Online Scheduling with Interval Conflicts

Magnus M. Halldérsson* Boaz Patt-Shamirf* Dror Rawitz'

mmh@ru.is boaz@eng.tau.ac.il rawitz@eng.tau.ac.il

June 27, 2011

Abstract

In the problem of Scheduling with Interval Conflicts, there is a ground set of items
indexed by integers, and the input is a collection of conflicts, each containing all the items
whose index lies within some interval on the real line. Conflicts arrive in an online fashion.
A scheduling algorithm must select, from each conflict, at most one survivor item, and the
goal is to maximize the number (or weight) of items that survive all the conflicts they are
involved in. We present a centralized deterministic online algorithm whose competitive ratio
is O(lg o), where o is the size of the largest conflict. For the distributed setting, we present
another deterministic algorithm whose competitive ratio is 21g o, in the special contiguous
case, in which the item indices constitute a contiguous interval of integers. Our upper
bounds are complemented by two lower bounds: one that shows that even in the contiguous
case, all deterministic algorithms (centralized or distributed) have competitive ratio Q(lg o),
and that in the non-contiguous case, no deterministic oblivious algorithm (i.e., a distributed
algorithm that does not use communication) can have a bounded competitive ratio.

Keywords: online scheduling, online set packing, interval conflicts, competitive analysis, com-
pound tasks, distributed algorithms.

*School of Computer Science, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland. Supported in
part by the Iceland Research Fund (grant 90032021).

TSchool of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel. Research supported in part by
the Next Generation Video (NeGeV) Consortium, Israel.

fSupported in part by the Israel Science Foundation (grant 1372/09) and by a grant from Israel Ministry of
Science and Technology.

1 Introduction

We study the following abstract problem, which we call Scheduling with Interval Conflicts.
There is a universe U of n items, each with an integer identifier. The input is a collection C of
conflicts, where each conflict C' € C is a set containing all the items of U within some interval on
the real line. A conflict represents an event where specified items compete for a resource that
can be granted to only one item. Conflict resolution is carried out by a scheduling algorithm
that decides which item survives: all other items in the conflict set are eliminated. The goal of
the scheduling algorithm is to maximize the number (or weight) of items that survive all their
conflicts.

Scheduling with Interval Conflicts arises naturally in some scenarios. One interpretation of
the model is when we have a set of permanently-running stations that may interfere only with
other neighboring stations, where the underlying metric space is a line, and the interference
range in each direction may change in every step. In each step we need to choose a station that
will win the current conflict, if any. The goal is to maximize the number of stations that never
fail.

Another example for our model are tasks that must be processed by a few bounded-capacity
servers located at different sites on the Internet. The tasks are sent to these servers in the same
order, and due to varying congestion conditions in the network, they arrive at the servers with
varying burstiness: for example, the input to server A may be such that at step t task i arrives,
at step t+1 tasks i+ 1,7+ 2,7+ 3 arrive together, at step £+ 2 no task arrives etc. The input to
another server B may exhibit a different burst structure, e.g., tasks ¢ and 7 + 1 arrive together,
and tasks i + 2 and i 4 3 arrive together. Assume that the servers can process only one task at
a step, and tasks cannot be stored for later processing. Then a time step in which more than a
single task arrives can be represented as an interval conflict. The main question in our model
is which tasks to process and which to drop, so as to maximize the total number of tasks that
receive all the processing they require.

Finally, consider multiple streams of data-frames (e.g., video frames) that need to be trans-
mitted across the Internet. Since data frames are typically too large to fit in a single packet,
the frames are broken into a number of packets, and reconstructed at the receiver. However,
if a packet is lost in transit, its whole constituent frame (i.e., item) becomes useless. Interval
conflicts arise if the streams pass through a congested router which can forward only one packet
from each burst of packets that arrive together (all other packets are dropped).

Problem variants. One desirable feature of a solution method is when conflicts are resolved
without knowledge of other conflicts. This would be necessary if conflicts arrive in different
locations and communication would not be possible or feasible, or if the conflict resolution
protocol must be stateless. We call this variant oblivious (or distributed) scheduling. The
variant when all previous conflicts and their outcomes are known to the algorithm when a new
conflict arrives will be called sequential scheduling. Note that both oblivious and sequential
scheduling algorithms are online, i.e., no information about future conflicts is available to the
algorithm (the offline variant of the problem is when all conflicts are given ahead of time).

An interesting special case of interval conflicts is when the universe of items contains no
gaps, i.e., the items have identifiers ig,i9 + 1,...,i0+n — 1 (in general, item identifiers are only
required to be totally ordered). We refer to this as the contiguous case.

1.1 Owur Contribution

In this paper we introduce and formalize the problem of Scheduling with Interval Conflict
(abbreviated sic below), and give deterministic online algorithms and lower bounds on the
competitive ratio of deterministic algorithms. We start off with considering oblivious algorithms.
It turns out that contiguous conflicts allow for an oblivious (and hence distributed) algorithm,
guaranteeing competitive ratio of O(lg o), where o is the maximal number of items in a conflict.
This algorithm can be used to design an oblivious O(lgo/b)-competitive algorithm for the
generalized problem when b items may survive each conflict. However, no competitive oblivious
algorithm exists if item identifiers are not contiguous, as we show. We then give a sequential
O(lg o)-competitive algorithm that works also in the case of weighted items and non-contiguous
item identifiers. Both upper bounds are matched by a Q(lg o)-lower bound on the competitive
ratio of any deterministic online algorithm, even sequential algorithms for unweighted contiguous
SIC.

