
Return of the Boss Problem: Competing Online Against aNon-Adaptive AdversaryMagnús M. Halldórsson∗ Hadas Sha
hnai†Abstra
tWe follow the travails of Enzo the baker, Orsino the oven man, and Beppe the planner. Theirsituation have a 
ommon theme: They know the input, in the form of a sequen
e of items, andthey are not 
omputationally 
onstrained. Their issue is that they don't know in advan
e thetime of re
koning, i.e. when their boss might show up, when they will be measured in terms oftheir progress on the pre�x of the input sequen
e seen so far. Their goal is therefore to �nd aparti
ular solution whose size on any pre�x of the known input sequen
e is within best possibleperforman
e guarantees.
1 Doing OK When the Boss Shows up : Prefix Optimization

1.1 Enzo’s Order Signups: Prefix Interval SelectionEnzo groaned with his arms 
urled over his head: �I'm in a �x � big-time. He's going to 
at
h meat the worst possible moment.��Who is?�, I inquire.�My boss 
ould show up at any moment, and if I haven't signed up for my share, I 
an kiss my
onfetteria dream goodbye.��So, why don't you? You 
an do it. You've got the brawn to handle any set of orders, andyou've got the brains to �gure out what is the maximum set that 
an be handled by a single person.What's holding you ba
k?�He slumps still lower in the seat. �It's not a matter of pro
essing or 
omputational power. Yes,I 
an �gure it all out. I even know all the orders in advan
e; we always get the same set of orderson Fridays. So, of 
ourse, I 
ould just �nd an optimal solution. But that's of no use.��Now you really got me. You know everything and you 
an do anything, what 
ould possibly bethe problem?��Yeah, it's kind of funny. Look, let me explain the whole setup. Orders to the bakery arrive in asequen
e. Ea
h order has a given pi
kup time, and sin
e people expe
t it to straight from the ovenwhen they pi
k it up, it really means that the time for making it is �xed. �Instan
e spe
: Given is a sequen
e In = 〈I1, I2, . . . , In〉, where ea
h Ii is an intervalin ℜ.
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�As soon as an order arrives, I have to either sign up for it or assign it to somebody else. I 
an'twork on two orders at the same time; they need my total 
on
entration. We've got plenty of otherguys that 
an handle those that I don't do. �Solution spe
: Produ
e a subsequen
e I ′ of intervals from In su
h that no pair ofintervals Ia, Ib in I ′ overlap, i.e. Ia ∩ Ib = ∅.More generally, we seek an independent set in a given graph G; in the above situation
G is an interval graph.�A
tually, I 
an de
ide the whole thing in advan
e, be
ause I do know all the orders that arrive �we always get the same set of orders on that day of the week. But, that stupid boss doesn't knowit, and he won't believe it.��He insists on 
he
king on me at any time to 'size me up for the big job', as he 
alls it. And, thefrustrating thing is that when he does, all that matters to him is how many orders I've then signedup for.�This sort of makes sense to me. �So, you want to maintain always a good e�
ien
y index. Imean, that what you've gotten, when the boss shows up, should be a large fra
tion of what 
ouldpossibly be gotten if you'd knew when he shows up. Right?��Yeah, that's it. Or, maybe it's more of a sloth index.��There's a 
at
h here, though: you 
an't ever hope to get a good ratio! You see, suppose the�rst order was so long that it took all of your available time. Well, if you take it, you 
an't takeanything else, and you're doomed. But if you don't take it, then if the boss shows up then, you'vegot an in�nitely poor sloth index!��I knew it, I'm doomed� he whined.�No, relax. You just need to modify your expe
tations a bit. You do try to minimize the ratio,but you 
ount an empty solution as of size one. Whi
h is fair, what di� does a single order make?�Performan
e evaluation: For ea
h pre�x Ip = 〈I1, I2, . . . , Ip〉, the performan
e onthe pre�x is the quantity

