Return of the Boss Problem: Competing Online Against a
Non-Adaptive Adversary

Magntis M. Halldorsson* Hadas Shachnaif

Abstract

We follow the travails of Enzo the baker, Orsino the oven man, and Beppe the planner. Their
situation have a common theme: They know the input, in the form of a sequence of items, and
they are not computationally constrained. Their issue is that they don’t know in advance the
time of reckoning, i.e. when their boss might show up, when they will be measured in terms of
their progress on the prefix of the input sequence seen so far. Their goal is therefore to find a
particular solution whose size on any prefix of the known input sequence is within best possible
performance guarantees.

1 Doing OK When the Boss Shows up : Prefix Optimization

1.1 Enzo’s Order Signups: Prefix Interval Selection

Enzo groaned with his arms curled over his head: “I'm in a fix -]oig—time. He's going to catch me
at the worst possible moment.

“Who is?”7 | inquire.

“My boss could show up at any moment, and if [haven't signed up for my share, [can kiss my
confetteria dream goodbye.”

“So, Why don’t you? You can do it. You've got the brawn to handle any set of orders, and
youyve got the brains to ﬁgure out what is the maximum set that can be handled by a single person.
What's holding you back?”

He slumps still lower in the seat. “It’s not a matter of processing or Computational power. Yes,
[can ﬁgure it all out. I even know all the orders in advance; we always get the same set of orders
on Fridays. So, of course, [could just find an optimal solution. But that’s of no use.”

“Now you reaﬂy got me. You know everything and you can do anything, what could possi]oly be
the pmblem?77

“Yeah, it’s kind of funny. Lool{, let me explain the whole setup. Orders to the]oakery arrive in a
sequence. Each order has a given picl{up time, and since people expect it to straight from the oven
when they pick it up, it reauy means that the time for mal{ing it is fixed.

Instance spec: Given is a sequence Z,, = (I1, s, ..., I,), where each I; is an interval
in K.

*School of Computer Science, Reykjavik University, 101 Reykjavik, Iceland. mmh@ru.is
"Department of Computer Science, The Technion, Haifa 32000, Israel. hadas@cs.technion.ac.il

“As soon as an order arrives, [have to either sign up for it or assign it to some]oocly else. I can’t
work on two orders at the same time; they need my total concentration. We've got pienty of other
guys that can handle those that I don’t do. ©

Solution spec: Produce a subsequence Z’ of intervals from Z,, such that no pair of
intervals I, I in 7’ overlap, i.e. I, N I, = 0.

More generally, we seek an independent set in a given graph G in the above situation
G is an interval graph.

“Actuaily, [can decide the whole thing in advance, because | do know all the orders that arrive —
we aiways get the same set of orders on that (iay of the week. But, that stupi(i boss doesn’t know
it, and he won’t believe it.”

“He insists on checking on me at any time to 'size me up for the]oig jo]o,, as he calls it. An(i, the
frustrating thing is that when he (ioes, all that matters to him is how many orders ['ve then signeci
up for.”

This sort of makes sense to me. “So, you want to maintain always a good efﬁciency index. [
mean, that what you,ve gotten, when the boss shows up, should be a iarge fraction of what could
possibiy be gotten if you’d knew when he shows up. Rigilt?77

“Yeah, that’s it. Or, may]oe it’s more of a sloth index.”

“There’s a catch here, though: you can't ever hope to get a good ratiol You see, suppose the
first order was so iong that it took all of your available time. WeH, if you take it, you can’t take
anything eise, and you’re doomed. But if you don’t take it, then if the boss shows up then, you,ve
got an inﬁnitely poor sloth index!”

“T knew it, I'm doomed” he whined.

“No, relax. You just need to modify your expectations a bit. You do try to minimize the ratio,
but you count an empty solution as of size one. Which is fair, what diff does a single order make?”

Performance evaluation: For each prefix 7, = (I1,Is,...,I,), the performance on
the prefix is the quantity
a(Zp)
= (7)) = p
pp pp() ‘z—/m:z-p|+1’
where a(Z),) is the maximum set of disjoint intervals in 7Z,,. The objective is to minimize
p = max;_, pp, the worst performance on any prefix.