Finally, we provide two additional sequential algorithms. In the first the competitiveness
is expressed in terms of the depth of the interval structure, where depth is defined to be the
maximal number of conflicts that any single item is involved in. We also provide a matching
lower bound. The second is a simple online algorithm that is allowed to deliver up to two items
from each conflict. We show that this algorithm is 1-competitive compared to an optimal offline
algorithm that may deliver only one item per conflict.

1.2 Related Work

The offline version of our problem, finding a maximum subset of points with no two in a common
interval, is easily solvable in polynomial time (see Section 2). A related minimization problem
is finding the minimum number of points intersecting all intervals, or alternatively minimum
clique partition. A 2-competitive online algorithm for the latter problem is given and shown to
be the best possible in [6].

A different dual problem is the interval selection problem, where we seek a maximum car-
dinality subset of disjoint intervals. In the online version, the intervals that arrive over time
must be irrevocably accepted or rejected. Randomized algorithms for different cases are known
[9, 1, 2]; the result closest in spirit to ours is an O(logm)-competitive algorithm (originally for
call control on the line) [1], where m is the number of possible interval endpoints. In general,
however, a (n) lower bound holds for the competitive ratio of randomized algorithms [2], where
n is the number of intervals. Interval selection can be seen as an instance of scheduling with
conflicts, which has been studied extensively (see, e.g., the surveys of [7, 10]), but to the best of
our knowledge, we are the first to consider online conflicts in the form of groups of consecutive
items.

The problem of multi-packet frames (sketched above) was introduced in [8], where it is
shown that if packet ordering is arbitrary (namely conflicts are not necessarily intervals), then
the competitive ratio is (o) even for two-packet frames. A general framework that deals with
transmission of multi-packet frames is described in [3]. The problem is modeled as an online
version of Set Packing, nearly tight bounds of é(k‘\/g) are proven on the competitive ratio
of randomized algorithms for Online Set Packing, and a Q(c*~!) deterministic lower bound
is shown, where k is the maximum size of a set and ¢ is the maximum number of sets that
contain the same element. In our terms, it is assumed there that each item is involved in up to
k conflicts, and conflicts need not be intervals.

Note the unusual characteristic of our problem is that the solution only decreases as more
of the input arrives. Little is known about online maximization problems of this sort; the only

related result we are aware of is [3].

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we formalize the problem and
present the basic arguments we use in analyzing our algorithms. We study oblivious algorithms
in Section 3, and sequential algorithms are considered in Section 4. In Section 5 we prove a lower
bound on the competitive ratio of online algorithms. The two additional sequential algorithm
are given in Sections 6 and 7, with concluding remarks are given in Section 8.

2 Preliminaries and Basic Argument

In this section we formalize the problem, define the concepts and notation we use, and present
the basic argument we employ in the analysis of our algorithms.

2.1 Problem Statement and Notation

Scheduling with Interval Conflicts (abbreviated sic) is defined as follows. There is a set U of
n integer items. The input is a collection C of conflicts, where each conflict C' € C contains all
items of U within some interval on the real line. Namely, C' = U N [min(C), max(C')]. In this
paper we also consider the Contiguous Model, where U is a set of consecutive integers. The

size of the largest conflict is denoted by o¢, namely o¢ dof max {|C| : C € C} (the subscript is
omitted when the instance is clear from the context). A feasible schedule is a set of items P C U
containing at most one item from any given conflict, i.e. |PNC| <1 for every C € C. An item
in P is said to be a survivor of its conflicts, while the other items were eliminated. If item i
survives conflict C' 3 ¢ by algorithm A, we say that A delivers i from C. The goal is to find
a maximum cardinality feasible schedule, i.e. maximize the number of items surviving all their
conflicts (see example in Figure 1). We also consider a generalized version of Sic, where we are
given an integer b > 1, and a feasible schedule is a set of points P C U such that no conflict
contains more than b items from P, i.e. |[PNC| < b for every C € C. We shall assume, without
loss of generality, that |C| > b for all conflicts C' € C (|C| > 1 in the basic version of sic). Note
that this implies that b < o.

In the weighted case, each item i has a real-valued weight w(i) > 0 and the objective is
to find a maximum weight subset of weights satisfying the conflict constraints. For a set S of
. def .
items, w(S) = Y ;cqw(i).

We consider two models of algorithms. In the oblivious model, the selection of a survivor
from a conflict is a function of that conflict only, which allows for distributed conflict resolution.
In the sequential model, conflicts arrive over time, i.e., they are ordered as a sequence C1, Cy, . . .,
and the resolution of conflict Cy may be a function of the full history C1, ..., C;.

We note that simple heuristics for SIC may perform poorly. For example, selecting the
leftmost item in each given conflict is Q(n)-competitive as demonstrated by the instance in
Figure 2. The same goes for the sequential strategy of picking the leftmost item among the
items that were not eliminated in previous conflicts. (We assume that the top conflict is the
first to arrive.)