ρp = ρp(I ′) =
α(Ip)

|I ′ ∩ Ip| + 1
,where α(Ip) is the maximum set of disjoint intervals in Ip. The obje
tive is to minimize

ρ = maxn
p=1 ρp, the worst performan
e on any pre�x.�Yeah, ok. But it's still a Cat
h-22 situation: no matter what I do, I'm doomed. If I startgrabbing orders as soon as they arrive, I won't be able to take on so many of the later orders, andhe'll take me to task at the end of the day. But if I try to wait until the best set of orders startsshowing up, he'll think I'm a lazy SOB that 
an't get started in the morning. There's no point eventrying to explain to him how thinking ahead 
ould help. It's so Kafkaesque it's not even funny,� hegrumbles and shakes his head.�Right, well, let's think 
onstru
tively, and at least try to do the best we 
an. There is, by theway, a possibility that you 
an do better if you �ip 
oins. ��I'm not interested in some kind of average 
ase.��This is di�erent. It means that no matter what how tri
ky your boss may be and even if heknows your solution strategy, you will always a
hieve some performan
e guarantee at the time hestops by. However, the guarantee is in expe
tation over the random 
oin �ips, and not worst 
ase...�

2



Randomized performan
e: In the randomized 
ase, a solution is a probability dis-tribution π over the independent sets of the input graph G. The expe
ted solution size
Eπ[Ip] on pre�x Ip is the weighted sum Eπ[Ip] =

∑

I′ Prπ[I ′] · |I ′ ∩ Ip|, where I ′ rangesover all independent sets in G. The performan
e ratio is then ρ = maxn
p=1

α(Ip)
Eπ[Ip] .

1.2 Other prefix problems�Right. BTW, some of the other guys are in similar situations, although they all have di�erenttypes of tasks. For instan
e, Orsino the oven guy has to lay out the goods to be baked onto thebaking plates. Not everything 
an go onto the same plate; it's not just the temperature, but, forinstan
e, the slushy items 
an't go with the dry ones, square items will mess up the round ones,and the fragran
e of 
ertain items will a�e
t other items, and so on. So, he needs to lay out all thegoods onto the plates, and to do so as soon as they've been prepared.��The problem is that if he uses more plates than ne
essary for the items ready at that time, theboss will get angry.�Pre�x Coloring: Given an ordered graph G, i.e. with an ordered vertex set V =

〈v1, v2, . . . , vn〉, �nd a 
oloring C of G su
h that ρ = maxn
p=1

C(Gp)
χ(Gp) is minimized, where

Gp is the graph indu
ed by 〈v1, v2, . . . , vp〉, C(Gp) is the number of 
olors that C useson Gp and χ(Gp) is the 
hromati
 number of Gp.Something about this rang a bell with me. �A
tually, this really reminds me of this 
hap Beppedoing urban planning for the 
ity. They had these new servers being set up all the time, ea
h havinglinks to some of the earlier ones. They had to have guards on one side of ea
h link to prote
t againstunauthorized entry. As soon as a server was set up, they had to de
ide there and then whetherto make it a guard, be
ause the 
ost of 
onverting an older server into a guard was prohibitive.Of 
ourse, they 
ould have made every server a guard, but that not only was time 
onsuming butlooked spe
ta
ularly stupid.��Every now and then, some wise-
ra
k newspaper reporter would look at the guard installationsin the 
ity and try to s
ore point by dis
overing `waste in the system', that mu
h fewer were neededfor the situation at that time. Of 
ourse, there never was any point in try to 
ountera
t by showingthat this would be needed in the future; by the time su
h 
orre
tions 
ame to light, nobody wasinterested in the story any more.�Pre�x Vertex Cover: Given an ordered graph G, �nd a vertex 
over C of G su
h that
ρ = maxn

p=1
C(Gp)

