring with span b(�� 1)=t
+ 1.Proof. Suppose there are verti
es u; v whose 
olors  0(u), 0(v) falsify the 
laim. Then, either u and v are adja
entand j 0(u) �  0(v)j � h � 1, or u and v share a 
ommonneighbor and j 0(u) �  0(v)j < k. Consider the former
ase; the other is identi
al and will be omitted. Write (u) = t �  0(u) + rv and  (v) = t �  0(v) + ru, for some0 � rv ; ru < t. Then, j (u)� (v)j = jt � ( 0(u)� 0(v)) +(ru�rv)j � t � j 0(u)� 0(v)j+ jru�rv j < t(h�1)+ t = th.Then, u and v are not properly (ht; kt)-
olored. This is a1Note that the span is frequently de�ned to be simply the largest
olor used. Our de�nition mat
hes the size of the 
olor palette used,in
luding the \holes". The di�eren
e is not signi�
ant for the ap-proximation results presented here.2




ontradi
tion; hen
e, the 
oloring  0 is valid. The largest
olor under  is � � 1, so the largest 
olor under  0 isb(�� 1)=t
.When there is no 
ommon divisor, one 
an 
reate one byrounding up the values with a small in
rease in the span.Lemma 2.3 For any integers h, k, 
onsider an (h; k)-
oloring  with span �. Then, for any integer t, 0(v) =  (v) + b (v) � t=h
is a valid (dh=tet; k)-
oloring with span at most (1+ t=h)�.Proof. Let u and v be adja
ent verti
es and suppose ure
eives the larger 
olor of the two by  . So,  (u) � (v) + h. Then the separation of the verti
es under  0 isat least 0(u)�  0(v) =  (u)�  (v) + b (u)t=h
 � b (v)t=h
� h+ b( (v) + h)t=h
 � b (v)t=h
= h+ t:Furthermore, h+ t � b(h+ t)=t
t � dh=tet. Also, any pairof verti
es is separated by no lesser amount under  0 thanunder  . Thus,  0 is a valid (dh=tet; k)-
oloring.The span of  0 is the value of the largest 
olor used plusone, or((�� 1) + b(�� 1)t=h
) + 1 � �+ b�t=h
= b(1 + t=h)�
:Corollary 2.4 The (h; k)-
oloring problem is equally hardto approximate as the (dh=ke; 1)-
oloring problem, withina fa
tor of 2.Proof. Use the pre
eding two lemmas, with t = k in these
ond lemma, we see that An (h; k)-
oloring with span �
an be turned in polynomial time into a (dh=ke; 1)-
oloringwith span at most 2�=k. Also, by Lemma 2.2, a (dh=ke)-
oloring with span �0 
an be turned in polynomial timeinto a (dh=kek; 1)-
oloring, whi
h also is an (h; k)-
oloring,with span �0k. Thus, any transformation between the twoproblems 
an only lose a fa
tor of at most 2.In parti
ular, (h; k)-
oloring problems with h < k redu
eto the (1; 1)-
oloring problem within a 
onstant approxi-mation fa
tor.2.2 Analysis of First-FitThe First-Fit (FF) algorithm is one of the simplest 
oloringstrategies. Pro
essing the verti
es in an arbitrary order,ea
h vertex is assigned the smallest 
olor 
ompatible withits neighborhood. For the (h; k)-
oloring problem, thatmeans satisfying the distan
e 
onstraints to the previously
olored neighbors as well as previously 
olored verti
es ofdistan
e two.