[o] [e] [e] [o |
l o] [l l . | Ol
[o] [o]
(a) P = {5} (b) P = {1,3,6,8}

Figure 1: An instance of SIC with two possible solutions. Rectangles represent conflicts, and
dots represent items that were selected as survivors in conflicts. The instance contains eight
items and five conflicts whose size is at most 4 (i.e., o = 4). In Figure 1a (top), only one item
survives all conflicts, while an optimal solution can have four such items (Figure 1b).

1 2 3 4 5 oo m—=1mn

[o]

[o]
[o]
[o]
[e]

Figure 2: An instance of SIC with n items and n — 1 conflicts (all of size 2, i.e., o = 2). If one
selects the leftmost item in each given conflict, only one item (number 1) survives all conflicts,
while by always picking the odd-numbered items (represented by dots in the figure), one gets an
optimal solution of size [n/2].

2.2 Characterizing Optimal Solutions

The offline version of SIC can be formulated as finding a maximum number of disjoint cliques in
an interval graph, which can reduced to maximum independent set in proper intervals graphs,
which is solvable in polynomial time [5]. The reduction is as follows. First, remove all conflicts
that are properly contained in other conflicts. It follows that there is a total order on the
remaining conflicts, given equally by their left and right endpoints. We may then view each
item as an interval representing a contiguous sequence of conflicts. Finding an optimal schedule
now corresponds to finding a maximum interval selection (subset of mutually disjoint intervals)
in this interval system. We can similarly reduce the interval selection problem to the offline sic
problem.

We give a more direct description below. First, we provide an upper bound on the optimal
solution due to duality. Let opPT(C) denote an optimal solution of SIC to instance C, and let
U(C) = Ugec C denote the set of items involved in conflicts in C.

Observation 1. For allC' CC: IfU(C') = U(C), then |oPT(C) NU(C)| < |C'|.

Observation 1 motivates a simple polynomial offline algorithm for sic. Briefly, the idea
is to scan the item set from left to right (the examples in Figure 1 may help the reader),
initially selecting the leftmost item. The next element selected, following a selected element
ij, is then inductively the leftmost element among those that are not in conflicts with i;, i.e.,

ij4+1 = min{i’ : ¢ > i; and VC € C, |{i;,7'} N C| < 1}. This forms a feasible solution, since
for any consecutively chosen items ¢; and i;1, there is no conflict containing both ¢; and ;4.
To prove that the selected elements constitute an optimal solution, let C’]’- be the conflict that
contains 7; and ;41 — 1. Since |J; €} = U(C), optimality follows from Observation 1.

3 Oblivious Algorithms

In this section we consider oblivious algorithms. Oblivious algorithms are attractive because
they can be implemented in a distributed system. The main result of this section is a 21go-
competitive oblivious algorithm for unweighted contiguous sic. We also show that this algorithm
generalizes to the non-unit capacity case. We start the section by showing that if the instance
is not contiguous, then no oblivious algorithm can be competitive.

3.1 A Lower Bound for the Non-Contiguous Case

We argue that no deterministic oblivious algorithm is competitive in the general (non-contiguous)
case even if o = 2.

Theorem 1. The competitive ratio of any deterministic oblivious algorithm for sic is Q(n),
even for the unweighted case and for o = 2.

Proof. Fix a deterministic oblivious algorithm ALG. By definition of obliviousness, the decision
of ALG for a given conflict C' depends only on its items. Let n be a number and let N = 2". We 2-
color the edges of an N-vertex clique Ky as follows. Edge (v;, v;), for i < j, is colored blue if ALG
prefers v; over vj;, and otherwise red. By Ramsey’s theorem [4], Ky contains a monochromatic
subgraph of log N = n vertices. That means that there is either an increasing or a decreasing

sequence of n items iy,...,i, such that ALG prefers iy over iy, for any ¢ € {2,...,n}. We
introduce the conflicts {iy_1,i,}, for £ € {2,...,n}. Then, only i, will survive the execution of
ALG, whereas {i; : £ is odd} is a feasible solution of size n/2. O

3.2 Oblivious Algorithm for Contiguous sic

In this section we present a simple 2 [lg o |-competitive algorithm for unweighted contiguous
sic. We note that the algorithm needs not know ¢ in advance.

The basic idea of the algorithm is to assign to each item a fixed priority, and the conflict
resolution rule is to always prefer the item with the highest priority. Specifically, our algorithm,
Priority, defines the priority of item ¢ by

p(3) ¥ max {e € Z | i is divisible by 2¢ } . (1)

For example, if 4 is odd, then p(i) = 0, and if i = 2¢ then p(i) = £.!
One nice consequence of this definition is the following observation:

Observation 2. If iy < i, and p(iy) = p(i,) = p for some p, then there exists iy < i < i, such
that p(i) > p.

'For an efficient implementation (in ACO), e.g. to use in routers, it suffices to extract the smallest bit set,
using the bit-wise operations (¢ XOR (i — 1)) AND 4.

Figure 3: Execution of Algorithm Priority on an instance with ten items and seven conflicts.
The dots represent the items that were chosen by the algorithm. The computed solution is
P ={4,8,10}, while the optimum is {1,3,6,9}.

