
Maximum MIMO Flow in Wireless Networks
under the SINR Model

Eyjólfur I. Ásgeirsson
School of Science and Engineering

Reykjavik University
Email: eyjo@ru.is

Magnús M. Halldórsson
School of Computer Science

Reykjavik University
Email: mmh@ru.is

Pradipta Mitra
School of Computer Science

Reykjavik University
Email: ppmitra@gmail.com

Abstract—We present a framework for the maximum flow
problem in wireless networks using the SINR interference model
in combination with MIMO nodes. The performance ratio of
our algorithm matches the best O(logn) approximation factor
known for the pure flow problem, but avoids the impractical
dependence on the ellipsoid method and features both simpler
and more intuitive analysis.

The objective of a maximum flow in wireless networks is
to get as much information from a sender to a receiver using
intermediate nodes in a multi-hop environment. The algorithm
is based on an LP formulation of the flow problem, and handles
gracefully all additional linear constraints. The set of constraints
that can be included contains, among other, power limits, fairness
between source-sink pairs, capacity limits and bounds, and the
use of Multi-Input Multi-Output nodes for the source and the
sink nodes, which are often the bottlenecks in a wireless flow.

I. INTRODUCTION

The problem of interference is one of the fundamental
problem for wireless communications. Concurrent transmis-
sions will interfere with each other, and if the interference
is too much, the transmission will fail. There are numerous
ways of modeling and dealing with interference, such as
simple graph based interference models and spatial, temporal
or frequency separation of the transmissions. In recent years,
the physical model of interference, or the SINR model, has
received much attention, and for interference management,
interference alignment is becoming more popular due to the
increased availability of Multi-Input Multi-Output (MIMO)
wireless transmitters and receivers. However, until now, there
have been almost no results where these two approaches,
i.e. interference alignment under the SINR model, have been
merged successfully.

We treat in this paper a general throughput maximization
problem, where we are given a collection of source-destination
pairs and seek to find a flow and a schedule for that flow
that maximizes the amount of information that can be routed.
This is a core problem for many applications, such as video
streaming. We present a general framework which we show
can be combined with interference alignment for still greater
throughput.

Interference alignment is a linear algebraic approach to-
wards interference management. Consider the case where n
transmitters intend to transmit to n receivers. If all channel
states and intended transmissions are known, the required
received signals can be expressed as a linear combination of

the variables and solved as a set of n linear equations with
n variables. The goal of interference cancellation is to realize
this potential in more realistic scenarios.

The SINR model approach and the cancellation or align-
ment approach have different strengths and weaknesses. Inter-
ference alignment can work for any channel state, whereas in
the SINR model, one typically needs smooth geometric states.
Also, cancellation does not require any spatial separation.
On the other hand, the SINR model is more robust. Let’s
assume that we are in a situation where we only know the
channel states up to a factor of 2. SINR would handle this
gracefully. but interference alignment is impossible under those
conditions. The ”scalability” of SINR seems to be greater than
for interference alignment, if the relevant conditions are met.

Is it possible to combine SINR and alignment? They seem
to be a bad fit. Power in alignment is dictated by channel state,
whereas in SINR the power is typically length based or based
on other geometric considerations. It is unclear that a feasible
set in the SINR model would benefit from multiple antennas.

We believe flow problems may be an area where the SINR
model and alignment can be combined. Instead of just looking
at a simple flow from a source node to a destination node, we
use MIMO nodes for the source/destination, thus increasing
the bandwidth of those particular nodes, but then harness the
power of SINR for the interior paths. We can put both of these
gracefully in the same LP.

Our main contributions in this paper are:

• Giving a general framework that holds for any flow
problem with linear constraints. These problems in-
clude using MIMO nodes for the source and the sink,
power limitations, bandwidth of edges or any other
linear constraint on the system.

• Show how to add a fairness measure to the flow for
multiple source-sink pairs so that instead of maximiz-
ing the total flow, we maximize the minimum flow
over all the source-sink pairs.

• Matching the best approximation known of O(log n)
for basic maximum flow in wireless networks, with a
simpler and more intuitive analysis.

• Obtaining an efficient framework, resulting in the first
practical algorithm with an approximation bound that
depends only on n.

II. RELATED WORK

The salient theoretical work on interference alignment is
perhaps [1]. Here it is assumed that the global channel state
is known by all transmitters, but not the intended symbols.
It is shown that each transmitter can successfully transmit
half the time. However, to do this, apart from knowing global
states, the transmitters need to encode across exponentially
many channels.

More practically oriented work includes [2]. In [2] it is
shown that in a Multi-Input Multi-Output (MIMO) network
where nodes have up to t antennas, t concurrent transmissions
can occur. Global state information is needed to this, which is
included in RTS-CTS packets and are overheard.

Basically, it seems that the ”scalability factor” t of inter-
ference cancellation should be considered to be ”constant”.
Considering [2], it is unlikely that channel states of n trans-
mitters can be kept updated for large n, especially if some
temporal change in the state is to be expected.

