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Abstract

A set of vertices in a graph is a dominating set if every vertex outside the set has a
neighbor in the set. The domatic number problem is that of partitioning the vertices of a
graph into the maximum number of disjoint dominating sets. Let n denote the number of
vertices, § the minimum degree, and A the maximum degree.

We show that every graph has a domatic partition with (1 —0(1))(d+1)/Inn dominating
sets, and moreover, that such a domatic partition can be found in polynomial time. This
implies a (1 4+ o(1))lnn approximation algorithm for domatic number, since the domatic
number is always at most d + 1. We also show this to be essentially best possible. Namely,
extending the approximation hardness of set cover by combining multi-prover protocols with
zero-knowledge techniques, we show that for every e > 0, a (1 —¢) In n-approximation implies
that NP C DT IM E(n®(°8l°6™))  This makes domatic number the first natural maximiza-
tion problem (known to the authors) that is provably approximable to within polylogarithmic
factors but no better.

We also show that every graph has a domatic partition with (1 — o(1))(6 + 1)/InA
dominating sets, where the “o(1)” term goes to zero as A increases. This can be turned into
an efficient algorithm that produces a domatic partition of 2(d/1In A) sets.

1 Introduction

A dominating set in a graph is a set of vertices such that every vertex in the graph is either in
the set or has a neighbor in the set. A domatic partition is a partition of the vertices so that
each part is a dominating set of the graph. The domatic number of a graph is the maximum
number of dominating sets in a domatic partition of the graph, or equivalently, the maximum
number of disjoint dominating sets.

The domatic partition problem is one of the classical NP-hard problems. It is also one of
the few graph problems in Garey and Johnson [16] whose approximability status on general
graphs has until now been a blank page, with no published upper or lower bounds found in a
literature search. The purpose of this paper is to mend that situation and derive the optimal
approximability within a lower order term.

The domatic partition problem arises in various situations of locating facilities in a network.
Assume that a node in a network can access only resources located at neighboring nodes (or at
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itself). Then if there is an essential type of resource that must be accessible from every node (a
hospital, a printer, a file, etc.), copies of the resource need to be distributed over a dominating
set of the network. If there are several essential types of resources, each one of them occupies a
dominating set. If each node has bounded capacity, there is a limit to the number of resources
that can be supported. In particular, if each node can only serve a single resource, the maximum
number of resources supportable equals the domatic number of the graph [15]. We can show
how the general case of larger, possibly non-uniform, capacities can be reduced to the unit case.

We review some elementary facts about dominating sets and domatic partitions, in light of the
novelty of the problem to many readers. Dominating sets satisfy a monotonicity property with
regards to vertex additions: if D is a dominating set and D' D D, then D’ is also a dominating
set. This implies that if a graph contains k disjoint dominating sets, then its domatic number is
at most k; those nodes not belonging to any of the k sets can be added arbitrarily to the sets to
form a proper partition of the vertex set. The domatic number can then be alternatively defined
as the maximum number of disjoint dominating sets. Every graph G satisfies D(G) > 1, and
unless G contains an isolated node, D(G) > 2. On the other hand, D(G) < § + 1, where ¢ is the
minimum degree; the reason being that a node of minimum degree must have some neighbor (or
itself) in each of the disjoint dominating sets.

Fujita [14] has studied several greedy algorithms and shown that their performance ratio is
no better than (d41)/2, for values of § up to O(y/n). The only other lower bound on D(G) given
in a recent encyclopadic treatment of domination problems [19, 18| is D(G) > [n/(n — §(G))]
[39], where n is the number of vertices. This lower bound is relevant only in very dense graphs,
since it degenerates to D(G) > 2 when 0(G) < n/2.

A number of results are known for special classes of graphs. A graph G is said to be
domatically full if D(G) = 6(G) + 1, the maximum possible. Determining if a d-regular graph
is domatically full is NP-complete, for any d > 3 [34, 23]. Farber [10] showed nonconstructively
that strongly chordal graphs are domatically full. This class contains the classes of interval
graphs and path graphs. Rao and Rangan [37] then gave a linear time algorithm for interval
graphs, and Peng and Chang [32] for strongly chordal graphs. Farber’s theorem turned out to
be a special case of a result of Berge [5] for balanced hypergraphs, and Kaplan and Shamir [21]
presented a simple algorithm. They also showed split graphs and bipartite graphs to be NP-
hard. Efficient algorithms are known for partial k-trees, using generic methods [2]. Bonucelli [6]
showed that circular-arc graphs are NP-hard, while Marathe et al. [28] gave a 4-approximation
algorithm.