Observation 2 implies that any conflict contains exactly one item with maximum priority,
and hence Algorithm Priority is well-defined: Upon arrival of conflict C, the algorithm delivers
the unique item with highest priority (as defined by (1)) among the items in C. See Figure 3
for an example. Note that the algorithm makes decisions without knowing or even estimating
o, and that it is completely distributed: the identity of the winner of a conflict is independent
of other conflicts.

Next, observe that even though there is a priori no bound on the maximum priority (since
the item sequence can have an arbitrarily high starting point), we need only to concern ourselves
with [lg o] priorities.

Observation 3. Fach conflict contains at most one item i with p(i) > [lgo].

Observation 3 implies that given conflicts whose length is bounded by o, all priorities greater
than or equal to lg o are indistinguishable from the viewpoint of Algorithm Priority.

We now turn to prove that the competitive ratio of Algorithm Priority is at most 2 [lgo].
We use the following concept.

Definition 1. Let C be an instance and let A be an algorithm for SIC. A sequence of items
10,%1,--.,%m % an elimination chain of length m if for all 0 < j < m we have that item i;
eliminates item i;_1 when A runs on C.

Note that an elimination chain of length m contains m + 1 items, but implies the existence
of m conflict intervals. Elimination chains have the following property.

Lemma 4. Let C be an instance and let A be an algorithm for sic. Suppose that ig, ..., 0m 1S
an elimination chain for C under A. Then, the interval [i’,i"] is covered by m conflicts in C,
where i =min{i; | 0 < j <m} and i" = max{i; | 0 < j <m}.

Proof. By Definition 1, for any 0 < j < m there exists a conflict I; € C such that i;_; € I; and
ij € I;. It follows, by induction on m, that (JIL, I; 2 [i',i"]. -

Lemma 4 implies the following consequence. Say that an algorithm is reasonable if it delivers
an item from each conflict, i.e. it does not unnecessarily eliminate items.

Proposition 1. The competitive ratio of any reasonable algorithm for SIC is at most 2m, where
m is the length of the longest elimination chain of the algorithm.

Proof. Fix an instance C. Say that an item 4’ is dominated by an item ¢ if there is an elimination
chain that starts with ¢/ and ends with i. For each item i, let D(7) be the set of items dominated

IS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
p#: 0 1 0 2 01 03 01 02 010401020103 071020T1°0
[e o]
[o e]

Figure 4: The input sequence for £ = 5. Algorithm Priority delivers only item 16; the items
corresponding to all other unfilled dots are eliminated. On the other hand, the solution P =
{1,3,7,15,17,25,29,31} (solid dots) is optimal.

by 4. Now, consider a reasonable algorithm A, and let P be the set of items delivered by A
running on C. Clearly, each item i was either delivered by A, i.e., i € P, or eliminated, in which
case i € D(i') for some ¢’ € P (because A is reasonable). In addition, we have by Lemma 4 that
D(7") can be covered by the conflicts of two elimination chains: one starting from min(D(i))
and one that starts from max(D(i")). We can therefore conclude that the set of all items can
be covered by 2m|P| intervals. The result now follows from Observation 1. O

Using Proposition 1 and Observation 3 we can easily bound the competitive ratio of Algo-
rithm Priority.

Theorem 2. The competitive ratio of Algorithm Priority is at most 2 [lgo].

Proof. By Observation 3 and the fact that under Priority an item ¢ is eliminated by an item
i’ if and only p(i) < p(#’'), we have that the length of any elimination chain under Priority is
at most lg o. The theorem therefore follows directly from Proposition 1. 0

We show that the analysis of Algorithm Priority is tight.

Proposition 2. The competitive ratio of Algorithm Priority is at least 2 [lgo].

Proof. Let ¢ > 2 be a number and let n = 2¢ — 1. Consider the following conflict set that

contains 2¢ conflicts:
/—1

7, = {[2j-1’ 27, [2¢ — 2, 2¢ — 23‘—1]} '
j=1

See example with ¢ = 5 in Figure 4. Observe that the maximum conflict size is oy = 272 + 1.

Algorithm Priority delivers only item 271, since any other item is eliminated by a higher
priority item. Any item i € [2/=1, 2/ — 1], for some j € [1,£ — 1], is eliminated by 27, while any
item 4 € [2¢ — 27 —1,2¢ — 2771], for some j € [1,£ — 1], is eliminated by 2¢ — 27.

On the other hand, observe that the items in the set P = Ug; {2j — 1,26 -2 4+ 1} are each
contained in only one conflict. Thus they form a feasible solution with 2¢—2 = 2(lg(cy—1)+1) =
2 [lg o] items. O

3.3 Oblivious Algorithms: The b-Capacity Case

In the capacitated version of SIC, we are given an integer b > 1, and a feasible schedule is a set
of points P C U such that no conflict contains more than b items from P, i.e. |PNC| < b for
every C' € C. We shall assume, without loss of generality, that |C| > b for all conflicts C € C.
Note that this implies that b < o.

We first provide a capacitated version of Observation 1.
Observation 5. For allC' CC: IfU(C') =U(C), then |opT(C) NU(C)| < |C'] - b.