“Yeah, ok. But it’s still a Catch-22 situation: no matter what I (io, I'm doomed. If I start
grabbing orders as soon as they arrive, [won’t be able to take on so many of the later orclers, and
he'll take me to task at the end of the day. But if [try to wait until the best set of orders starts
showing up, he'll think I'm a 1azy SOB that can't get started in the morning. There’s no point even
trying to explain to him how thinking ahead could heip. It's so Kaﬂ(aesque it’s not even funny," he
grumbles and shakes his head.

“Right, weli, let’s think constructively, and at least try to do the best we can. There is,]oy the
way, a possibility that you can do better if you ﬂip coins.

“I'm not interested in some kind of average case.”

“This is different. It means that no matter what how tricl{y your boss may be and even if he
knows your solution strategy, you will always achieve some performance guarantee at the time he
stops i)y. However, the guarantee is in expectation over the random coin ﬂips, and not worst case...”

Randomized performance: In the randomized case, a solution is a probability dis-
tribution 7 over the independent sets of the input graph G. The expected solution size
Er|Z,) on prefix 7, is the weighted sum Er[Zy] = >, Pr[I'] - |I' N Z,|, where I’ ranges

over all independent sets in G. The performance ratio is then p = max;_, E‘ ([II”)}.
w|Lp

1.2 Other prefix problems

“Right. BTW, some of the other guys are in similar situations, aithough tiiey all have different
types of tasks. For instance, Orsino the oven guy has to iay out the goods to be baked onto the
]oai(ing piates. Not everything can go onto the same piate; it’s not just the temperature,]out, for
instance, the siusiiy items can’t go with the ciry ones, square items will mess up the round ones,
and the fragrance of certain items will affect other items, and so on. So, he needs to iay out all the
goocis onto the piates, and to do so as soon as tiiey,ve been prepareci."

“The probiem is that if he uses more plates than necessary for the items ready at that time, the
boss will get angry."

Prefix Coloring: Given an ordered graph G, i.e. with an ordered vertex set V =

(v1,v2,...,0y,), find a coloring C' of G such that p = maxy_; i((g:)) is minimized, where

G is the graph induced by (vq,va,...,vp), C(Gp) is the number of colors that C' uses
on G, and x(Gp) is the chromatic number of G.

Something about this rang a bell with me. “Actuaily, this reaiiy reminds me of this chap Beppe
(ioing urban pianning for the city. Tiiey had these new servers]oeing set up all the time, each iiaving
links to some of the earlier ones. They had to have guards on one side of each link to protect against
unauthorized entry. As soon as a server was set up, tiiey had to decide there and then whether
to make it a guard, because the cost of converting an older server into a guarci was prohibitive.
Of course, tiiey could have made every server a guarci, but that not oniy was time consuming but
looked spectacuiariy stupi(i."

“Every now and tiien, some wise-crack newspaper reporter would look at the guarci installations
in the city and try to score point]oy (iiscovering ‘waste in the system’, that much fewer were needed
for the situation at that time. Of course, there never was any point in try to counteract i)y showing
that this would be needed in the future;]oy the time such corrections came to iight, no]oociy was
interested in the story any more.”

Prefix Vertex Cover: Given an ordered graph G, find a vertex cover C of G such that
p = max,_; % is minimized, C(G),) = C'NV}, is the number of nodes from C' in the
prefix set V,, and VC(G)) is the vertex cover number of G.

1.3 Related work

Enzo now stands up and looks me straigiit in the eye: “What should I do? You're the math guy,
can you solve this?”

[instinctiveiy curl my siiouiciers, “I'm more of a CS guy, actuaiiy. In any case, your probiem
doesn’t reaiiy fall into any of our usual categories. [mean, it’s not reaiiy oniine, since you know
the whole input in advance. It’s also not oinne, since we don't know the iengtii of the preﬁx where
we will be measured. It’s also not reaiiy a Computationai issue, since you’re not computationaiiy

bounded. It is a question about robustness: performing well on all of a set of su]o—instances; here
the sub-instances are the pmﬁxes.77

Hassin and Rubinstein [12] gave a weighted matching algorithm that gave a v/2-performance
guarantee for the total weight of the p-heaviest edges, for all p.