Let A denote the maximum degree of a given graph. Our main result is a tight bound on
the approximability of the domatic number problem in general graphs. In particular, we give:

(A) An algorithm that finds a domatic partition of size (1 —o(1))(6+ 1)/ Inn, where the “o(1)”
term goes to zero as n increases.

(B) An algorithm that finds a domatic partition of size at least 6/cIn A, for some constant c.

(C) A nonconstructive argument showing that the domatic number is at least (1 — o(1))(d +
1)/In A, where the “o(1)” term goes to zero as A increases. This shows that the value of
the domatic number can be approximated within a factor of nearly In A.

(D) A bound on the domatic number of random graphs, showing that for most graphs, the
domatic number is at most (1 +o0(1))(d +1)/In A, where the “o(1)” term goes to zero as
n increases



(E) A construction showing that for every e > 0, no polynomial-time algorithm can approx-
imate the domatic number problem within a (1 — €)lnn factor, unless NP has slightly
superpolynomial-time algorithms (NP C DTIM E(n'°81°6™)). Tt also yields a (1—o(1)) In A~
hardness. These results hold even for bipartite graphs and split graphs.

The (1+o0(1)) In n—approximation algorithm is a simple randomized assignment (though care
is needed not to lose a factor of two in the analysis), and is derandomized using the method of
conditional probabilities. The results (B) and (C) above use the Lovasz Local Lemma (LLL)
[9] as their basic tool. Suitable application of the LLL to our randomized assignment algorithm
above shows that the domatic number is at least (1/3 — o(1))(d + 1)/ InA; we then refine this
using a “slow partitioning” scheme, leading to our result that the domatic number is at least
(1 —0(1))(6 +1)/InA. The O(In A)-approximation algorithm is a constructive version of the
LLL, following an approach of Beck [4].

The hardness construction builds on the proof of Feige [11] of similar hardness for the set
cover and dominating set problems. In fact, the construction here generalizes the result of
[11] in that it shows that it is hard to distinguish between the following two cases: when
the minimum dominating set is large (and thus the domatic number small), or when there
are many small disjoint dominating sets. This parallels the situation with the archetypical
minimum partitioning problem, graph coloring, where Feige and Kilian [13] showed that it is
hard to distinguish between the case when the maximum independent set is small, and when the
chromatic number is small. The construction of the current paper, in fact, draws additionally
on the zero-knowledge techniques used in [13].

It is instructive to view our results in a larger context — that of the study of approximation
algorithms in general. It has been empirically observed and further supported by classification of
constraint satisfaction problems [22] that there seem to be no “natural” maximization problems
approximable within polylogarithmic factors but no better. Our results provide (to the best of
our knowledge) the first maximization problem with such a behavior, as the domatic number is
a maximization problem approximable within logarithmic factors but no better.

Our algorithmic results give absolute ratios, namely bounds in terms of some basic parame-
ters of the graph (minimum degree, number of vertices), rather than in terms of the size of the
optimal solution. These are in fact the first nontrivial lower bounds on the size of an optimal
domatic partition for arbitrary J, A such that 6 > In A:

0+1

D(G) 2 (1-o(1)- Tt (1)

As shown in Section 2.5, this bound is best possible up to lower order terms, for a large range
of values of § = d(n) and A = A(n).

In the past, most absolute ratios have been obtained by fairly simple greedy algorithms.
Our algorithms are derandomizations of simple randomized algorithms, but their derandomized
versions are not particularly natural, and natural greedy algorithms for the problem attain much
worse results. It is also interesting that the hardness result gives a “gap location at 1”7: namely,
it is equally hard to approximately partition graphs that are domatically full.

The rest of the paper is divided into positive results — algorithmic and existential — on
domatic partitions in Section 2, and hardness results in Section 3.