Next, we extend Algorithm Priority to the case where b items can be delivered from each
conflict. For this case we obtain a competitive ratio of O(lg(o/b)). Our algorithm, called
Algorithm SuperlItem, is based on Algorithm Priority as follows. We statically partition

the items into intervals of size b called super-items. Formally, the jth super-item is defined

by S; def [(j—1)b+1, jb]. The idea is to run Algorithm Priority on the super-items: given

a conflict I, the algorithm delivers all items in I that are part of the super-item S; with the
highest priority p(j). Note that in general, not all items of S; must be included in conflict I.

We analyze Superltem using the following unit capacity SIC instance. The new instance
contains an item for every super-item in the original instance, and the new conflict set C’ contains
a conflict Ij, for every I; € C. I] is obtained by taking the set of super-items that intersect I.
That is, I; = {j | S; N I; # 0}. Let ¢’ denote the maximum size of a conflict interval in the new
instance.

Observation 6. ¢’ < ¢ + 1.

Proof. Let I] be a conflict in C’ of size o’. Then, I; contains b — 1 items between each of the
items of I}, for a total of at least o’ + (¢/ —1)(b—1) > o’b —b. O

Let P be the set of surviving items obtained by executing Algorithm SuperItem with the
original instance as input, and let P’ be the set of surviving items obtained by Algorithm Pri-
ority with the new instance as input.

Lemma 7. |P|>b-|P'|—2(b—1).

Proof. Observe that if j survives according to Algorithm Priority, then there is no conflict in
C’ that drops j. Hence, there is no conflict in C that drops any of the items in S;. The additive
factor of 2(b — 1) is because the item range may not end at block boundaries. O

To compare P to an optimal solution, we use the following observation.

Observation 8. Let S C U(C) be an interval such that |S| < b. Then there exist I', 1" € C
(possibly I' = 1") such that S C T'UTI".

Proof. If S C I for some I € C, then we are done. Otherwise, let I’ be the conflict with the
rightmost right endpoint among conflicts whose right endpoint is in S. Similarly, let I” be
the conflict with the leftmost left endpoint among conflicts whose left endpoint is in S. Since
[I'],]I”| > b we have that min(I’") < min(S) and max(I") > max(S). Hence, S C I' UI”, since
otherwise S Z U(C). O

Theorem 3. The competitive ratio of Algorithm SuperItem is O(lg(o/b)).

Proof. Let I € C. Consider the interval I’ obtained by extending I; in both directions until we
reach super-items boundaries or the boundaries of the contiguous component. Clearly I; C I;'.
We claim that I}’ can be covered by at most five conflicts from C. Since I} is covered by conflicts
from C, each of the two super-items at the edges of I}’ must be contained in at most two conflicts
from C by Observation 8. It follows that I}’ can be covered by at most five conflicts from C.

Now, due to Lemma 4 and Observation 3 we know that the items in U(C’) can be covered
by 21g o’ - |P'| conflicts from C’. Hence, U(C) can be covered by

10lgo’ - |P| < 101g(a/b+1) - (|P] + 2b)/b
conflicts. Finally, due to Observation 5 we have that
lopT NU(C)| < 101g(o/b+1) - (|P] + 2b) ,

as required.]

4 Sequential Algorithms

In this section we present an O(lgo)-competitive sequential algorithm for sic, extending algo-
rithm Priority to the weighted and non-contiguous case.

In describing our algorithm, we say that item ¢ fired item ¢’ if 7 was the first item to eliminate
/. In the remainder of this section we say that an item ig is dominated by item 4y, if there is an
elimination chain g, 1,...,%, such that i; fires item i;_;, for every j. Let D(i) be the set of
items that are dominated by i. Note that if ¢ survives then D(i) # (), and in particular i € D(7).
Observe that each item is dominated by exactly one surviving item, hence D(:) N D(i') = () for
each pair of surviving items ¢ and 7’.

We now describe the algorithm in the weighted case. Define the weight class of item ¢ to
be ¢(i) = |lgw(i)], the base-2 logarithm of the item weight rounded down to an integer. Our
algorithm is called Seq, and it proceeds as follows.

With each item 7, we associate two values left(i) and right(¢) (initially both zero), referred
to as the left and right levels of i, respectively. When an interval I arrives, the algorithm
determines the highest weight class of active items in I. If there is only one active item of the
highest weight class, it simply survives. Otherwise, let [and r be the leftmost and rightmost
active items of the highest weight class. The algorithm compares left(l), the left level of I, and
right(r), the right level of r. If left(l) > right(r), then [survives and right(!) is set to right(r)+1;
otherwise, r survives and left(r) is set to left(l) + 1. (The algorithm arbitrarily favors r, in case
of a tie.) Notice that left(i) and right(i) may increase and decrease during execution.

Fix some optimal solution OPT. The following upper bound is what motivates the numbering
of the levels. Let m; be the larger of the levels of i, namely m; = max{left(i), right(:)}. Also,
let n; = maxycp(;) mir be the largest level of an item in D(i).

Lemma 9. w(opT N D(i)) = O(n; - w(i)).