There are various works where robustness is with respect to a class of objective function.
One prominent examples are those of scheduling under any Ly,-norm [3, 2|. Goel and
Meyerson [11] gave a general scheme for minimizing convex cost functions, such as in
load balancing problems. Robust colorings of intervals were considered in [9], where
throughput in any prefix of the coloring classes went into the objective function.

Prefix optimization can be viewed as online algorithm with complete knowledge of the
future, or competing against a non-adaptive adversary. Several lower bound construc-
tions for online computation are actually lower bounds on prefix computation; most
prominent cases are for the classical machine scheduling problems [8, 4, 1]. Prefix opti-
mization corresponds to the extreme case of lookahead, and thus can perhaps shed some
light on properties of online computation.

As of yet, only few papers have explicitly addressed prefix optimization. Faigle, Kern
and Turan [8] considered online algorithms and lower bounds for various online prob-
lems, giving a number of lower bounds in the prefix style. They posed the question of a
constant factor approximation for the Prefix Coloring problem. Dani and Hayes [6] con-
sidered online algorithms for a geometric optimization problem and explicitly compared
the competitive ratios possible against adaptive and non-adaptive adversaries.

So it relates to this online algorlthms racl{et but basmaﬂy nobody has done exactl this. [
sure hope you can at least come up with some 1deas man.

1.4 Our Results

We give nearly tight results for the best possible performance ratios for prefix versions of several
fundamental optimization problems (in particular, those of Enzo, Beppe and Orsino).

We first consider the PREFIX IS problem and give an algorithm whose performance ratio on
interval graphs is O(log «), where a = a(G) is the independence number of the graph. We derive
a matching lower bound for any (randomized or deterministic) algorithm for the problem on in-
terval graphs. We further give a randomized algorithm that achieves this ratio on general graphs.
The algorithm is shown to achieve a logarithmic performance ratio for a wide class of maximum
subset selection problems in the prefix model, including maximum clique, 0/1-knapsack, maximum
coverage, and maximum k-colorable subgraph. For all of these problems the performance ratio is
O(log(a(I)), where () is the value of an optimal solution for the complete input sequence 1.

For the PREFIX VERTEX COVER problem we show that any algorithm has a performance ratio
of Q(y/n), where n is the size of G. We give a deterministic algorithm that achieves this bound.

Finally, for PREFIX COLORING we give an algorithm whose performance ratio is 4. We further
show that no algorithm achieves a ratio better than 2.

2 Enzo’s Effectiveness Issue: Prefix Independent Set

“So, my friend, here’s what [can tell you about your problem.77

4

Let @ = a(G) be the independence number of the given graph G. We first present an approximation
algorithm for PREFIX IS in interval graphs and then give a simple algorithm for general graphs.

Suppose that G is an interval graph. Consider the following algorithm, A;,;, which uses as
additional input parameter some ¢ > 1. For the ordered sequence of intervals in G, let G; be the
shortest prefix satisfying a(G;) > o/t for 1 < i < t. Algorithm A;,; proceeds in the following
steps.

1. Find in G; an IS of size a(G1).

2. For 2 < i <t in sequence, find for G; an IS, I;, of size at least a(G;)/t, such that I; conflicts
with at most a fraction of 1/t of the vertices in each I, 1 <r <i—1, and delete from I, the
vertices conflicting with I;.

3. Output the solution I = U!_,I;.

“Was there a message to this? [thought you’cl come up with something simpier. Why
this sequence of solutions that you L:eep chipping off 7 Enzo quizze(i.

“When you put it formaiiy it starts to look more Complicated than it reaiiy is. The point
is that we have to come up with some solution early on, even if it would be better for
the iong haul to just wait. This eariy piece of the input is G. We try to find a small
part of the solution that doesn’t mess up the rest of the input sequence by too much.”

“We then need to repeat this on several preﬁxes, pici(ing some portion of the available
solution; if it requires smasiiing some of the famiiy treasures, so be it, but make sure
it's oniy a small fraction, ‘minor collateral damage’ 7

In analyzing A;p,:, we first need to show that a ‘good’ independent set can be found in each
iteration, as specified in Step 2.