The maximum flow problem has been addressed exten-
sively under graph-based models, but in relatively few works
under the SINR model. The first approximation algorithm was
given by Chafekar et al. [3], [4] who gave a O(log ∆ · log Γ),
where ∆ is the maximum ratio between link lengths and
Γ is the maximum ratio between sender powers. For linear
power, they obtained O(log ∆)-approximation. Our interest,
however, is in performance ratios that do not depend on
structural parameters of the instance, such as ∆ or Γ. Wan
et al. [5] studied the problem of finding a route and maximum
throughput for a set of multi-hop requests. They gave a generic
reduction to the single-hop throughput problem, known as
Capacity [6] or MISL (Maximum Independent Set of Links)
[5]. Thus, they obtained a O(log n)-approximation to the
maximum flow problem, both for the case of length-monotone
sublinear power assignments [7] and for arbitrary power [8].
For that reduction, however, they used a framework of [9],
for which Wan states that “this algorithm is of theoretical
interest only, but practically quite infeasible”. In [10], Even
et al. give a more practical O(log n) approximation algorithm
for this problem, but their analysis only holds for linear power;
for other power assignments, they obtain a O(log n · log Λ)-
approximation, where Λ is the ratio between the maximum
received power to the minimum received power of a link.
Finally, an exact algorithm is given by Shi et al. [11] via
non-linear programming; as the problem is NP-hard, such
algorithms necessarily run in exponential time.

A related problem is that of the combined multi-hop
routing and scheduling problem. Here we are also given a
set of source-destination pairs, but now the objective is to
minimize the latency (or schedule length) and must sched-
ule paths between all the pairs. Chafekar et al. [12] gave
a O(log2 n log ∆ log2 Γ)-appproximation relative to arbitrary
power, which was improved by [13], and further improved by
[8] to O(log2 n)-factor.

III. MODEL AND PROBLEM STATEMENT

Assume we have a set of wireless nodes V , each a point in
a metric space. Also given is a set of links (or directed edges)
E ⊆ V × V . Also given are k source-destination pairs (ŝi, t̂i)

of nodes in V . Each link `v ∈ E has a sender and a receiver,
which we denote by sv and rv .

The problem is to compute a multi-commodity flow
f1, f2 . . . fk and an efficient schedule to support it. Flows have
their usual meaning, each flow fi is a function from edges in
E to non-negative numbers respecting flow conservation – the
incoming flow to each node (except the source and destination)
must be equal to the outgoing flow. The value of the flow fi is
the outgoing flow from the source. We use fi to indicate both
the flow function on edges as well as the value of the flow.
A schedule is a collection of sets {S1, S2, . . . ST } such that
each Sj ⊆ E. A schedule {S1, S2, . . . ST } supports the flows
f1, f2, . . . fk if T · f(w) ≤ |{Sj 3 `w : 1 ≤ j ≤ T}|, for each
`w. In other words, if a link `w has a flow value f(w) then
`w must appear in at least T · f(w) of the sets S1, S2, . . . ST .

Our goal is to find a maximum flow and a schedule that
supports it. The constraint on sets Sj is that each of them must
be feasible, that is, links in the set can transmit simultaneously
without interfering with each other too much. To characterize
feasible sets, a model of interference is needed — in this paper,
we adopt the SINR or physical model of interference.

From the requirement that a flow must be supported by a
schedule, it follows that the total flow on a single link must
be smaller than 1. We call such a flow valid.

We adopt the physical model (or SINR model) of interfer-
ence, in which a node rv successfully receives a message from
a sender sv if and only if the following condition holds:

Pv/d
α
v∑

`w∈S\{`v} Pw/d
α
wv +N

≥ β, (1)

where Pv is the transmission power of sender sv , dwv is the
distance from sender sw to receiver rv , dv is the length of link
`v , N is a universal constant denoting the ambient noise, β ≥ 1
denotes the minimum SINR (signal-to-interference-noise-ratio)
required for a message to be successfully received, and S is
the set of links that are transmitting at the same time as link
`v . A set S of links is SINR-feasible (or simply feasible) if (1)
is satisfied for each link in S.

We focus on polynomial powers, where a link `v uses
power Pv = dpαv for some fixed p ∈ [0, 1]. These include the
natural and widely used power assignments [14], [15], [16],
[7], including uniform (p = 0), linear (p = 1) and mean power
(p = 1

2). Mean power is of particular interest as it has been
shown to be as much as exponentially more effective than
uniform or linear power [17], [18], [6] and never significantly
worse [19]. Also it is never more than O(log log ∆)-factor
worse than arbitrary power assignment [6]. We also treat the
case of arbitrary power, when choosing the power assignment
is a part of the problem description.

The affectance aPw(v) [20], [21], [15] of link `v caused
by another link `w, with a given power assignment P , is the
interference of `w on `v relative to the power received, or

aPw(v) = min

{
1, cv

Pw/d
α
wv

Pv/dαv

}
= min

{
1, cv

Pw
Pv
·
(
dv
dwv

)α}
,

where cv = β/(1 − βNdαv /Pv) is a constant depending only
on the length and power of the link `v . We will drop P when
it is clear from the context. Let av(v) = 0. For a set S of

links and a link `v , let aPv (S) =
∑
w∈S a

P
v (w) and aPS (v) =∑

w∈S a
P
w(v). Using this notation, Eqn. 1 can be rewritten as

aPS (v) ≤ 1, and this is the form we will use. This transforms
the relatively complicated Eqn. 1 into an inequality involving
a simple sum that can be manipulated more easily. We use the
length ordered symmetric version of affectance [6], given by

b̂v(w) =

{
av(w) + aw(v) if dv ≤ dw
0 otherwise ,

(2)

in our linear program formulations.