Proof. Let Iy, ...l be the sequence of items in D() such that [; is the leftmost item in D(i) and,
inductively, ;11 is the item that fired item [;. Observe that the sequence extends monotonically
from left to 4, with [; = ¢. According to the survival rule of the algorithm, the weight classes
of the items are monotonically non-decreasing, and for a pair of items [; and /;;1 in the same
weight class, the left levels are strictly increasing, namely left({;41) > left(l;). It follows that
there are at most n; items from the item set {l1,...,[;} in each weight class. Hence, the sum
of the weights of the items I1,...,[; is bounded by

t t

> w(ly) <2 20 <ong > 20 < 2m - 2°0F <y - w(d) (2)

j=1 j=1 e<ef(i)

Let D~ (i) (D*(4)) be the subset of items in D(i) to the left (right) of 4, up to and including
i. That is, D~ (¢)UD™ (i) = D(i) and D~ (i)N D™ (i) = {i}. Partition D~ (¢) into ranges [l;11, ;]
for j =1,...,t — 1. Observe that [;,; must be in the largest weight class among the items in
the range [l,lj41], for all j = 1,...,¢t — 1. (Namely, if there was a item in [l; + 1,[;41 — 1]
belonging to a larger weight class, the largest such item could not have been eliminated without
either [; or /1 being also eliminated.) Since OPT can contain at most one item from each range
(lj,lj+1], it follows from (2) that

w(oPTN D™ (1)) <2) w(ly) < 8n; - w(i) .
j=1

Applying the same arguments to DT (i) yields that w(opT N D(i)) < 16n; - w(i), implying the
lemma. O

We now show that high levels imply very large intervals.

Lemma 10. n; = O(lgo).

Proof. Let D(i') be the set of items dominated by ¢’ that are from the same weight class, ¢(i’),
as 1.

~

Claim 1. |D(d")| > 2™, for any item i’ in D(7).

Proof. The proof is by induction on m;. The base case m; = 0 is trivially true, since i’ € 15(2’).
For the inductive step, suppose that m; > 1. Consider the most recent conflict I that i’ survived
and in which an item from class ¢(i’) was fired. Let [and r be the leftmost and rightmost active
items in I, respectively, such that ¢(l) = ¢(r) = ¢(i), when I was presented. Observe that
i’ € {l,r}. By the inductive hypothesis, |D()| > 2™ and [D(r)| > 2. If my = max{my, m,},
then we are done. Suppose then that my; = max{m;,m,} + 1, which happens only when
my = m,.. Since D(I) and D(r) are disjoint, we have that

D) > [D(1)| + | D(r)] > 2™ + 2™ = 2™ |
and the claim follows. O

Claim 2. ﬁ(z’) s covered by at most 2my intervals.

Proof. Let ly,ls,...,l; be the sequence of items defined such that [y is the leftmost item in D(z’)
and, inductively, [;41 is the item that fired [;, for j = 1,...,¢t — 1. Also, let I; be the interval
presented upon which /41 fired l;, for j = 1,...,t — 1. Clearly, I1,...,I;—1 cover the items to
the left of I; = 4/, up to and including 7. According to the survival rule of the algorithm, the
left levels of the items are strictly increasing. It follows that ¢ < my 4+ 1. By symmetry, m;
intervals also cover the items in D(i’) to the right of i’. O

We resume with the proof of Lemma 10. Let i’ € D(i) such that n; = m;. By the two claims
above, some interval covers at least |D(i')|/(2m;) > 2™~ /my items. Hence, o > 2™~ /my,
orn; =my <lgo(l+o(1)). O

The following theorem is now immediate from Lemmas 9 and 10 when observing that the
sets {D(4) : ¢ survived} partition the set U of items.

Theorem 4. The competitive ratio of the oblivious algorithm Seq for the weighted and non-
contiguous case is O(lgo).

10

5 A Lower Bound on the Competitive Ratio

In this section we show that the competitive ratio of any deterministic online algorithm for
contiguous SIC is Q(lgo). Our lower bound construction is sequential, namely the conflicts
arrive one by one, and the algorithm knows the complete history when a new conflict arrives.
Since any algorithm for oblivious SIC can be used in the sequential model, the lower bound
holds for oblivious SIC as well.

Fix a deterministic online algorithm A. Based on the way A picks items to survive conflicts,
we construct in an online fashion a sequence of conflicts along with an optimal scheduling
denoted by opT. To facilitate the description, define a conflict I to be active with respect to
algorithm A if upon arrival, I contains a item that was not already eliminated by A in previous
conflicts. W.l.o.g., we consider only algorithms that always deliver an item from an active
interval.

In general, there can be conflicts that are active with respect to A, OPT, or both. We call a
conflict interval neutral if it is active with respect to both A and oPT, and positive if it is active
with respect to OPT only (there will be no “negative” intervals in our construction).

The conflict sequence consists of a sequence of epochs satisfying the following epoch invariant:

e In each epoch, all conflicts are disjoint and their union is {1,...,n}.
e The set of items delivered by A and by OPT from epoch ¢ > 1 are disjoint.

e In epoch ¢ there are ¢ — 1 positive intervals between any two consecutive neutral intervals.

Note that the last property means that after epoch ¢, the optimal number of surviving items is
q times larger than the number of items delivered by A.