Lemma 1 Let t and the interval graph G; be defined as above, and let k be a number between 1
and t. Let I be an independent set of G_1, partitioned into sets 11,15, ..., Ix_1 where I, CV(G,),
for 1 <r <k —1. Then, there exists an IS I}, in Gy of size at least (a(Gy) — 2a(Gg_1))/t which
conflicts with at most 1/t-fraction of the intervals in each I, 1 <r < k.

Proof. We say that an interval a flanks an interval b if a overlaps one of the endpoints of b, i.e., a
and b overlap but a is not contained in b. Let J be a maximum IS of Gy, and let J’ be the set of
intervals in J that do not flank any interval in I. Observe that |J'| > |J|—2|I| > a(Gg) —2a(Gk—-1).
Note that each interval in J’ intersects at most one interval in I.

For sets A and B of intervals, let Np[A] = {b € B|3a € A,aNb # 0} be the set of intervals in
A that overlap some interval in B. For each interval a in I let the weight of a be the number of
intervals in J’ intersecting a, or wt(a) = [{b € J' : anb # 0}| = [Ny [{a}]|. Foreach j =1,...,k—1
in parallel, find a maximum weight subset @Q; in I; of size |I;]/t, and let Q = U?;IIQJ-. Finally, let
I, = Nj[Q] be the claimed set of intervals from Gj.

By construction, I} is an IS and is of size at least) ., wt(a)/t = |J'|/t > (a(Gk) —2a(Gr—-1))/t.
Also, by definition, I} conflicts with a set of size ||/t from each set I,, r = 1,...,k — 1. Hence,
the claim.]

Theorem 2 A;,; yields a performance ratio of O(log) for PREFIX IS on interval graphs.

Proof. Let t = logg a. Then, a(Gy) = 3a(Gg—1), for each 1 < k < t. We distinguish between two
cases.

(i) Suppose that the prefix G presented to A;y: is shorter than G1, then A;,; outputs an empty
set, while OPT has an IS of size at most o'/*. We get that

~

OPT(G)

2 <alft<3.
Aint(G) +1

(ii) Otherwise, let k& be the maximum value such that Gy C G. By the construction in Step 2,
each IS reduces the size of any preceding IS at most by factor 1/t. Hence, by Lemma 1 we
get that

_ t—k k/t t—k k/t
> MG 220G (VL oD Y el
t t 3t t 3t

Since OPT(G) < a(Gy1) = aF+1/t and Amt(@) > |Ix|, we get a ratio of O(tal/t) =
O(log).

“This may not be exactly what you were 1001<ing for, Enzo, but it is quite interesting to
some of us. Particularly the fact that the ratio is in terms of the optimal solution size,
Q, rather than some general property of the input, like the number of items, n.’

2.1 Matching Lower Bound

“You know, what youjve come up with is alright. But, maybe if we think a bit harder,
we could get solutions that are always just a few percent off the best possible. Can't
you get one of those reaﬂy smart guys, like Luca or Pino, to help you out? Or better
yet, one of those hot-shot women," Enzo grinned.

“Easy, easy. Therere limits to everything. In fact, what we outlined above is essentiaﬂy
the best possible.

Theorem 3 Any algorithm (even randomized) for PREFIX IS in interval graphs has performance
ratio of Q(log).

Proof. Let o be a number, and let k = loga + 1. Consider the graph G = (V, E) which consists of
k subsets of vertices, Vi, ..., Vi. The subset V; consists of 271 vertices numbered {vii,... ,Ui72i—1}.
The set of edges in G is given by E = {(v;p,v0)|1 <i<j <k 1<h<27127(h—-1)41<
¢ < 297%h}. In the ordered sequence representing G, all the vertices in V; precede those in Vi1,
for© = 1,2,...,k — 1. The graph G can be represented as an interval graph where a vertex v;y,
corresponds to the interval [(h — 1)2F7% h2F=): see Fig. 1.

In view of Yao’s lemma we give a probability distribution over the prefixes of G and upper bound
the expected performance of any deterministic algorithm over this distribution. Let U; = U§:1‘/i-
With probability 1/(2!(1 — 27%)) the prefix is G= G[Ui, fori=1,2,... k.

First observe that

k

k
N A 1 - log v
EOPT(G)) =Y Pr[G =G[U;)] - |U;| = 5 2 t> —

6

|
0 21 2k

Figure 1: Interval graph that gives a Q(log) lower bound.