2 Approximation algorithms and existential results

This section is devoted to positive results for domatic partitions. In Section 2.1, we give an
algorithmic proof of the bound D(G) > (1 — o(1))(0 + 1)/Inn, and also show that D(G) >
(1/3 —o(1))(0 + 1)/InA. (The two usages of “o(1)” here respectively correspond to n — oo
and A — 00.) This second result is made algorithmic in Section 2.2, with a loss in the constant
factor. The existential result that D(G) > (1 —o(1))(6 + 1)/ In A is then shown in Section 2.3,
and shown to be tight on random graphs in Section 2.5. Section 2.4 is devoted to a short analysis
of the natural greedy algorithm for domatic partition.

Notation. Let N(v) denote the set of neighbors of a vertex v in the given graph G, and let
N*t(v) = {v} UN(v). Let d(v) = |[N(v)| denote the degree of v, and let d*(v) = |[N*t(v)| =
1+ d(v). A partial coloring of G is an arbitrary coloring of an arbitrary subset of the vertices.
Given a current partial coloring, define a Boolean variable A, . to be true if there is no vertex
of color ¢ in N*(v), and to be false otherwise. Note that the events A, . are “bad events” for
us: if A, holds for some pair (v, c), then the coloring is not a domatic partition; conversely, if
none of the events A, . hold, then every vertex v “sees” every color in N*(v), and we will have
a domatic partition. Thus, our focus will be on avoiding all of these bad events.

Define [¢] to be the set {1,2,...,¢}. For an event X, P[X] denotes its probability and E[X]
its expectation. Finally, let e denote the base of the natural logarithm.

2.1 Logarithmic bounds

Theorem 1 Any graph admits a (polynomial-time constructible) domatic partition of size (§ +
1)(1 — O(loglogn/logn))/lnn).

Proof. Independently give each vertex one of £ = (0 + 1)/ In(nlnn) colors at random. For any
vertex-color pair (v,c), P[4, ] = (1— 1/0)47 () < =47 )/t < 1/(nInn). Thus, summing over all
(v, ¢) pairs, the expected total number of bad events A, . is at most £/ Ilnn. Hence, the expected
number of colors that form dominating sets is at least

1 o+1 Inlnn+1
_ Lol Inhnt 1y 2)
Inn  Inn In(nlnn)

The color-classes that do not form dominating sets can all be merged into any one color class
that is a dominating set; thus, we get a domatic partition whose expected number of sets is at
least as large as the r.h.s. of (2).

This randomized argument can be derandomized using the method of conditional probabil-
ities (cf. [1]). Number the vertices arbitrarily as vi,ve,...,v,, and color the vertices in this
order (never recoloring a vertex) as follows. Color vy arbitrarily. Suppose the first 7 > 1 vertices
have been colored with respective colors ci,ca,...,c;; vertex v;y; is colored as follows. Let
djt1(v) = [Nt (v) N {vj41,0j42,...,0n}|. Then, the conditional probability of the bad event
Ay is given by

PlA, .

c1,c ¢j] = 0 if Jv, < j such that v, € N¥(v) and ¢, = ¢
1,62, € (1 —1/0)%+®)  otherwise.

The weight of the current coloring is given by

glci,c,...,¢5) = Z ZP[AU,C|017627"'7Cj];

veV ¢
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this is precisely the expected number of pairs (v, ¢) pairs for which A, . will hold after coloring

all vertices, given the current coloring c1,...,c¢;. In each step j + 1, we choose a color for v;;
so that the weight of the coloring does not increase. Such a color exists, since g(c1,c2,...,¢;) is
a convex combination of the values {g(ci,cg,...,¢j,cjq1) : cjy1 € [4]}:
gler,ca,onnyci) = (1/0) - D gler, ez, .., ¢5,¢541).
cj+1€[]

Then, the total number of colors that are not dominating sets is at most the weight of the final
coloring, which we ensure is at most the expected number at the outset, or £/ Inn. ]

We now refine this argument using the LLL to get better bounds when A < n!/3. We state
the symmetric, simpler version of the LLL.