V C(Gp) is minimized, C(Gp) = C ∩Vp is the number of nodes from C in thepre�x set Vp, and V C(Gp) is the vertex 
over number of Gp.
1.3 Related workEnzo now stands up and looks me straight in the eye: �What should I do? You're the math guy,
an you solve this?�I instin
tively 
url my shoulders, �I'm more of a CS guy, a
tually. In any 
ase, your problemdoesn't really fall into any of our usual 
ategories. I mean, it's not really online, sin
e you knowthe whole input in advan
e. It's also not o�ine, sin
e we don't know the length of the pre�x wherewe will be measured. It's also not really a 
omputational issue, sin
e you're not 
omputationally
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bounded. It is a question about robustness: performing well on all of a set of sub-instan
es; herethe sub-instan
es are the pre�xes.�Hassin and Rubinstein [12℄ gave a weighted mat
hing algorithm that gave a√2-performan
eguarantee for the total weight of the p-heaviest edges, for all p.There are various works where robustness is with respe
t to a 
lass of obje
tive fun
tion.One prominent examples are those of s
heduling under any Lp-norm [3, 2℄. Goel andMeyerson [11℄ gave a general s
heme for minimizing 
onvex 
ost fun
tions, su
h as inload balan
ing problems. Robust 
olorings of intervals were 
onsidered in [9℄, wherethroughput in any pre�x of the 
oloring 
lasses went into the obje
tive fun
tion.Pre�x optimization 
an be viewed as online algorithm with 
omplete knowledge of thefuture, or 
ompeting against a non-adaptive adversary. Several lower bound 
onstru
-tions for online 
omputation are a
tually lower bounds on pre�x 
omputation; mostprominent 
ases are for the 
lassi
al ma
hine s
heduling problems [8, 4, 1℄. Pre�x opti-mization 
orresponds to the extreme 
ase of lookahead, and thus 
an perhaps shed somelight on properties of online 
omputation.As of yet, only few papers have expli
itly addressed pre�x optimization. Faigle, Kernand Turán [8℄ 
onsidered online algorithms and lower bounds for various online prob-lems, giving a number of lower bounds in the pre�x style. They posed the question of a
onstant fa
tor approximation for the Pre�x Coloring problem. Dani and Hayes [6℄ 
on-sidered online algorithms for a geometri
 optimization problem and expli
itly 
omparedthe 
ompetitive ratios possible against adaptive and non-adaptive adversaries.�So, it relates to this online algorithms ra
ket, but basi
ally nobody has done exa
tly this. Isure hope you 
an at least 
ome up with some ideas, man.�
1.4 Our ResultsWe give nearly tight results for the best possible performan
e ratios for pre�x versions of severalfundamental optimization problems (in parti
ular, those of Enzo, Beppe and Orsino).We �rst 
onsider the Prefix IS problem and give an algorithm whose performan
e ratio oninterval graphs is O(log α), where α = α(G) is the independen
e number of the graph. We derivea mat
hing lower bound for any (randomized or deterministi
) algorithm for the problem on in-terval graphs. We further give a randomized algorithm that a
hieves this ratio on general graphs.The algorithm is shown to a
hieve a logarithmi
 performan
e ratio for a wide 
lass of maximumsubset sele
tion problems in the pre�x model, in
luding maximum 
lique, 0/1-knapsa
k, maximum
overage, and maximum k-
olorable subgraph. For all of these problems the performan
e ratio is
O(log(α(I)), where α(I) is the value of an optimal solution for the 
omplete input sequen
e I.For the Prefix Vertex Cover problem we show that any algorithm has a performan
e ratioof Ω(

√
n), where n is the size of G. We give a deterministi
 algorithm that a
hieves this bound.Finally, for Prefix Coloring we give an algorithm whose performan
e ratio is 4. We furthershow that no algorithm a
hieves a ratio better than 2.