We now describe the construction of epochs inductively. Assume that n is an even integer.
The first epoch consists of n/2 intervals of size 2: for every t € [1,n/2], the tth interval is
[2t — 1,2t]. Let A; be the set of items that are delivered by the algorithm after the first
epoch. Clearly |A;| = n/2. The optimal solution is the complement of A;, namely opT; =
{1,...,n}\ A;. It is straightforward to verify that the epoch invariant holds for ¢ = 1 (the last
property follows from the fact that all intervals in epoch 1 are neutral).

The more interesting part is the inductive step. Let A, and OPT, be the set of active items
with respect to A and OPT, respectively, immediately after epoch ¢q. Assume that the invariant
holds for epoch q. We construct epoch ¢+1 and 0PT441 as follows. Number the neutral intervals
of epoch ¢ sequentially Iy, Io, ..., starting from the leftmost neutral interval. This numbering
skips the positive intervals between neutral intervals. Let I; = [¢4, 7] be the tth neutral interval,
where t is even. We break I; into two parts as follows. Let a and o be the indices of items that
are delivered from I; by A, and OPT,, respectively in epoch gq. We proceed by two cases. If
a < o, then we introduce the conflict interval [o, ;] and extend I;_; to the right up to o —1 (see
Figure 5). Otherwise, if a > o, then we introduce the conflict interval [/, 0] and extend I;y;
to the left up to 0o + 1 (see Figure 6). Notice that an odd neutral interval from epoch ¢ can be
either extended to the left, or to the right, or in both directions, or not extended at all. Finally,
positive intervals from epoch ¢ that are not covered by the above intervals are added to epoch
q + 1. Figure 7 illustrates a complete example.

It remains to determine OPTqy1. Let I] be the extended version of an odd interval I; from
epoch q. OPTy41 will deliver the active item from I;. Since I; does not intersect any even neutral
interval, OPT,41 may deliver an item in any part of an even neutral interval that was added to
epoch ¢ + 1. Also, since I; does not intersect any positive interval from epoch ¢, OPT,41 may

11

I ,_qjl— I ,_qjl— Iiq
Epoch g: [100 ---dfe o 1830 -]
Epoch g + 1: || I | R I |

q

Figure 5: Construction of epoch q + 1: The case where a < o. Gray bozes represent positive
intervals. Iy is split into two parts: the left part is combined with I;_1, while the right part
becomes a positive interval.

I 7 1 I a1 Tt

—_—
Epoch ¢: I S A N | 2 A o |
Epochg+1: — [-]

q

Figure 6: Construction of epoch q + 1: The case where a > o. Gray boxes represent positive
intervals. I is split into two parts: the right part is combined with I;y1, while the left part
becomes a positive interval.

deliver an item in any positive interval that was not merged with an odd neutral interval from
epoch gq.

The first and second properties of the invariant are clearly satisfied by the construction. To
see that the last property of the invariant holds, observe that any extended odd neutral interval
remains neutral. We claim that there are g positive intervals between any consecutive neutral
intervals. Let I; be an even neutral interval that was split in the construction of epoch ¢ + 1.
If a < o the interval [o,r] is positive because [0,7¢] N Ay = (). Moreover, all positive intervals
between I; and I;41 remain as they were. Similarly, if a > o the interval [/, o] is positive, because
[ls,0] M Ay = (0, and all positive intervals between I; and I;_; are left unchanged. Hence, there
are ¢ positive intervals between any two consecutive neutral intervals in epoch ¢ + 1.

The following lemma bounds the size of intervals.

Lemma 11. Let o4 be the mazimum interval size in epoch q. Then o4 < 2 - 591,

Proof. By induction on the number of epochs. In the base case (epoch 1), oy = 2. For the
inductive step, observe that an interval in the epoch ¢ + 1 may consist of (i) an odd neutral
interval, (ii) parts of two even neutral intervals, (iii) 2(¢ — 1) positive intervals. Since positive
intervals that are created in epoch ¢’ are of size smaller than o,_; and due to the inductive
hypothesis, we have that

q—1 q—1
Og41 <0q+20q+220q/ §30q+220q/ < 5oy ,
q'=1 q'=1
and the lemma follows.]

We can now prove the lower bound.

Theorem 5. The competitive ratio of any deterministic online algorithm for sequential SIC is
Q(lgo), even in the contiguous case.

12

12 3 4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18

[a ollo al[a o][o alla o][a o][lo allo a][a o]
[a o][e]] a__o|[o]] a_o |[o][o a][e]] a_ o]
[a o | o] [| a_o | o] [| a_ o]

Figure 7: The lower bound construction with n = 18 and three epochs. The gray bozxes represent
positive intervals.

Proof. Let A be a deterministic algorithm. Construct instance C as described above. The epoch
invariant implies that after ¢ epochs, |[OPT(C)| > q(|A(C)| — 1). Hence, the competitive ratio of
Ais Q(q). Let o be a given parameter. By Lemma 11 we have that o, < 2- 59~1, and therefore,
setting ¢ = |logs(0/2)] = Q(lgo) we have o, < o, and the result follows. O

6 Online Algorithm in Terms of Depth of Intervals

We consider here an online algorithm that is competitive in terms of another parameter, called
depth: Given an instance Z, we define its depth, denoted wz, to be the maximal number of
conflicts any single item is involved in. We note that wz is the clique number and the chromatic
number of the underlying interval graph. It turns out that if the depth of the instance is small,
then good performance can be attained. We also provide a matching lower bound.