~

We now show that E[A(G)] < 1, which yields the theorem.

Consider any given deterministic algorithm A that produces an independent set I4 on G. For
any v € V;, let Nyg(v) be the set of neighbors of v in V' \ U; that are selected by A into I4, and let
Nrs(v) = Nrs(v) U {v}. We denote by A(v) = |Nys(v)| the increase in [I4] due to the selection of
vertices in NIS(U). We say that vertex v € Vj is possible for A if there are no edges between v and
any of the vertices selected by A in U;_1.

Claim 1 Let v € V; be a possible vertex for A, 1 <i < k. Then, if v is not selected for I, we have
that E[A(v)|v not selected] < E[A(v)|v is selected] = 1.

Proof. The proof is by backward induction. For the base case we take ¢ = k. Clearly, if A does not
select the vertex v then A(v) = 0, since Vj is the last subset of vertices, and the claim holds. Now,
assume that the claim holds for all vertices v in V;, then we show that it holds also for the vertices
in V;_1. It is easy to show (details omitted) that Pr[Viy1 C G|V; €G] =1/2, fori=1,2,... k—1.
Observe that G is constructed so that if a vertex u € V; is adjacent to a vertex v € V; and v is
adjacent to vertex w € Vi, for ¢ < j < k, then u is also adjacent to vg; namely, the presentation
ordering of the graph is transitive. If a vertex v;_1 is not selected, then A can select its neighbors
in Vi: v;9n—1,vi2n, and we get that

A1) < %(E[A(w, oh — 1)] + E[A(vy,2h)]) .

From the induction hypothesis we have E[A(v;,2h — 1)] = E[A(v;, 2h)] < 1.]
To complete the proof of the theorem we note that, if A selects for the solution the single vertex
in V; then A(G) = 1; else, by Claim 1, we get that A(G) < 1.]

2.2 Prefix IS in General graphs

“Allow me to entertain ourselves by generalizing the proi)iern you poseci to independent
sets in generai grapiis.

For general graphs, we can argue tight bounds on performance guarantees. Let G; be the
shortest prefix of the input graph G for which a(G1) = a; where a; = [/a]. The algorithm Ag,
finds an independent set of size a; in GG; and simply outputs this set.

Theorem 4 Algorithm Agey, yields a performance ratio of at most \/a for PREFIX IS.

Proof. We distinguish between two types of prefixes given to the algorithm. Suppose the prefix

is strictly shorter than GG;. Then an optimal algorithm yields an IS of size at most a; — 1, for a

performance ratio of at most a3 — 1 < y/a. On the other hand, if G; is contained in the prefix G

then the approximation ratio is at most o/ < v/au.]
We can easily argue a matching lower bound.

Theorem 5 The performance ratio of any deterministic algorithm for PREFIX IS is at least |\/«].
It is also Q(y/n).

Proof. Let N = |y/n]. Consider the following complete bipartite graph G = (U, V, E). The vertices
U are1,2,...,N, while V has N +1,...,n. The ordering of the graph is by vertex number.

A deterministic algorithm A run on G can pick either vertices from U or from V. If it picks
vertices from U, then on the prefix B = G the optimal solution is of size n — N, while the algorithm
solution is of size at most N, giving a ratio of at least n/N — 1 > y/n — 1. The ratio is also at least
a/N > a/|/a] > /a. On the other hand, if it picks vertices from V, then on the prefix B’ = G[U],
the subgraph of G induced by U, A(B’) = 0 while a(G’) = N, for a ratio of N = [/n] > [Va].
Hence, the performance ratio of A on G is at least N = \/n > /a. |

“You haven't said anything here about coin ﬂips. Can they help?”, Enzo inquired.

“For your problem of intervals, they don’t. But, for the general problem, on general
graphs, a simple randomized approach does improve the situation dramaticaﬂy. In fact,
it’s kind of neat to phrase it in terms of still more general problem framework.”

In the following we consider a wide class of maximization subset selection problems in the prefix
model.

Definition 6 A problem II is hereditary if for any input I of I1, if I' C I is a feasible solution for
I1, then any subset I" C I' is also a feasible solution.