2 Enzo’s Effectiveness Issue: Prefix Independent Set�So, my friend, here's what I 
an tell you about your problem.�
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Let α = α(G) be the independen
e number of the given graph G. We �rst present an approximationalgorithm for Prefix IS in interval graphs and then give a simple algorithm for general graphs.Suppose that G is an interval graph. Consider the following algorithm, Aint, whi
h uses asadditional input parameter some t ≥ 1. For the ordered sequen
e of intervals in G, let Gi be theshortest pre�x satisfying α(Gi) ≥ αi/t, for 1 ≤ i ≤ t. Algorithm Aint pro
eeds in the followingsteps.1. Find in G1 an IS of size α(G1).2. For 2 ≤ i ≤ t in sequen
e, �nd for Gi an IS, Ii, of size at least α(Gi)/t, su
h that Ii 
on�i
tswith at most a fra
tion of 1/t of the verti
es in ea
h Ir, 1 ≤ r ≤ i− 1, and delete from Ir theverti
es 
on�i
ting with Ii.3. Output the solution I = ∪t
i=1Ii.�Was there a message to this? I thought you'd 
ome up with something simpler. Whythis sequen
e of solutions that you keep 
hipping o�?� Enzo quizzed.�When you put it formally it starts to look more 
ompli
ated than it really is. The pointis that we have to 
ome up with some solution early on, even if it would be better forthe long haul to just wait. This early pie
e of the input is G1. We try to �nd a smallpart of the solution that doesn't mess up the rest of the input sequen
e by too mu
h.��We then need to repeat this on several pre�xes, pi
king some portion of the availablesolution; if it requires smashing some of the family treasures, so be it, but make sureit's only a small fra
tion, `minor 
ollateral damage' �.In analyzing Aint, we �rst need to show that a `good' independent set 
an be found in ea
hiteration, as spe
i�ed in Step 2.Lemma 1 Let t and the interval graph Gi be de�ned as above, and let k be a number between 1and t. Let I be an independent set of Gk−1, partitioned into sets I1, I2, . . . , Ik−1 where Ir ⊆ V (Gr),for 1 ≤ r ≤ k − 1. Then, there exists an IS Ik in Gk of size at least (α(Gk) − 2α(Gk−1))/t whi
h
on�i
ts with at most 1/t-fra
tion of the intervals in ea
h Ir, 1 ≤ r < k.Proof. We say that an interval a �anks an interval b if a overlaps one of the endpoints of b, i.e., aand b overlap but a is not 
ontained in b. Let J be a maximum IS of Gk, and let J ′ be the set ofintervals in J that do not �ank any interval in I. Observe that |J ′| ≥ |J |−2|I| ≥ α(Gk)−2α(Gk−1).Note that ea
h interval in J ′ interse
ts at most one interval in I.For sets A and B of intervals, let NB [A] = {b ∈ B|∃a ∈ A, a ∩ b 6= ∅} be the set of intervals in

A that overlap some interval in B. For ea
h interval a in I let the weight of a be the number ofintervals in J ′ interse
ting a, or wt(a) = |{b ∈ J ′ : a∩b 6= ∅}| = |NJ ′ [{a}]|. For ea
h j = 1, . . . , k−1in parallel, �nd a maximum weight subset Qj in Ij of size |Ij|/t, and let Q = ∪k−1
j=1Qj . Finally, let

Ik = NJ ′ [Q] be the 
laimed set of intervals from Gk.By 
onstru
tion, Ik is an IS and is of size at least ∑

a∈I wt(a)/t = |J ′|/t ≥ (α(Gk)−2α(Gk−1))/t.Also, by de�nition, Ik 
on�i
ts with a set of size |Ir|/t from ea
h set Ir, r = 1, . . . , k − 1. Hen
e,the 
laim.Theorem 2 Aint yields a performan
e ratio of O(log α) for Prefix IS on interval graphs.Proof. Let t = log3 α. Then, α(Gk) = 3α(Gk−1), for ea
h 1 < k ≤ t. We distinguish between two
ases.
5