IV. ALGORITHM

We propose an LP relaxation and use the fractional flows
in combination with a link scheduling algorithm to obtain a
good approximation. First, we argue two technical issues that
are needed for the LP formulation.

First, we show that assuming that no flows are small incurs
only a small cost. For a source destination pair (ŝi, t̂i), let
Ei ⊆ E be the set of links that are part of some path from ŝi
to t̂i. Now,

Theorem 1: Consider an optimal flow {f1, f2 . . . fk}. Then
there is a valid flow {f ′1, f ′2 . . . f ′k} such that for all i, f ′i(w) ≥

1
10n4 for all `w ∈ Ei and

∑
i f
′
i ≥ (1− 1

5n2)
∑
i fi.

Proof: Set gi = fi. Iteratively do the following:

Consider any link `w such that gi < 1
5n4 (stop if

there are no such links). Find a path from ŝi to t̂i
including `w (since `w ∈ Ei, such a path must exist).
Augment the flow gi on this path by 1

5n4 − gi(w).

It is clear that gi always remains a flow and the process must
end. Now, gi may not be valid since the total flow on a link
may be greater than 1. However, the total flow on a link cannot
increase by more than 1

5n4 · k · n ≤ 1
5n2 . Then if we set f ′i =

gi(1 − 1
5n2) we will have a valid flow. Hence, for any `w,

f ′i(w) ≥ 1
5n4 (1− 1

5n2) ≥ 1
10n4 .

The construction of f ′i and gi also gives us that
∑
i f
′
i =∑

i(1−
1

5n2)gi ≥ (1− 1
5n2)

∑
i fi.

The second technical issue is to establish a crucial inequal-
ity involving affectances.

A link w is said to be non-weak if Pw/dαw ≥ 2βN , i.e. if
the link uses at least slightly more transmission power than is
necessary to overcome the ambient noise. We will assume that
all links in the flow formulation are non-weak. This assumption
is common and reasonable, since it can easily be achieved by
scaling the powers.

Theorem 2: [6] Assume `v is any non-weak link and S is
a feasible set of non-weak links transmitting with polynomial
powers 0 < p ≤ 1. Then, for a constant γ,

∑
w∈S b̂v(w) ≤ γ.

Note that for uniform power, this theorem does not apply, but
a bound of

∑
w∈S b̂v(w) = O(log n) holds [15]. All results

that follow will apply for p = 0 with this extra log n factor.

Now consider any optimal solution {f1, f2 . . . fk} and a
schedule S1, S2 . . . ST supporting the flow. Define f(v) =

∑
i fi(v). We know that

f(v) · T ≤ |{v ∈ Sj : 1 ≤ j ≤ T}| .

Let us define σv = |{v ∈ Sj : 1 ≤ j ≤ T}|, i.e. σv is a
counter that tells us how often link `v appears in the schedule
S1, S2 . . . ST . In this notation, f(v) · T ≤ σv . Using Thm. 2,∑

w

(f(w) · T · b̂v(w)) ≤
∑
w

σw b̂v(w) =

T∑
j=1

∑
w∈Sj

b̂v(w)

≤
T∑
j=1

γ = Tγ . (3)

LP relaxation: We can now write the following LP relaxation.

max
∑
i

fi (4)

s.t.
∑

w∈E:rw=a

fi(w) =
∑

v∈E:sv=a

fi(v)

∀a ∈ V \ {ŝi, t̂i},∀i (5)∑
w

b̂v(w)f(w) ≤ γ ∀v (6)

fi(w) ≥ 1

10n4
∀w ∈ Ei, ∀i (7)∑

i

fi(w) ≤ 1 ∀w ∈ E (8)

The objective of the linear problem is to maximize the total
flow. Constraint (5) is the conservation of flow. It simply states
that for every node in V , with the exception of the source and
sink nodes, the number of messages from source ŝi to sink t̂i
that arrive at the node must be equal to the number of such
messages that leave the node. Constraint (6) follows from of
Eqn. 3, which holds for feasible integral solutions. Constraint
(8) ensures that the flow is valid, i.e. that the total flow on a
single link is at most 1. Constraint (7) ensures, for a technical
reason, that no flow is too small; recall that it may be assumed
to hold by Theorem 1 by paying a small factor. It follows that
the LP formulation is a true relaxation of the flow problem.

Algorithm: We will use the following algorithm schema:

Consider the (fractional) flows f∗i given by the LP
solution. Form a set L̂ containing c(w) copies of
each link w ∈ E, where c(w) = d10n4 · f∗(w)e. By
(7) and (8), c(w) is an integer between 1 and 10n4.
Apply a scheduling algorithm to schedule the links
of L̂.

We show that both of the types of link scheduling algo-
rithms that have been shown to give good approximations can
be applied here: centralized algorithms based on finding large
feasible subsets [7], and randomized distributed algorithms
[15].

The analysis is based on the following structural bound,
which results in a good bound for the randomized distributed
algorithm of [15]. Define A(L) = maxR⊆L

aR(R)
|R| [15].

Lemma 3: Let L̂ be the set of links obtained from the
fractional flows f∗, as indicated above. Then, A(L̂) = O(n4).

Proof: Let R be a subset of L̂. First, observe that

aR(R) =
∑
v∈R

∑
w∈R

av(w) =
∑
v∈R

∑
w∈R

b̂v(w) .