First-Fit is an online algorithm, so the upper boundsproven also give upper bounds on the 
ompetitive ratio ofonline 
oloring algorithms. It 
an also be a 
omponent ofa distributed strategy, when 
omplemented by a syn
hro-nization primitive.Lemma 2.5 The span of a First-Fit (h; k)-
oloring of agraph G is at mostFF (G) � maxv2V [(d2(v) � d(v) � (2k � 1) + d(v) � (2h� 1)℄� �2 � (2k � 1) + � � (2h� 2k) + 1:Further, FF (G) � (n� 1) � h+ 1.Proof. Ea
h neighbors u of v 
an 
ause at most 2h � 1
olors to be unavailable for v to use: h�1 above, h�1 
olorsbelow, and then the 
olor u. Similarly, the d2(v) � d(v)distan
e-2 neighbors of v that are not neighbors of v 
anea
h make 2k � 1 unavailable. Finally, there is the single
olor used by v.Lemma 2.6 For any graph G, the minimum span of an(h; k)-
oloring of G is bounded below by�h;k(G) � (�� 1) � k + h+ 1.Proof. Ea
h of the � neighbors of a maximum degree ver-tex v, as well as v itself, must be mutually k 
olors apart,using at least �k + 1 
olors. The separation from v to itsnearest 
olored neighbor must be an additional h� k.Theorem 2.7 The performan
e ratio of First-Fit, de-noted as �FF , is at most O(min(�; h=k +pn)). Further-more, this is tight within a 
onstant fa
tor, for any 
om-bination of the parameters, even in the 
ase of bipartitegraphs.Proof. By Corollary 2.4, we may assume without loss ofgenerality that k = 1. Let G be a graph with n verti
esand maximum degree �, FF (G) be the span of a First-Fit(h; 1)-
oloring of G, and �h;1(G) be the minimum span.Let �FF = maxG FF (G)�h;1(G) .By Lemmas 2.5 and 2.6, we have that FF (G) �min(n; (�� 1)�) +� � (2h� 1) + 1 and �h;1(G) � �+ h.Now, (� � 1)�=� = � � 1 and �(2h � 1)=h � 2�, soFF (G)=�h;1(G) � 2�. Also, if � > h+pn, we have thatFF (G)�h;1(G) � n+�(2h� 1)� � pn+ (2h� 1):To see that these bounds are tight, 
onsider the bi-partite graph Bm;m whi
h 
onsists of a 
omplete bi-partite graph Km;m from whi
h a perfe
t mat
hinghas been removed. Namely, Bm;m 
ontains verti
esu1; u2; : : : ; um; v1; v2; : : : ; vm, and edges (ui; vj) for all i 6=j. When the verti
es are ordered u1; v1; u2; v2; : : : ; um; vm,First-Fit will assign the 
olors 0; 0; h; h; : : : ; (m�1)h; (m�1)h, while an optimal 
oloring uses 
olors 0; 1; : : : ;m �3



1;m� 1+h;m� 1+h+1; : : : ; 2(m� 1)+h. The ratio be-tween the two spans is at least min(h=2;m�1). By lettingm range from pn to n=2 and adding edges and degree-1verti
es to allow � to range from m to n�m, we obtain atight bound for the se
ond part of the 
laim.2.3 Bipartite graphsThe bound on First-Fit of Lemma 2.5 gives a good upperbound for bipartite graphs when h=k � pn. We now givea mat
hing hardness result for this 
ase.Theorem 2.8 The (h; k)-
oloring problem with h=k �pn is hard to approximate on bipartite graphs within afa
tor of n1=2��, for any � > 0.Proof. We use a hardness 
onstru
tion from [1℄ for thedistan
e-2 
oloring problem.Given a graph G on N verti
es, we 
onstru
t a graph Hthat 
ontainsN 
opies ui;` of ea
h vertex vi inG along withadditional verti
es x1; x2; : : : ; xN . Let n = N2+N denotethe number of verti
es in H ; thus, N = pn(1 � o(1)). A
opy of vertex vi is adja
ent to xj if and only if fvi; vjg isan edge in G or if i = j. Formally, letV (H) = fxi; ui;j : 1 � i; j � Ng; andE(H) = ffxi; uj;lg : fvi; vjg 2 E(G) or i = jggObserve that verti
es ui;` and uj;k must re
eive di�erent
olors in an (h; 1)-
oloring of H i� they are 
opies of thesame or adja
ent verti
es in G. Thus, �h;1(H) � n=�(G).On the other hand, given a 
oloring � of G, there ex-ists a valid (h; 1)-
oloring of H formed as follows: Usethe 
olor N � �(vi) + ` on ea
h vertex ui;`, and the 
ol-ors (h + N � �(G)) + �(vj) on ea
h vertex xj . Theh + N � �(G) term ensures a proper separation betweenadja
ent verti
es in H , the ` term ensures a separationbetween 
opies of the same vertex, and �-terms ensuresa separation between 
opies 
orresponding to distin
t ver-ti
es in G. This 
oloring has a span of h + (N + 1)�(G);hen
e, �h;1(G) � (N + 1)�(G) + h.The hardness 
onstru
tion for graph 
oloring of Feigeand Kilian [5℄ shows that for any � > 0, it is hard to distin-guish between graph instan
esG onN verti
es with the fol-lowing two 
ases: a) �(G) � N �, and b) �(G) � N �. Whena) holds, then �h;1(H) � n=N � = 
(n1��=2), while whenb) holds, then �h;1(H) � O(N1+� + h) = O(n1=2+�=2 + h).Thus, it is hard to distinguish between graphs for whi
h(h; 1)-
olorings require O(n1=2+�=2+h) 
olors or 
(n1��=2)
olors. Thus, for any h � pn, we obtain a gap ofmin(n1=2��; n1��=h) = n1=2��, for any Æ > 0. For h � pn,we obtain a gap of 
(n1��=2=h).For larger values of h=k, the performan
e ratio de
reaseslinearly.Theorem 2.9 For any h; k, possibly fun
tions of n, the(h; k)-
oloring problem 
an be approximated within a fa
torof O(min(pn; n=(h=k))) on bipartite graphs.