(i) Suppose that the pre�x Ĝ presented to Aint is shorter than G1, then Aint outputs an emptyset, while OPT has an IS of size at most α1/t. We get that
OPT (Ĝ)

Aint(Ĝ) + 1
≤ α1/t ≤ 3 .(ii) Otherwise, let k be the maximum value su
h that Gk ⊆ Ĝ. By the 
onstru
tion in Step 2,ea
h IS redu
es the size of any pre
eding IS at most by fa
tor 1/t. Hen
e, by Lemma 1 weget that

|Ik| ≥
α(Gk) − 2α(Gk−1)

t

(

1 − 1

t

)t−k

≥ αk/t

3t

(

1 − 1

t

)t−k

≥ αk/t

3t
· e−1 .Sin
e OPT (Ĝ) ≤ α(Gk+1) = α(k+1)/t and Aint(Ĝ) ≥ |Ik|, we get a ratio of O(tα1/t) =

O(log α).�This may not be exa
tly what you were looking for, Enzo, but it is quite interesting tosome of us. Parti
ularly the fa
t that the ratio is in terms of the optimal solution size,
α, rather than some general property of the input, like the number of items, n.�

2.1 Matching Lower Bound�You know, what you've 
ome up with is alright. But, maybe if we think a bit harder,we 
ould get solutions that are always just a few per
ent o� the best possible. Can'tyou get one of those really smart guys, like Lu
a or Pino, to help you out? Or betteryet, one of those hot-shot women,� Enzo grinned.�Easy, easy. There're limits to everything. In fa
t, what we outlined above is essentiallythe best possible.Theorem 3 Any algorithm (even randomized) for Prefix IS in interval graphs has performan
eratio of Ω(log α).Proof. Let α be a number, and let k = log α + 1. Consider the graph G = (V,E) whi
h 
onsists of
k subsets of verti
es, V1, . . . , Vk. The subset Vi 
onsists of 2i−1 verti
es numbered {vi,1, . . . , vi,2i−1}.The set of edges in G is given by E = {(vi,h, vj,ℓ)|1 ≤ i < j ≤ k, 1 ≤ h ≤ 2i−1, 2j−i(h − 1) + 1 ≤
ℓ ≤ 2j−ih}. In the ordered sequen
e representing G, all the verti
es in Vi pre
ede those in Vi+1,for i = 1, 2, . . . , k − 1. The graph G 
an be represented as an interval graph where a vertex vi,h
orresponds to the interval [(h − 1)2k−i, h2k−i); see Fig. 1.In view of Yao's lemma we give a probability distribution over the pre�xes of G and upper boundthe expe
ted performan
e of any deterministi
 algorithm over this distribution. Let Ui = ∪i

j=1Vi.With probability 1/(2i(1 − 2−k)) the pre�x is Ĝ = G[Ui], for i = 1, 2, . . . , k.First observe that
E[OPT (Ĝ)] =

k
∑

i=1

Pr[Ĝ = G[Ui]] · |Ui| =

k
∑

i=1

1

2i
· 2i−1 ≥ log α

2
.
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Figure 1: Interval graph that gives a Ω(log α) lower bound.We now show that E[A(Ĝ)] ≤ 1, whi
h yields the theorem.Consider any given deterministi
 algorithm A that produ
es an independent set IA on G. Forany v ∈ Vi, let NIS(v) be the set of neighbors of v in V \Ui that are sele
ted by A into IA, and let