Consider a link w in R and let w′ be the link in E from which
w is a copy. Observe that b̂v(w) = b̂v(w

′) (for any link v).
Since w′ has c(w′) copies in L̂ (and at most that many in R),∑
w∈R

b̂v(w) ≤
∑
w′∈E

c(w′)b̂v(w) = 10n4
∑
w′∈E

b̂v(w) ≤ γ·10n4 .

Hence, aR(R) ≤
∑
v∈R γ · 10n4 = γ · 10n4|R|, as desired.

To bound greedy algorithms, the following property is
useful.

Lemma 4: Any set L of links contains a feasible subset of
size Ω(|L|/A(L)).

Proof: Denote bv(L) = av(L) + aL(v) and bv(w) =
av(w) + aw(v). Let L′ = {v ∈ L : bv(L) ≤ 4 · A(L)} be
the subset of links of small affectance to and from other links
in L. By Markov’s inequality, we can verify that |L′| ≥ |L|/2.

We can now apply a randomized signal-strengthening ar-
gument of [16]. Pick a subset S of cardinality |L′|/(8 ·A(L))
uniformly at random from L′, and let R = {v ∈ S : bv(S) ≤
1}. Let Xv = av(S) be the random variable denoting the
affectance of link `v relative to S. Observe that E[Xv] =∑
w∈L′ bw(v) · Pr[`v ∈ S] = bv(L

′)/(8A(L)) ≤ 1/2. Thus,
the probability that bv(S) ≤ 1 is at least 1/2. It follows that
the expected size of R is bounded below by

E[|R|] =
∑
v∈L′

Pr[`v ∈ S] · Pr[Xv ≤ 1|`v ∈ S]

≥
∑
v∈L′

1

8A(L)
· 1

2
=

|L′|
16A(L)

≥ |L|
32A(L)

.

Finally, observe that R is feasible, since aR(v) ≤ bv(R).

Theorem 5: The scheduling algorithms of [7] and [15]
both lead to poly-time algorithms to compute a polynomial-
length schedule that supports f∗i

c1 logn .

Proof: We shall argue that either scheduling algorithm
produces a schedule S with at most T = O(n4 log n) sets
when applied to L̂. Let c1 be a constant such that c1 ≥
T/(10n4 log n). We obtain a new flow vector f̂ by scaling
the flows vector f∗ down by a factor of c1 log n. Then, for
each link `w in E,

T · f̂(w) ≤ 10n4f∗(w) = c(w) ,

which is the number of appearances of `w in L̂. Thus, S
supports the flows f̂ .

To establish the bound on the scheduling algorithms, we
recall that Kesselheim and Vöcking [15] gave a randomized
scheduling algorithm that uses T = O(A(L) log |L|) slots,
which in this case is O(n4 log n). Also, an algorithm was
given in [7] to the problem of finding a maximum feasible
subset of links. By scheduling the linkset by repeatedly ap-
plying that algorithm, this also results in a schedule of length
T = O(n4 log n) using Lemma 4.

A. Arbitrary Power Control

Our schema allows us to handle also the case of arbitrary
power control, using the capacity approximation algorithm of
Kesselheim [8]. He defined the following interference function
between two links `v and `w:

I(v, w) =

{
min

(
1, dv

d(sv,rw)

)
+ min

(
1, dv

d(sw,rv)

)
if dv ≤ dw

0 otherwise .
(9)

It plays a role identical to that of b̂v(w) for fixed power. He
gave the following counterpart of Theorem 2:

Theorem 6: [8, Thm. 2.1] Let `v be a link and S be a
set of links that is feasible under some power assignment,
located on the plane1 with α > 2. Then, for a constant γ,∑
w∈S I(v, w) ≤ γ.

Our LP formulation is now identical, except that we replace
the use of b̂v(w) by I(v, w). Also, we replace the fixed
power algorithm of [7] by Kesselheim’s capacity maximization
algorithm, or the variant of [22] that allows for power to be
limited.

The analysis is also the same with minor changes. We
redefine A(L) = maxR⊂L

∑
v∈R

∑
w∈R I(v, w)/|R|. Then,

Lemma 3 holds unchanged. We slightly modify Lemma 4
by replacing bv(w) by I(v, w) and introducing a constant
parameter τ , so that it yields a set S ⊆ L of size Ω(|L|/|A(L)|)
such that

∑
w∈S I(v, w) ≤ τ . Now, by the following result of

[8], S is feasible, as desired.

Theorem 7: [8, Thm. 3.1] Let S be a set of links such that∑
w∈S I(v, w) ≤ τ , for each link `v in S. Then there is a

power assignment that makes S feasible.

Finally, Theorem 5 carries over without change, giving:

Theorem 8: There is an O(log n)-approximation algorithm
for maximum flow problem under arbitrary power control that
uses a polynomial-size LP.

V. EXTENSIONS

As we have mentioned, the advantage of our formulation,
apart from its simplicity, is that it is easy extend the LP to
handle other linear constraints.

For example, consider the problem of finding a flow as
before, but with the additional constraint that the average
power usage

∑
f(w)Pw is bounded by some value P . Since

the average power is a linear function, the linear constraint
can be added to the LP without any substantial changes to the
analysis.

A. MIMO Flow

Let Oi be the outgoing links from ŝi and Ii be the incoming
links in to t̂i. In the MIMO case, the final schedule will contain
two collections A and B. A will contain a schedule of links
from ∪i(Oi∪ Ii), and B will contain a schedule of links from
the rest of the graph. Interference alignment is used for the
transmissions over the links in Oi and Ii.