Lemma 2 (LLL [9]) Let p < 1, and let &, 1 <1i <k be k events such that P[&;] < p for all i.
Suppose there is an integer d such that e -p-(d+ 1) < 1, and each event is independent of all
but at most d other events. (More precisely, for each &;, there is a set T; of at least k —d — 1
other events £;, such that the conditional probability of & given any Boolean combination of the
events in T;, equals the unconditional probability of &.) Then, P[\; E] > 0.

Independently color each vertex randomly with one of £ = | (6 4+ 1)/(3 - In(3'/3 - A))| colors.
For each (v,c) pair, P[4,.] < (1 — 1/0)47(®) < 1/(3 - A3). We note that each event Ay is
independent of all but at most ¢(1 + d(v) + d(v) - (A — 1)) other such events, since vertices of
distance at least 3 from v are completely irrelevant for v. More precisely, in the notation of
Lemma 2, we can take T, . to be the set of all events of the form (w, ), where w is a vertex at
a distance of at least 3 from v, and where ¢ is any color from [¢]: conditioning on any Boolean
combination of the events in T}, . does not influence the colors chosen by vertices in N*(v). The
following lemma now directly follows from the LLL, using the fact that £ < A and d(v) < A:
we set d = A% — 1 and p = 1/(3 - A3) in using the LLL.

Lemma 3 Any graph admits a domatic partition of size (1/3 — o(1))d/In A, where the “o(1)”
term tends to zero as A — oo.

In Section 2.3, we will refine the above approach by conducting a two-stage partitioning that
attains the tight value of 1 —o(1) instead of the value 1/3—0(1) of Lemma 3. However, the above
direct approach will help us develop a simple algorithmic version of Lemma 3 in Section 2.2. It
also motivates the reason for developing the approach of Section 2.3.

Remark: It is interesting to note that the A in the bound of Lemma 3 cannot be replaced by
§, nor by d, the average degree. Consider, for example, the bipartite graph with 3 - § vertices
on the left side, and (3('56) vertices on the right side, with each vertex on the right side connected
to a particular subset of § vertices in the left side. The domatic number of this graph is two.
Indeed, say that there are 3 disjoint dominating sets. One of these sets, S, contains at least §
vertices on the left side. There exists a vertex v on the right side all of whose neighbors are in
S. Hence, the two remaining sets must both contain the vertex v, a contradiction.

A parameter that is intermediate between average and maximum degree is the inductiveness
A*(G) = maxgce 6(H). It is most notable for giving a tighter upper bound on the chromatic
number than the maximum degree, as x(G) < A*(G) +1 < A(G) + 1. The above construction
shows however that A* cannot replace A in the bound of Lemma 3 on the domatic number.



2.2 O(logA)—approximation algorithm

We use an algorithmic version of the LLL due to Beck [4] that derandomizes the probabilistic
argument with some loss in the constants. We may assume without loss of generality that G is
connected, since we can treat the connected components separately. Our algorithm has three
phases, assigning colors to successively larger fractions of the vertices. After the first phase, each
vertex is either fully satisfied, seeing all colors within its neighborhood, or has at most one-third
of its neighbors colored. We show that the subgraph induced by nodes that are still active,
i.e. either unsatisfied or not yet colored, consists with high probability of only small connected
components, of O(A%logn) vertices each. After the second phase, more vertices are colored,
with at most two-thirds of the neighbors of yet-unsatisfied vertices being colored. The connected
components induced by active vertices are now of only O(A7 log logn) size. Then, depending on
the value of A, we can either solve each component by exhaustive search, or apply Theorem 1
to obtain a full coloring where each vertex is satisfied.

2.2.1 The algorithm

The first phase proceeds as follows. Given a coloring of some of the vertices, call a vertex v
dangerous iff:

1. at least ¢/3 neighbors of v have been colored, and
2. not all the £ colors appear in the neighborhood of v.

Let £ = ¢/(cln A) for a suitably large constant ¢. Order the vertices arbitrarily as vy, ve, ..., v,
and process them in this order. When processing v;, we do the following. If v; or one of its
neighbors is dangerous now, we freeze v;; otherwise we assign it one of ¢ colors independently
at random.