N̂IS(v) = NIS(v) ∪ {v}. We denote by A(v) = |N̂IS(v)| the in
rease in |IA| due to the sele
tion ofverti
es in N̂IS(v). We say that vertex v ∈ Vi is possible for A if there are no edges between v andany of the verti
es sele
ted by A in Ui−1.Claim 1 Let v ∈ Vi be a possible vertex for A, 1 ≤ i ≤ k. Then, if v is not sele
ted for IA, we havethat E[A(v)|v not selected] ≤ E[A(v)|v is selected] = 1.Proof. The proof is by ba
kward indu
tion. For the base 
ase we take i = k. Clearly, if A does notsele
t the vertex v then A(v) = 0, sin
e Vk is the last subset of verti
es, and the 
laim holds. Now,assume that the 
laim holds for all verti
es v in Vi, then we show that it holds also for the verti
esin Vi−1. It is easy to show (details omitted) that Pr[Vi+1 ⊆ Ĝ|Vi ⊆ Ĝ] = 1/2, for i = 1, 2, . . . , k− 1.Observe that G is 
onstru
ted so that if a vertex u ∈ Vi is adja
ent to a vertex v ∈ Vj and v isadja
ent to vertex w ∈ Vk, for i < j < k, then u is also adja
ent to vk; namely, the presentationordering of the graph is transitive. If a vertex vi−1,h is not sele
ted, then A 
an sele
t its neighborsin Vi: vi,2h−1, vi,2h, and we get that
A(vi−1,h) ≤ 1

2
(E[A(vi, 2h − 1)] + E[A(vi, 2h)]) .From the indu
tion hypothesis we have E[A(vi, 2h − 1)] = E[A(vi, 2h)] ≤ 1 .To 
omplete the proof of the theorem we note that, if A sele
ts for the solution the single vertexin V1 then A(Ĝ) = 1; else, by Claim 1, we get that A(Ĝ) ≤ 1.

2.2 Prefix IS in General graphs�Allow me to entertain ourselves by generalizing the problem you posed to independentsets in general graphs.For general graphs, we 
an argue tight bounds on performan
e guarantees. Let G1 be theshortest pre�x of the input graph G for whi
h α(G1) = α1 where α1 = ⌈√α⌉. The algorithm Agen�nds an independent set of size α1 in G1 and simply outputs this set.Theorem 4 Algorithm Agen yields a performan
e ratio of at most √α for Prefix IS.
7



Proof. We distinguish between two types of pre�xes given to the algorithm. Suppose the pre�xis stri
tly shorter than G1. Then an optimal algorithm yields an IS of size at most α1 − 1, for aperforman
e ratio of at most α1 − 1 ≤ √
α. On the other hand, if G1 is 
ontained in the pre�x Ĝthen the approximation ratio is at most α/α1 ≤ √

α.We 
an easily argue a mat
hing lower bound.Theorem 5 The performan
e ratio of any deterministi
 algorithm for Prefix IS is at least ⌊√α⌋.It is also Ω(
√

n).Proof. Let N = ⌊√n⌋. Consider the following 
omplete bipartite graph G = (U, V,E). The verti
es
U are 1, 2, . . . , N , while V has N + 1, . . . , n. The ordering of the graph is by vertex number.A deterministi
 algorithm A run on G 
an pi
k either verti
es from U or from V . If it pi
ksverti
es from U , then on the pre�x B = G the optimal solution is of size n−N , while the algorithmsolution is of size at most N , giving a ratio of at least n/N − 1 ≥ √

n− 1. The ratio is also at least
α/N ≥ α/⌊√α⌋ ≥ √

α. On the other hand, if it pi
ks verti
es from V , then on the pre�x B′ = G[U ],the subgraph of G indu
ed by U , A(B′) = 0 while α(G′) = N , for a ratio of N = ⌊√n⌋ ≥ ⌊√α⌋.Hen
e, the performan
e ratio of A on G is at least N =
√

n ≥ √
α.�You haven't said anything here about 
oin �ips. Can they help?�, Enzo inquired.�For your problem of intervals, they don't. But, for the general problem, on generalgraphs, a simple randomized approa
h does improve the situation dramati
ally. In fa
t,it's kind of neat to phrase it in terms of still more general problem framework.�In the following we 
onsider a wide 
lass of maximization subset sele
tion problems in the pre�xmodel.De�nition 6 A problem Π is hereditary if for any input I of Π, if I ′ ⊆ I is a feasible solution for