1The result extends to fading metrics, which are doubling metrics, where
α is greater than the doubling constant.

The modified LP becomes:

max
∑
i

fi (10)

s.t.
∑

w∈E:rw=a

fi(w) =
∑

v∈E:sv=a

fi(v)

∀a ∈ V \ {ŝi, t̂i},∀i (11)∑
w 6∈Oi∪Ii

b̂v(w)f(w) ≤ γ ∀v 6∈ Oi ∪ Ii (12)

fi(w) ≥ 1

10n4
∀w ∈ Ei \ (Oi ∪ Ii) ,∀i (13)∑

i

fi(w) ≤ 1 ∀w ∈ E (14)∑
w∈Oi

fi(w) ≤ d/k ∀i (15)∑
w∈Ii

fi(w) ≤ d/k ∀i (16)

The changes in Eqn. 12 reflect the fact that links in Oi and
Ii do not have to be charged for interference. The MIMO
requirements are reflected in (15) and (16).

The set B will be as before, containing the schedule of
links w 6∈ Oi ∪ Ii derived by [6], [15].

The set A will be constructed for links in as follows. Set
c(w) = d10n4 · f(w)e as before. Then each c(w) is an integer
between 1 and 10n4d/k, for a total of O(n4d) links. Now
MIMO allows d of these links to be scheduled together, making
for O(n4) slots. The total number of slots including A and B
remains asymptotically the same, and thus the final result is
same as well.

B. Fairness

One of the problems with maximizing the total flow in
a multicommodity flow is that the linear problem will often
just maximize the flow for a single commodity and disregard
the other. To ensure fairness between the commodities we can
add linear constraints to maximize the minimum flow over
all the commodities, thus making sure that the flow is fairly
distributed. The objective in Eq. 10 becomes:

max z (17)
s.t. z ≤ fi ∀i (18)

while Eq. 11 - 16 remain the same.

Constraint (18) enforces a lower limit on the flow for each
source-sink pair, while the objective function in (17) tries to
maximize this lower limit, i.e. to maximize the value of the
smallest flow between any source-sink pair.

The analysis and the theoretical bound of log n is still
valid for the modified objective function. It is easy to see
that the new objective function in (17) and Constraint (18) are
equivalent to keeping the same objective function as before,
max

∑
i fi, and adding the linear constraints Fmin ≤ fi for

every i = 1, . . . , k, where Fmin is some constant, and then do
a binary search for the best value for Fmin. In this case we
only add a linear constraint and we have already shown that
we can add any linear constraint to the formulation.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Fig. 1. An illustration of the LP solution for uniform power on grid and
random topology of 100 nodes. The source node is in the upper left corner
and the sink node in the bottom right corner. The thickness of the edges
denotes the value in the LP solution. The throughput values are 0.595 and
0.486.

Instead of having the same flow value for each source-sink
pair, we can also add a scaling parameter in Constraint 18 so
that we ensure that a source-sink pair will not receive flow that
is less than some fraction of the flow for some other source-
sink pair. We can also use similar constraints to set any type
of proportional or fixed limits (both lower and upper limits)
for each source-sink pair in a multicommodity flow or for any
given set of flows and edges.

VI. SIMULATIONS

To analyze the performance and the throughput of the
flow algorithm, we did extensive simulations. The code was
written in Matlab R2012b and the LP was solved using the
Gurobi 5.0.1 solver. We focus on instances where the nodes
are contained in a square with edgelength 100. To determine
which links are available to the LP , we look at the links whose
length is at most some fraction of the edgelength, we usually
used only links that are at most 0.4-0.5 of the edgelength, i.e.
links of length at most 40-50. Unless otherwise stated, we set
the ambient noise N = 0.

To calculate the throughput, we count the number of
messages that are successfully received by the sink and divide
by the total number of timeslots that the scheduling algorithm
required to transmit all the messages. We assume that the
length of each timeslot is such that a transmitter can send
exactly one message during a single timeslot.

A. Practical modifications

The analysis of the LP requires that every link has a
minimum flow of 1

10n4 in order to avoid complications that
arise if the solution has extremely small positive values. In
practice we can remove this requirement and simply ignore
extremely small values.

Using a fixed scaling factor of 10n4 when scaling the
solution has some practical problems. For most instances the
number of copies for the links increases quickly as n grows.
Even for realtively small values of n, such as n = 100, we
would frequently end up with over 150 million copies of the
same link. In order to make the algorithm in [15] practical,
we use a scaling factor of max(1

fmin
, 1000
fmax

) where fmin is the
smallest flow value greater than 1

10n4 and fmax is the largest
flow on any link. The reasoning behind the scaling factor is

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of nodes

T
hr

ou
gh

pu
t (

m
es

sa
ge

s
pe

r
tim

es
lo

t)

Random nodes (Algorithm LQF)

Grid nodes (Algorithm LQF)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of nodes

T
hr

ou
gh

pu
t (

m
es

sa
ge

s
pe

r
tim

es
lo

t)

Random nodes (Algorithm C)

Grid nodes (Algorithm C)

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of nodes

LP
 o

pt
im

al
 o

bj
ec

tiv
e

va
lu

e

Random nodes

Grid nodes

Fig. 2. Throughput and optimal LP objective value for random and grid based instances, as a function of the number of nodes. The first graphs shows the
throughput using the LQF algorithm on both random and grid based instances, the second graph shows the throughput using algorithm C on the same instances,
and the third graph shows the optimal objective values for both the randomized and grid based instances.