Consider the following algorithm, which we call Experience. The algorithm maintains, for
each active item i the count ¢(7) of the number of conflicts in which it was delivered. (Note
that this is possible only in the sequential model.) The algorithm operates by the following
simple rule: deliver an active item ¢ of a maximum weight class, and among those choose one
of maximum count c(), breaking ties arbitrarily. We now prove that Algorithm Experience
is w-competitive. Once again, we invoke the concept of elimination chains.

Lemma 12. Any elimination chain for Algorithm Experience with instance I contains at
most wz items of any given weight class.

Proof. Follows from the fact that if item ¢ is fired by item 7’ of same weight class, then the final
counter values of i and ¢’ satisfy ¢(i) > ¢(i') (even if their counts were equal at the time i fired
i'). O

Theorem 6. The competitive ratio of Algorithm Experience is O(wz).

Proof. First observe that if ¢/ € D(i), then it must be that w(i') < 2w(¢). Lemma 12 implies
that all items in D(7) from weight class j can be covered by at most wz conflicts, for every j.
It follows that

oo

w(oPT N D(i)) < wr - 2w(i) - Y 277 = wr - 4w(i) .
j=0

The theorem follows. O

Sometimes, Algorithm Experience performs better than Algorithm sPriority. Such an
instance is given in Figure 4.

The construction of Section 5 shows that the competitive ratio of Algorithm Experience
is tight:

13

Theorem 7. The competitive ratio of any deterministic online algorithm for sequential SIC is
Q(wz), even in the contiguous case.

7 Online Problem with Resource Augmentation

We explore now “resource augmentation”: allowing the online algorithm to deliver up to two
items from each conflict, while comparing the result to the number of items delivered by the
optimal offline algorithm that may deliver only one item per conflict. Much stronger bounds
hold here: we present a sequential algorithm that guarantees a competitive ratio 1 when given
such resource augmentation.

Specifically, we propose the following algorithm, which we call L&R: at each step ¢, deliver
the leftmost and rightmost (i.e., minimal and maximal) active items from the conflict ;.

To analyze the performance of L&R, fix an instance C, and let opT = {o1,...,0¢}, where
0j < 0jy41, for every 1 < j < £, be any optimal solution to C. Let O; denote the interval
[0j,0j41 — 1] for 1 < j < £. The following lemma contains our main argument.

Lemma 13. Let P be the set of items delivered by Algorithm LESR. Then, for any j, we have
‘Oj N P’ > 1.

Proof. Let 1 < j < £. Assume, for contradiction, that no item from O; survives by Algo-
rithm L&R. Since O; is not empty and all items are initially active, there exists ¢ such that
I; is the conflict that eliminates the last remaining active items in O;. Let ¢ € O; be one of
these eliminated items. By the specification of L&R, 7 can only be eliminated if there are two
active items 41,72 € I; such that i1 < ¢ < io. Moreover, they are active after step ¢, while O;
then contains only inactive items, implying that 1 < o; and i2 > 0;41. But this is impossible,
because both o; and 0;41 belong to a feasible solution, and hence they cannot both be members
in the same conflict I;.]

Theorem 8. Algorithm LER is 1-competitive.

Proof. By Lemma 13, L&R delivers at least |oPT| — 1 items, one for each item in OPT, with
the exception of the last item in OPT. Observe that Algorithm L&R always delivers the last
item, and therefore it delivers at least OPT items.]

8 Conclusion

In this paper we have introduced the problem of scheduling with interval conflicts and proved
tight bounds on the competitive ratio of online algorithms to solve them. It would be interesting
to consider other conflict topologies, and to understand to which degree randomness can help.

References

[1] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive non-preemptive call control.
In Proc. 5th SODA, pages 312-320, 1994.

[2] U. T. Bachmann, M. M. Halldérsson, and H. Shachnai. Online selection of intervals and
t-intervals. In Proc. 11th SWAT, volume 6139 of Lecture Notes in Computer Science, pages
383-394, 2010.

14

[3]

Y. Emek, M. M. Halldérsson, Y. Mansour, B. Patt-Shamir, J. Radhakrishnan, and
D. Rawitz. Online set packing and competitive scheduling of multi-part tasks. In Proc.
29th PODC, pages 440—-449, 2010.

P. Erd6s and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463—
470, 1935.

M. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New York,
1980.

J. W. Jaromczyk, A. Pezarski, and M. Slusarek. An optimal competitive algorithm for the
minimal clique covering in circular arc graphs. In Proc. 19th EWCG, 2003.

D. Karger, C. Stein, and J. Wein. Scheduling algorithms. In M. J. Atallah, editor, Algo-
rithms and Theory of Computation Handbook. CRC Press, 1998.

A. Kesselman, B. Patt-Shamir, and G. Scalosub. Competitive buffer management with
packet dependencies. In Proc. 23rd IPDPS, pages 1-12, 2009.

R. Lipton and A. Tomkins. Online interval scheduling. In Proc. 5th SODA, pages 302-311,
1994.

J. Sgall. On-line scheduling. In Online Algorithms, volume 1442 of Lecture Notes in
Computer Science, pages 196-231, 1996.

15