Proof. By Corollary 2.4, we may assume without lossof generality that k = 1. Given a bipartite graph G =(U; V;E), we 
olor U and V separately, and separate the
olor sets by a distan
e of h. The 
oloring of ea
h set 
orre-sponds to a distan
e-2 
oloring of the indu
ed subgraphs,whi
h requires at most �2 + 1 
olors. In total, the algo-rithm uses at most 2�2 + 2 + h � 2�2 + h 
olors, andtrivially also at most n 
olors. Compared with the easylower bound of �+ h, this gives a performan
e ratio of atmost min(2�; n=h;pn).For h � pn, the redu
tion of the proof of Theorem 2.8gives a lower bound of 
(n1��=h).2.4 General graphsWe shall assume in this se
tion that k = 1, by referen
e toCorollary 2.4.The results of Theorems 2.7 and 2.8 essentially 
on
ludethe 
ases where h � pn. For general graphs, we 
an obtainimproved hardness results when h is large.Theorem 2.10 The (h; 1)-
oloring problem is hard to ap-proximate within a fa
tor of h=n�, for any � > 0 and h � n.Proof. Re
all the Feige-Kilian gap. We show that on thesame graph, we obtain a gap of nearly 
(h).When �(G) � n�, we have that any set of h 
on-se
utive 
olors of an (h; 1)-
oloring 
an 
ontain at most�(G)-verti
es. Thus the span of the 
oloring is at leastnh=�(G) � n1��h.When �(G) � n�, we 
an 
onstru
t an (h; 1)-
oloring by
oloring the verti
es in order of their ordinary 
olor, usinga new 
olor for ea
h vertex, but adding a separation of hwhen a new 
olor 
lass is 
onsidered. This gives a span ofat most n+ (�(G)� 1)h � n+ n�h. The gap between thetwo ratios is therefore at least min(n1�2�; h=n�).This hardness result is mat
hed by the linear upperbound of Theorem 2.7 on the performan
e ratio of First-Fitfor h > pn.When h is huge, the (h; 1)-
oloring problem essentiallyredu
es to ordinary graph 
oloring.Lemma 2.11 Consider the (h; 1)-
oloring problem for agraph G where h � �2(G). Then, the (h; 1)-
oloring andthe ordinary 
oloring problems are equivalent for G, withina 
onstant fa
tor.Proof. Consider an ordinary vertex 
oloring  of G thatuses �(G) � � � h 
olors. Also, let � be a proper distan
e-2 
oloring of G, using at most �2+1 � min(�(��1)+1; n)
olors. Form an (h; 1)-
oloring  0 of G by 0(v) = 2h �  (v) + �(v):Then, verti
es u and v assigned di�erent 
olor by  areseparated by at least 2h � j�(u) � �(v)j � 2h � �2 � h4




olors under  0. Also, verti
es of distan
e 2 have a di�erent�-value, and will therefore be assigned di�erent 
olors in 0. The span of this 
oloring is at most 2h(�+ 1).On the other hand, by Lemma 2.2, an (h; 1)-
oloring  0of G of span � 
an be turned into an ordinary 
oloring by (v) = b2 0(v)=h
with span at most 2�=h. It follows that �h;1(G) =�(h�(G)). Hen
e, the approximabilities of graph 
olor-ing and (h; 1)-
oloring with h � � are equivalent within a
onstant fa
tor.In parti
ular, we 
an state that (h; k)-
oloring isO(n(log logn)2= log3 n)-approximable, given the best per-forman
e ratio 
urrently known for graph 
oloring of [7℄.2.5 Chordal graphsA graph G = (V;E) is 
hordal i� there is a simpli
ialordering v1; v2; : : : ; vn of the verti
es so that ea
h vertexvi forms a 
lique with its neigbors vj of higher index, j >i. First-Fit is known to be an optimal 