20 25 30 35 40 45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Maximum edge length

T
h
ro

u
g
h
p
u
t
(m

e
s
s
a
g
e
s
 p

e
r

ti
m

e
s
lo

t)

Random nodes

Grid nodes

Fig. 3. The average throughput as a function of the maximum edge length.
The nodes are either distributed uniformly at random or ordered in a grid.

that we want the smallest flow value to scale up to at least one,
so that the corresponding link is included in at least one set.
We tried to simply use a scaling factor of 1

fmin
which worked

well in most instances. However, for some instances where the
solution values are close, i.e. |fmax−fmin| ≤ ε for small ε, the
resulting requests would only have a few copies of each link,
which would lead to inaccurate throughput measurements. To
measure the throughput more accurately, we decided that the
links should be scaled such that the smallest viable link should
have at least one copy, and also that the link with the largest
number of messages should have at least 1000 copies.

B. Scheduling algorithm

As mentioned in Section IV, once we have an optimal
solution to the flow LP, we use a scheduling algorithm to
schedule the links. We looked at three different algorithms
to schedule the links. The first algorithm, which is the one
we use in our theoretical analysis, is the O(log n) algorithm
that was introduced in [21]. We use a variation of that
algorithm from [7], called algorithm C. The idea behind
algorithm C is to repeatedly find good solutions to the ca-
pacity problem. The capacity algorithm is a constant factor
approximation, and by repeating algorithm C until all links
have been scheduled we get a O(log n) approximation to the
scheduling problem. Another option is to use the Longest-
Queue-First (LQF) algorithm. The main difference between
algorithm C and LQF is that instead of sorting the links by
length, LQF sorts the links by the number of requests on
the links. The LQF algorithm does not have the same strong
approximation ratio as algorithm C, and there are instances
where the approximation ratio of LQF is as high as O(n) [23].

However, LQF has proven to be efficient in random topologies
where each link has multiple transmission requests [24], and
in our simulations we noticed that the LQF algorithm usually
performed somewhat better than algorithm C. The third option
is to use the randomized distributed algorithm of [15] which
is also a O(log n) approximation. However, even after trying
out various performance enhancing modifications, we did not
manage to get satisfactory throughputs using the randomized
distributed algorithm. We therefore have a choice between
algorithm C and LQF. Algorithm C is somewhat faster but
LQF usually resulted in a slightly better throughput, as seen
in Figure 2. We therefore decided to use the LQF algorithm
in our simulations.

C. Simulation results - throughput for a single source/sink pair

Figure 1 shows examples of the LP solution for two
examples with 100 nodes and a single source-sink pair. The
nodes are ordered on a grid in the first example and scattered
randomly in the second. All possible links of length at most
50 are included in the instance. An edge is drawn for all links
that have a positive value in the optimal LP solution. Both
instances have a single source-sink pair and the source node is
in the upper left corner and the sink node in the bottom right
corner. The nodes use uniform power for the transmissions
with α = 2.1, β = 1.0 and N = 0. The thickness of the edges
denotes the value in the LP solution, the thicker the link, the
higher the solution value for that link. The throughput for the
grid based instance is 0.595 and 0.486 for the random instance.

The behavior of the flow algorithm, as shown in Figure
1 corresponds well with our intuition of how the flow should
work, the flow quickly spreads out from the source in order to
utilize links better, and then combines again at the sink node.

The LP solver managed to solve simple problems almost
instantly, and problems with 100 nodes and up to 10000 links
were solved in 1-3 minutes on a MacBook Air with a 1.8
GHz Intel Core i7 CPU and 4 GB of memory. However, the
running time does increase quite rapidly when the number of
links increases, since the LP formulation creates a matrix that
is very dense, and therefore somewhat difficult to solve. For
example, with a grid-based instance of 100 nodes and 8011
links, the solver started with a matrix of 16122 rows, 8012
columns and 32770881 nonzero entries. After presolve, the
matrix had 8109 rows, 8010 columns and 32762747 nonzeros.
However, if we make sure that we have relatively few links,
we can easily scale up n and solve examples with hundreds
or even thousand nodes in only a few minutes.

To solve the LP we need to find a value for γ in Con-
straint 6. It is not clear exactly what the value of γ should
be since Theorem 2 and the original Theorem in [6] only
specify that the total symmetric affectance is bounded by a
constant, without giving any specific values for said constant.
By changing the value of γ, we get changes in the optimal
LP solution. If γ is too low, the constraints in (8) that limit
the total flow on a single link become useless, and if γ is too
large, the affectance restrictions in (6) become unused. After
doing multiple experiments with various values of γ, we felt
that having γ fairly small would give us much more interesting
results, i.e. when the affectance bounds in (6) would have more
impact than the more simple maximum bound on the flow on a
single link. For low values of γ there was not much difference
between the solutions, so we decided to use γ = 1.