Note that many subset selection problems are hereditary. This includes maximum indepen-
dent set, maximum clique, 0/1-knapsack, maximum coverage, and maximum k-colorable subgraph,
among others.

Given an input I for a subset selection problem II, let &« = «(I) be the size of an optimal solution
for I.

Theorem 7 Let II be a hereditary mazimum subset selection problem. Then, there is an algorithm
for I1 with a performance ratio of O(log(a)) for the PREFIX—II problem.

Proof. Consider the following algorithm. Let P be an input for II with optimal value o and let
k = [lg a]. Define prefixes P,..., Py of P where P, = P and for i = 1,...,k— 1, P; is the shortest
prefix with a(P;) > 20!, The algorithm now selects one of the prefixes P; uniformly at random,
each with probability 1/k.

Let j be such that the prefix P presented satisfies P; C PcC Pj44. Since Pis non-empty, it must
contain the unit prefix P;. Then, the value of the optimal solution is at most twice the value of the
solution for P;. With probability 1/k our algorithm obtains an optimal solution on P;. Hence, the
expected size of the solution found by the algorithm is at least 1/(2k) fraction of optimal.]

Corollary 8 There is a randomized O(log «))-approzimation algorithm for PREFIX IS.

3 Beppe’s Guarding Business: Prefix Vertex Cover

“Beppe situation must be easier. ['ve heard this vertex cover probiem, as you call it, is
much easier’ Enzo remarked piiiiosopiiicaiiy.

“Tt is in many respects easier. For instance, it's easy when the optimai solution is small
(or Fixed Parameter Tractai)ie, as we say), which the generai independent set proi)iem

is not. And it’s easiiy approximai)ie in poiynomiai time within factor 2, while the IS
probiem is notoriously hard.”

“Yeaii, you should know. You're the one who keeps cioing IS in one way or anotiier, in
spite of these pathetic approximations,77

“Hey, no need to get personai iiere, i)uciciy. We all do what we can. But, back to Beppeis
probiem, it turns out to be actuaiiy harder than your preﬁx IS probiemi Randomization
won 't iieip him at all.”

Theorem 9 Any algorithm for PREFIX VERTEX COVER has performance ratio of at least \/n.

Proof. We use the complete bipartite graph G = (U,V, E) from Theorem 5, where U has nodes
1,2,...N =|y/n] and V nodes N +1,N +2,...,n.

If any vertex in U is missing in a cover, then we need to select all the vertices in V. Thus, the
only minimal vertex covers for B are U and V. Any randomized algorithm R, selects one of these

solutions with probability at least 1/2. If C' = U with probability at least 1/2, then for a prefix B
Rye(B)

that consists of all the vertices in U we get that OPTBL — Q(y/n), since E = (). On the other
hand, if V' is selected for the solution with probability at least 1/2, then for the prefix B=B , We
have that ogic(iéB))Jri > 2?\;,7:@1) = Q(4/n), since an optimal solution is C' = U.]

We now show that a matching upper bound is obtained by a deterministic algorithm. Let
G1 = (V1, E1) be the prefix graph for which the minimum vertex cover is of size at least \/n for the
first time. A, finds a minimum vertex cover S C V; for G; and outputs S U (V' \ 11).

Theorem 10 Algorithm A, yields a ratio of \/n to the optimal for PREFIX VERTEX COVER.

Proof. We note that if G C Gy then /iw outputs S’ j= S where |S’| < y/n, while an optimal algorithm
may output an empty set. If G; C G then |S U (V \ V)| < n, while OPT(G) > OPT(G;1) > /n.
The claim follows. u

4 Orsino’s Oven Schedule: Prefix Graph Coloring

“What's your take then on Orso’s situation?” Enzo asked me the ioiiowing evening. [s
he dug as deep as Beppe?”

“Actuaiiy, this looks much more promising" [repiie(i. “We can use a standard trick of
the trade called ciouiaiing to come out pretty well.”

“Piay ciouiaie—or—notiling until we ﬁnaiiy win~ he suggesteci ilopeiuiiy.

“If you like. We use the nice property of geometric sums, i.e. 14+24448+ ... +2F that
tiiey add up to not too mucil, or oniy twice the last term.”