Π, then any subset I ′′ ⊆ I ′ is also a feasible solution.Note that many subset sele
tion problems are hereditary. This in
ludes maximum indepen-dent set, maximum 
lique, 0/1-knapsa
k, maximum 
overage, and maximum k-
olorable subgraph,among others.Given an input I for a subset sele
tion problem Π, let α = α(I) be the size of an optimal solutionfor I.Theorem 7 Let Π be a hereditary maximum subset sele
tion problem. Then, there is an algorithmfor Π with a performan
e ratio of O(log(α)) for the prefix−Π problem.Proof. Consider the following algorithm. Let P be an input for Π with optimal value α and let
k = ⌈lg α⌉. De�ne pre�xes P1, . . . , Pk of P where Pk = P and for i = 1, . . . , k− 1, Pi is the shortestpre�x with α(Pi) ≥ 2i−1. The algorithm now sele
ts one of the pre�xes Pi uniformly at random,ea
h with probability 1/k.Let j be su
h that the pre�x P̂ presented satis�es Pj ⊆ P̂ ⊆ Pj+1. Sin
e P̂ is non-empty, it must
ontain the unit pre�x P1. Then, the value of the optimal solution is at most twi
e the value of thesolution for Pj . With probability 1/k our algorithm obtains an optimal solution on Pj. Hen
e, theexpe
ted size of the solution found by the algorithm is at least 1/(2k) fra
tion of optimal.Corollary 8 There is a randomized O(log α))-approximation algorithm for Prefix IS.
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3 Beppe’s Guarding Business: Prefix Vertex Cover�Beppe situation must be easier. I've heard this vertex 
over problem, as you 
all it, ismu
h easier� Enzo remarked philosophi
ally.�It is in many respe
ts easier. For instan
e, it's easy when the optimal solution is small(or Fixed Parameter Tra
table, as we say), whi
h the general independent set problemis not. And it's easily approximable in polynomial time within fa
tor 2, while the ISproblem is notoriously hard.��Yeah, you should know. You're the one who keeps doing IS in one way or another, inspite of these patheti
 approximations.��Hey, no need to get personal here, buddy. We all do what we 
an. But, ba
k to Beppe'sproblem, it turns out to be a
tually harder than your pre�x IS problem! Randomizationwon't help him at all.�Theorem 9 Any algorithm for Prefix Vertex Cover has performan
e ratio of at least √n.Proof. We use the 
omplete bipartite graph G = (U, V,E) from Theorem 5, where U has nodes
1, 2, . . . N = ⌊√n⌋ and V nodes N + 1, N + 2, . . . , n.If any vertex in U is missing in a 
over, then we need to sele
t all the verti
es in V . Thus, theonly minimal vertex 
overs for B are U and V . Any randomized algorithm Rvc sele
ts one of thesesolutions with probability at least 1/2. If C = U with probability at least 1/2, then for a pre�x B̂that 
onsists of all the verti
es in U we get that Rvc(B̂)

OPT (B̂)+1
= Ω(

√
n), sin
e E = ∅. On the otherhand, if V is sele
ted for the solution with probability at least 1/2, then for the pre�x B̂ = B, wehave that Rvc(B̂)

OPT (B̂)+1
≥ n−

√
n

2(
√

n+1)
= Ω(

√
n), sin
e an optimal solution is C = U .We now show that a mat
hing upper bound is obtained by a deterministi
 algorithm. Let

G1 = (V1, E1) be the pre�x graph for whi
h the minimum vertex 
over is of size at least √n for the�rst time. Avc �nds a minimum vertex 
over S ⊆ V1 for G1 and outputs S ∪ (V \ V1).Theorem 10 Algorithm Avc yields a ratio of √n to the optimal for Prefix Vertex Cover.Proof. We note that if Ĝ ⊆ G1 then Avc outputs S′ ⊆ S where |S′| ≤ √
n, while an optimal algorithmmay output an empty set. If G1 ⊆ Ĝ then |S ∪ (V̂ \ V1)| ≤ n, while OPT (Ĝ) ≥ OPT (G1) ≥

√
n.The 
laim follows.