When the process ends, some vertices are colored and some are frozen, and some are dan-
gerous and some are not. The vertices that are not dangerous belong to one of two categories:

Good: A good vertex sees all colors in its neighborhood.

Neutral: A neutral vertex v does not see all colors in its neighborhood, but is not dangerous.
This can happen only if more than 2/3 of v’s neighbors were frozen.

Thus, we have two orthogonal partitions: colored/frozen, and good/neutral/dangerous.

Vertices that are both good and colored do not need to be considered further in the later
phases. Call the other vertices saved, i.e. those that are dangerous, frozen, or neutral. As in [4],
we are interested in the maximum size of a connected component of the subgraph induced by
saved vertices, as this bounds the size of the independent subproblems in the next phase. We
show in Section 2.2.2 that with probability at least 1/2, the largest connected component in the
saved graph has size O(A%logn); let us assume that this size bound holds.

Phase two of the algorithm is run separately on each connected component induced by the
saved vertices. Note that each dangerous or neutral vertex v has at least d(v) — §/3 frozen
(i.e., uncolored) neighbors in its connected component. Phase two differs from phase one in
that some of the vertices are colored before we begin. We leave these colors untouched, because
they may be useful for the vertices that were not saved. We only color the frozen vertices, and
again define the notion of phase-two dangerous, frozen and neutral vertices. Since the number of
vertices we are dealing with now in any connected component is O(A% logn), we have essentially



replaced n by O(A®logn). Thus, analysis similar to that of phase one shows that the connected
components of the newly saved vertices has size at most N = O(A%(log A + loglogn)) with
probability at least 1/2.

In phase three, each dangerous/neutral vertex has at least d(v) —2§/3 > §/3 frozen neighbors
in its connected component. If A > loglogn, we have a domatic partition of the frozen vertices
to roughly §/(3In V) parts, via Theorem 1. As In N = O(log A), this is good enough. If A <
loglog n, then we can find a domatic partition of size ©(d/In A) whose existence is guaranteed
by Theorem 3, using exhaustive search. Since A < loglogn, this only takes time

NO(&/lnA) < (log logn)O((loglogn)) < poly(n).

This completes the description of the algorithm.

2.2.2 Analysis of the algorithm

We now show that with probability at least 1/2, the largest connected component in the saved
graph in the first phase, has size O(A%logn). This will yield a proof of correctness of our
algorithm.

Let X (u) be the indicator random variable for vertex u becoming dangerous, and let ¢ =
01 —1/0)9/3,

Lemma 4 Let U = {uj,ug,...,ux} be any set of vertices with pairwise distance at least 3.
Then, Pr[X (u1) = X(uz) = -+ = X (ug) = 1] < ¢".

Proof. If a vertex v is a neighbor of the set U, then it has a unique neighbor in U since the
elements of U have pairwise distance at least 3. Let @ = (a1, a2,...,a;) be any sequence of k
colors, and let S; be the random variable denoting the set of the first + nonfrozen neighbors of
U. Let D;(@) be the event that “for all j = 1,2,...,k, all neighbors of u; in S; avoid color
a;”. Thus, D;(@) is the event that even after processing the first ¢ nonfrozen neighbors of U,
each u; in U was missing a particular color a;. We may assume without loss of generality that
sets S; exist for every ¢ up to dk/3, because otherwise some vertex u in U does not have §/3
nonfrozen neighbors, and then u cannot be dangerous. Hence D;(a) is defined for all ¢ < §k/3.
We have Pr[Dy(@)] = 1. Now for every ¢ < 6k/3, Pr[D;;1(@)] = Pr[D;(@)]- (1 —1/£), because the
color of the (i + 1)’st nonfrozen neighbor of U is chosen at random independent of the previous
colors, and independent of which vertex it happens to be. Hence, Pr[D;(@)] = (1 — 1/£)%; so,
Pr[3@: Dyyy3(a@)] < F(1 —1/)%%/3 = ¢,

If all the u; are dangerous, then there is some a@ for which Dygy,/3(@) is true; this completes
the proof. U

To prove that the largest connected component in the saved graph is “small enough” with
reasonable probability, we now show that with reasonable probability the maximum number
of vertices in a spanning tree of such a component is “small”’. This is done as follows. By
a standard argument, a large connected component contains many vertices with a particular
minimum pairwise distance. We first prove that the number of vertices with large pairwise
mutual distance which are all saved is “small”. This indirectly bounds the maximum number of
vertices in a connected component as a function of A, which is enough for our purposes.