The graphs in Figure 2 show the throughput and the
optimal LP objective value for both random topology and
grid based topology with increasing number of nodes, where
the throughput is calculated using both algorithm C and the
LQF algorithm. The parameters are the same as for Figure
1 with α = 2.1, β = 1.0 and N = 0. We include all
links of length at most 40. For the randomized instances, the
results show the average value over 100 instances as well as
error bars denoting one standard deviation. Since there is no
random element in the grid based instances, we only need a
single run for those results. As the number of nodes increases,
the optimal LP objective value increases, as was expected.
However, the scheduling algorithm does not manage to show
the same improvement with increasing number of nodes. One
of the reasons for this behavior is that as the number of nodes
grows, the optimal LP solutions often include multiple hops
instead of fewer hops over longer links, due to the fact that
shorter links are stronger than longer links. In our experiments
with the distributed randomized scheduling log(n) algorithm
from [15], the throughput would drop significantly when we
increased the number of hops between the source and the sink,
due to the increased chances of interference from multiple links
transmitting at the same time. The greedy algorithms, C and
LQF, do not show as much degrade in throughput, but it is still
noticeable. Since the grid based instances use square grids,
we only have solutions for 16, 25, 36, . . . , 100 nodes. For the
random topology, the standard deviation for the instances with
few number of nodes is much higher than when the number
of nodes increases. The reason is that often there was no path
from the source to the sink so the throughput would be equal
to zero. When the number of nodes increases, the chance of
having at least one path from the source to the sink increases
and the standard deviation becomes much less.

Figure 2 shows that the LQF algorithm gives a better
throughput than algorithm C, even though algorithm C is both
faster and has a better worst case approximation ratio. Because
of the superior throughput values, we will use LQF to calculate
throughput unless noted otherwise.

Figure 3 shows the throughput for both random instances
and for grids when we increase the maximum lengths of the
links. All parameters are as before with 100 nodes, however
we now include all links of length at most 20, 25, 30, . . . , 80.
As the number of links grow, the average throughput increases
when the nodes are distributed at random. However, there is
not the same behavior when the links are ordered in a grid. The

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Fig. 4. Two examples for using MIMO nodes for the source and sink nodes.
The first graph has 81 nodes and the source and sink nodes are on the sides
of the rectangular area, while the second example uses only 9 nodes and the
source and the sink are in the top left and bottom right corners.

TABLE I. THROUGHPUT VALUES FOR THE TWO GRAPH EXAMPLES IN
FIGURE 4, USING MULTIPLE INPUT AND OUTPUT ANTENNAS.

Antennas Example 1 Example 2
1 0.690 0.654
2 0.724 1.000
3 0.777 1.200
4 0.799 1.306
5 0.812 1.306
6 0.819 1.306
7 0.827 1.306

optimal objective value increases when we increase the number
of links, however, the throughput does not have the same
monotone behavior. Since we’re using a greedy algorithm to
calculate the throughput, some instances just fit the algorithms
better than others so we can get higher throughput even though
the instance contains fewer links. This is especially noticeable
when we increase the number of links by increasing the
maximum link length from 20 to 25, which leads to a drop in
throughput from 0.70 down to 0.58. The reason is that for
the instance with maximum link length of 20, the flow is
concentrated down three paths, while the grid based instance
with link lengths up to 25 focuses the flow on four paths. Due
to interference, it’s easier to greedily schedule the links when
the paths are fewer and further apart.

D. Simulation results - MIMO

By using MIMO nodes for the source and sink nodes, we
can decrease the bottleneck at those nodes. Figure 4 shows two
instances where we look at the effect of increasing the number
of antennas at the source and sink nodes. The first instance
uses 81 nodes and the source node is in the middle of the
left side, while the sink node is on the right side. The second
example uses only 9 nodes and the source and sink nodes are in
the opposite corners of the rectangular area. Table I shows the
throughput values for different number of antennas. We see that
once the number of antennas is equal to the number of nodes
that are easily reachable from the MIMO nodes, adding more
antennas does not make any significant improvements. The
number of nodes in the system and the path lengths between
the source and the sink have a large impact of how effective
it is to add more antennas. When we have few nodes and
short paths between the source and the sink, the bottleneck at
those nodes becomes more dominant, while for longer paths,
the bottlenecks at the source and the sink are less significant.
For the smaller example with 9 nodes, we get more than 50%

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Fig. 5. An illustration of the optimal LP solution for a single instance of
multicommodity flow. The solution shown in the figure on top is obtained
without using any fairness measure, so the flow from top left to bottom right
dominates the flow from bottom left to top right. The second figure contains
a fairness criteria so both flows are equal.

increase in throughput by going from a single antenna to two
antennas, and more than double the throughput by going to 4
antennas. However, for the larger example with 81 nodes, the
improvement is much less, we only get around 5% increase
with the first additional antenna and a total increase of 20%
by going from a single antenna up to 7 antennas at both the
source and the sink nodes.

E. Simulation results - Multiple source/sink pairs

Figure 5 shows an instance where we have a multicommod-
ity flow, i.e. multiple source-sink pairs. The first source-sink
pair is transmitting information from the top left corner to
the bottom right corner, while the second source-sink pair is
transmitting from the bottom left corner to the top right corner.
The instances have 60 nodes in an area of size 100 × 100,
with α = 2.1, β = 1.0 and N = 0, and we include all links
of length at most 30. If we solve the LP solution we find that
the first commodity, from top left to bottom right, gets a much
higher throughput that the other, the objective value for the
first commodity is 0.2344 while the second one only has an
optimal objective value of 0.1287. These values translate into
throughputs of value 0.32 and 0.17 for the two commodities. If
we use the LP with the fairness objective (17) and Constraint
(18), we get an equal optimal objective value of 0.1798 for both
commodities, and a throughput of 0.24 for each commodity.
There is not much visual difference between the solutions, and
the total throughput for both cases is almost the same. The
difference is the fairness, in the first one, the source-sink pair
from top left to bottom right dominates the available resources,
while the second instance has a fair distribution of the available
resources.