4 Orsino’s Oven Schedule: Prefix Graph Coloring�What's your take then on Orso's situation?� Enzo asked me the following evening. Ishe dug as deep as Beppe?��A
tually, this looks mu
h more promising� I replied. �We 
an use a standard tri
k ofthe trade 
alled doubling to 
ome out pretty well.��Play double-or-nothing until we �nally win� he suggested hopefully.�If you like. We use the ni
e property of geometri
 sums, i.e. 1+ 2+ 4+ 8+ ...+ 2k thatthey add up to not too mu
h, or only twi
e the last term.�
9



�Ah, so we �rst handle the �rst node, then the next two, then the next four, and so on?��You're 
at
hing on, Enzo, but we a
tually need to use it slightly di�erently. We �rst�nd the initial set of order that 
an be laid on a single plate. Then, the next pre�x that
an be laid onto two plates. Third, the sequen
e of the following orders for whi
h fourplates su�
e. And so on, doubling the number of plates in ea
h step.��Ok! So we use new set of plates for ea
h of these, uh, groups.��Exa
tly. And why is that ok?��Be
ause they add up to not too mu
h! Maybe I should try this CS business; you thinkI might have a shot at a Gödel award?�For k = 1, 2, . . ., let tk be the largest value su
h that α(Gtk ) ≤ 2k, and let t0 = 0 for 
onvenien
e.The algorithm A simply 
olors ea
h set Vtk \ Vtk−1
with 2k fresh 
olors.Theorem 11 The algorithm A yields a performan
e guarantee of 4 for Prefix Coloring.Proof. Let p be a number, 1 ≤ p ≤ n, and let k be the smallest number su
h that 2k ≥ α(Gp). So,

α(Gp) ≥ 2k−1 + 1. Observe that
A(Gp) ≤

k
∑

i=0

2i = 2k+1 − 1 < 4 · 2k−1 < 4α(Gp) .Sin
e this holds for all p simultaneously, the theorem follows.�Can we also do better here in the randomized 
ase?��A
tually, yes, a little.�Let β be a uniformly random value from [0, 1], and let a0, a1, a2, . . . be the sequen
e given by
ai = ⌈βei⌉. Let tk be the largest value su
h that α(Gtk ) ≤ ak. Modify the algorithm A to use ak
olors on ea
h set Vtk \ Vtk−1

.Theorem 12 The modi�ed algorithm A has randomized performan
e guarantee of e for Pre�xGraph Coloring.The proof is similar to the arguments used for 
ertain 
oloring problems with demands [7, 10℄.�So, is that the best we 
an do.��It's the best that I 
an 
ome up with, but it's also provably 
lose to the best possible.�Proposition 13 There is no algorithm with performan
e guarantee less than 2 for Pre�x GraphColoring.�But, I'll leave that for you to �gure out, hot shot :-)�
10



5 Epilogue�This is all 
ute'n stu�, but it ain't mean nothin out there in the �eld, does it?��It's always hard to say where theoreti
al results ki
k in. It does though tell us something abouthow robust we 
an make 
omputation. It doesn't have to involve your boss, of 
ourse; it 
ould beany unpredi
table event like the ele
tri
ity going o�. You 
ould think of this as a sort of defensiveproblem-solving. In these days of global se
urity threats, ain't that what we all have to 
on
ernourselves with?��Yeah, or you might have your little island e
onomy suddenly going o� the 
li��, Enzo 
hu
kles.�Good lu
k in 
ashing in on these ideas...�
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