oloring algorithmwhen applied on a reverse simpli
ial ordering of a 
hordalgraph. We �nd that it also gives 
lose to the best possibleperforman
e ratio for (h; k)-
oloring 
hordal graphs.Theorem 2.12 First-Fit applied on a reverse simpli
ialordering of a 
hordal graph attains a performan
e ratio ofO(pnk=h) for (h; k)-
oloring.Proof. In a reverse simpli
ial ordering, ea
h vertex is pre-
eded by at most !�1 of its neighbors, where ! = �(G) isthe 
lique number of the 
hordal graph. Further, it is pre-
eded by at most min(n; (!� 1)(�� 1)) distan
e-2 neigh-bors. As in previous arguments for FF, the 
olor used ona vertex v is at most 2h � 1 times the number of previ-ously 
olored neighbors plus 2k � 1 times the number ofpreviously 
olored distan
e-2 neighbors plus one. Thus,the number of 
olors used is at mostFF (G) � 2h(! � 1) + 2kmin(n; (! � 1)(�� 1)) + 1:An optimal (h; 1)-
oloring uses at least h(! � 1) + 1
olors (for
ed by a maximum 
lique), and also at leastk� + 1 
olors (for
ed by a largest neighborhood). Thismeans that the performan
e ratio of FF is at most�FF � 2h(! � 1) + 1h(! � 1) + 1 + 2kmin(n; (! � 1)�)max(h(! � 1); k�)� 2 + 2min( n� ; �kh )� 2 + 2pnk=h;where the last inequality is obtained by taking the geomet-ri
 mean of the two terms.We give a nearly mat
hing lower bound, again modifyingthe hardness 
onstru
tion of [1℄. It holds for a restri
tedsub
lass of 
hordal graphs 
alled split graphs. A graph isa split graph if its vertex set is a union of a 
lique and anindependent set.

Theorem 2.13 The (h; 1)-
oloring problem is hard to ap-proximate on split graphs within a fa
tor of (n=h)1=2��, forany � > 0.Proof. Given a graph G on N verti
es, 
onstru
t a graphH that 
ontains hN 
opies ui;` of ea
h vertex vi in G alongwith an additional 
lique on N verti
es x1; x2; : : : ; xN . Letn = hN2 + N denote the number of verti
es in H ; thus,N = pn=h(1 � o(1)). A 
opy of vertex vi is adja
ent tothe j-th 
lique vertex xj if and only if fvi; vjg is an edgein G or if i = j.Observe that verti
es ui;` and uj;k must re
eive di�erent
olors in an (h; 1)-
oloring of H i� they are 
opies of thesame or adja
ent verti
es in G. Thus, �h;1(H) � n=�(G).On the other hand, given a 
oloring � of G, there exists avalid (h; 1)-
oloring of H formed as follows: Use the 
olorjh on vertex xj , for j = 1; : : : ; N , and the 
olor Nh +Nh � �(vi) + ` on vertex ui;`, for ea
h i = 1; : : : ; N and` = 1; : : : ; Nh. This 
oloring has a span of 2Nh+Nh�(G);hen
e, �h;1(G) � Nh(�(G) + 2).If �(G) � N �, then �h;1(G) � n1��=2, while if�(G) � N �, then �h;1(G) � h(n=h)1=2+�=2. Hen
e, bythe Feige and Kilian result, there is an approximation gapof (n=h)1=2��.REFERENCES[1℄ G. Agnarsson, R. Greenlaw, and M. M. Halld�orsson.On powers of 
hordal graphs and their 
olorings. Con-gressus Numerantium, 142{147, 2000.[2℄ G. Agnarsson and M. M. Halld�orsson. Coloring powersof planar graphs. SIAM J. Dis
. Math., 16(4):651{662,2003.[3℄ T. Calamoneri. The L(h; k)-labelling problem: A sur-vey. Te
hni
al Report Te
h. Rep. 04/2004, Dept.of Computer S
ien
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