“Ah, so we first handle the first node7 then the next two, then the next four, and so on?”

“You're catching on, Enzo, but we actually need to use it slightly digerently. We first
find the initial set of order that can be laid on a single plate. Then, the next preﬁx that
can be laid onto two plates. Third, the sequence of the foﬂowing orders for which four
plates suffice. And so on, doubling the number of plates in each step.77

Y

“Ok! So we use new set of plates for each of these, uh, groups.7
“Exactly. And why is that ok?”

“Because they add up to not too much! May]oe [should try this CS business; you think
| might have a shot at a Godel award?”

For k =1,2,..., let t; be the largest value such that a(Gy,) < 2% ‘and let to = 0 for convenience.
The algorithm A simply colors each set Vi, \ V4, _, with 2k fresh colors.

Theorem 11 The algorithm A yields a performance guarantee of 4 for PREFIX COLORING.

Proof. Let p be a number, 1 < p < n, and let k be the smallest number such that 2% > «(G,). So,
a(Gp) > 2871 + 1. Observe that

k
AGy) <) 20 =21 —1 <421 < 4a(G)) .
i=0
Since this holds for all p simultaneously, the theorem follows. [

“Can we also do better here in the randomized case?”

“Actuaﬂy, yes, a little.”

Let 3 be a uniformly random value from [0, 1], and let ag, a1, az,... be the sequence given by
a; = [Be']. Let tj be the largest value such that a(Gy,) < ag. Modify the algorithm A to use ay
colors on each set V4, \'V;, .

Theorem 12 The modified algorithm A has randomized performance quarantee of e for Prefix
Graph Coloring.

The proof is similar to the arguments used for certain coloring problems with demands [7, 10].

“So, is that the best we can do.”
“It’s the best that I can come up with, but it’s also provably close to the best possible.”

Proposition 13 There is no algorithm with performance guarantee less than 2 for Prefix Graph
Coloring.

“But, I'll leave that for you to ﬁgure out, hot shot :—)"

10

5 Epilogue

“This is all cute’n stulq, but it ain’t mean nothin out there in the ﬁeld, does it?”

“Tt’s always hard to say where theoretical results kick in. Tt does though tell us something about
how robust we can make computation. [t doesn’t have to involve your boss, of course; it could be
any unpredictable event like the electricity going off. You could think of this as a sort of defensive
problem—solving. In these days of global security threats, ain't that what we all have to concern
ourselves with?”

“Yeah, or you might have your little island economy suddenly going off the clin, Enzo chuckles.
“Good luck in Cashing in on these ideas...”

References

[1] S. Albers. Better bounds for online scheduling. In STOC, pp.130-139, 1997.

[2] Y. Azar and A. Epstein. Convex programming for scheduling unrelated parallel machines. In STOC,
2005.

[3] Y. Azar, L. Epstein, Y. Richter, and G. J. Woeginger. All-norm approximation algorithms. J. Algo-
rithms, 52:120-133, 2004.

[4] Y. Bartal, H. J. Karloff, Y. Rabani. A better lower bound for on-line scheduling. Inf. Process. Lett.
50(3): 113-116, 1994.

[5] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge University Press,
1998.

[6] V. Dani and T. P. Hayes. Robbing the bandit: Less regret in online geometric optimization against an
adaptive adversary. In SODA, 2006.

[7] L. Epstein and A. Levin. On the Max Coloring Problem. In WAOA, 142-155, 2007.

[8] U. Faigle, W. Kern, and G. Turan. On the performance of on-line algorithms for partition problems.
Acta Cybernetica, 9:107-119, 1989.

[9] T. Fukunaga, M. M. Halldérsson, and H. Nagamochi. Robust cost colorings. In SODA, 2008.

[10] R. Gandhi, M. M. Halld6rsson, G. Kortsarz and H. Shachnai. Approximating non-preemptive open-shop
scheduling and related problems. ACM Transactions on Algorithms, 2(1):116-129, 2006.

[11] A. Goel and A. Meyerson. Simultaneous optimization via approximate majorization for concave profits
or convex costs. Algorithmica, 44:301-323, 2006.

[12] R. Hassin and S. Rubinstein. Robust matchings. SIAM J. Disc. Math, 15(4):530-537, 2002.

11