VII. CONCLUSIONS

In this paper we have given a general and efficient LP
based framework for the maximum flow problem in wireless
networks. Our framework holds for any flow problem with
linear constraints. Among the constraints that the framework
can handle are MIMO nodes for the source and the sink,
power limitations and bandwidth restrictions. The framework
can also handle fairness measures between multiple source-
sink pairs in a multicommodity flow. The framework matches
the best known approximation bound of O(log n) for the basic
maximum flow in wireless networks, but uses a simpler and
more intuitive analysis. As far as we know, this is the first

practical algorithm with an approximation bound that depends
only on the number of nodes for this problem.

REFERENCES

[1] V. R. Cadambe and S. A. Jafar, “Interference alignment and spatial
degrees of freedom for the k user interference channel,” in IEEE ICC,
2008, pp. 971–975.

[2] K. C.-J. Lin, S. Gollakota, and D. Katabi, “Random access heteroge-
neous MIMO networks,” in SIGCOMM, 2011.

[3] D. Chafekar, V. Kumar, M. Marathe, S. Parthasarathy, and A. Srinivasan,
“Approximation algorithms for computing capacity of wireless networks
with SINR constraints,” in Infocom, 2008.

[4] D. Chafekar, V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and
A. Srinivasan, “Capacity of wireless networks under sinr interference
constraints,” Wireless Networks, vol. 17, no. 7, pp. 1605–1624, 2011.

[5] P.-J. Wan, O. Frieder, X. Jia, F. Yao, X. Xu, and S. Tang, “Wireless
link scheduling under physical interference model,” in INFOCOM, 2011
Proceedings IEEE, 2011, pp. 838–845.

[6] M. M. Halldórsson, S. Holzer, P. Mitra, and R. Wattenhofer., “The
power of non-uniform wireless power,” in SODA, 2013.

[7] M. M. Halldórsson and P. Mitra, “Wireless Capacity with Oblivious
Power in General Metrics,” in SODA, 2011.

[8] T. Kesselheim, “A Constant-Factor Approximation for Wireless Capac-
ity Maximization with Power Control in the SINR Model,” in SODA,
2011.

[9] P.-J. Wan, “Multiflows in multihop wireless networks,” in Mobihoc,
2009, pp. 85–94.

[10] G. Even, Y. Matsri, and M. Medina, “Multi-hop routing and scheduling
in wireless networks in the SINR model,” in Algosensors, 2012, pp.
202–214.

[11] Y. Shi, Y. T. Hou, S. Kompella, and H. D. Sherali, “Maximizing capacity
in multihop cognitive radio networks under the sinr model,” IEEE Trans.
Mob. Comput., vol. 10, no. 7, pp. 954–967, 2011.

[12] D. Chafekar, V. Kumar, M. Marathe, S. Parthasarathy, and A. Srinivasan,
“Cross-layer latency minimization for wireless networks using SINR
constraints,” in Mobihoc, 2007.

[13] A. Fanghänel, T. Kesselheim, and B. Vöcking, “Improved algorithms
for latency minimization in wireless networks,” in ICALP, July 2009,
pp. 447–458.

[14] O. Goussevskaia, Y. A. Pignolet, and R. Wattenhofer, “Efficiency of
wireless networks: Approximation algorithms for the physical interfer-
ence model,” Foundations and Trends in Networking, vol. 4, no. 3, pp.
313–420, 2010.

[15] T. Kesselheim and B. Vöcking, “Distributed contention resolution in
wireless networks,” in DISC, August 2010, pp. 163–178.

[16] A. Fanghänel, T. Kesselheim, H. Räcke, and B. Vöcking, “Oblivious
interference scheduling,” in PODC, August 2009, pp. 220–229.

[17] T. Moscibroda and R. Wattenhofer, “The Complexity of Connectivity
in Wireless Networks,” in INFOCOM, 2006.

[18] M. M. Halldórsson, “Wireless scheduling with power control,” ACM
Transactions on Algorithms, vol. 9, no. 1, p. 7, December 2012.

[19] T. Tonoyan, “On the capacity of oblivious powers,” in Algosensors,
2011, pp. 225–237.

[20] O. Goussevskaia, M. M. Halldórsson, R. Wattenhofer, and E. Welzl,
“Capacity of Arbitrary Wireless Networks,” in INFOCOM, April 2009,
pp. 1872–1880.

[21] M. M. Halldórsson and R. Wattenhofer, “Wireless Communication is
in APX,” in ICALP, July 2009, pp. 525–536.

[22] T. Kesselheim, “Approximation algorithms for wireless link scheduling
with flexible data rates,” in ESA, 2012, pp. 659–670.

[23] L. B. Le, E. Modiano, C. Joo, and N. B. Shroff, “Longest-queue-first
scheduling under SINR interference model,” in MobiHoc, 2010.

[24] E. I. Ásgeirsson, M. M. Halldórsson, and P. Mitra, “A fully distributed
algorithm for throughput performance in wireless networks,” in 46th
Annual Conference on Information Sciences and Systems (CISS), 2012.