A set of vertices is said to be 7-separated if it is of mutual distance at least 7. A 7-separated
set of k vertices is said to be a bad k-set if, additionally, it becomes connected if we connect all



vertices of distance exactly 7. As shown next, the number of such sets in G is at most
n(4AM), (3)

Consider a spanning tree on the set where vertices of distance exactly 7 are connected. The
number of distinct shapes of trees on k vertices is at most 471, Namely, such a tree can be
uniquely represented by ordering the vertices in a lexicographic breadth-first order and attaching
two flag bits to each nonroot vertex: whether it has the same parent as the previous vertex in
the order, and whether it has a child or not. For each shape of a tree, there are n possibilities
of choosing the root, and thereafter at most A7 possibilities of choosing each new vertex since
we already chose its parent in the tree.

Let Y (u) be the indicator random variable for vertex u becoming saved. To complete our
argument that no connected component of the saved vertices is “large”, we will show:

Lemma 5 For any 7-separated set of vertices vi,ve, ..., Vg,
Pr[Y(v1) =Y (v2) =--- =Y () =1] < (2.5Aq)F,
where q is as defined prior to Lemma 4.

Proof. 'The following definition will be useful for this proof:

2veN(u) LweN(v) X (W)
OE

Z(w) =X (u)+( Y, X(v)+

veEN (u)

If vertex u is saved, then we have one of three cases: (i) u is dangerous and thus X (u) = 1;
or (ii) u has a dangerous neighbor and so }7,c () X (v) > 1; or (iii) u is neutral, so at least
2d(u)/3 of its neighbors are frozen, and by the preceding argument it holds for each frozen
neighbor v of u that 3 ,c () X(w) > 1. Therefore, we have the simple but useful observation
that if Y(u) =1, then Z(u) > 1.

By Markov’s inequality,

k k
Pr[Y(vi) =Y (v2) = -+ =Y (v) = 1] < P[] Z(wi) > 1] < E[[] Z(w)]. (4)
i=1 1=1

Now, because Z(-) is linear in the X (-) and using the linearity of expectation, we can expand
E[I1; Z(v;)] as a linear combination of the terms Pr[X (w;) = X (wy) = --- = X (wg) = 1]. The
main observation is that since the v; have pairwise distance at least 7, the w; have pairwise
distance at least 3. Thus, by Lemma 4, any such term has probability at most ¢¥. Thus we get

d(u)(A — 1

k
BT 2001 < (0+ 8+ Woie ) < @sag)

by first replacing the probability of intersection of events by the product of probabilities, and
then unfolding and reversing the above expansion. ]

Consider now a connected component in the subgraph of G of saved vertices. If its size is kAS
or more, then it must contain a bad k-set (which is obtained by repeating the procedure of putting
a vertex in the bad k-set and removing all vertices of distance at most 6). Setting the constant ¢



in the expression £ = §/(cIn A) large enough, we get that ¢ < A=?/10. Set k = log(2n)/log A,
and recall (3) and Lemma 5. We get that the probability of existence of a connected component
of the saved vertices with cardinality at least kAS, is at most (2.5¢A)Fn(4AT)F < 1/2.

Finally, the above Las Vegas algorithm can be derandomized by the approach of pessimistic
estimators [35], which is a generalization of the method of conditional probabilities. Briefly, we
proceed as follows. As before, we process the vertices one-by-one. Suppose it is currently the
turn of vertex v. If v is frozen, we skip over it. Otherwise, we deterministically choose a color
for it that minimizes the probability of emergence of a large connected component of the saved
vertices, using our bounds derived above. Since k = log(2n)/log A, we see from (3) that the
number of possible bad k-sets to be considered in our analysis above, is bounded by a polynomial
in n. Hence, we can write down a pessimistic estimator and choose, in deterministic polynomial
time, a color for vertex v that minimizes the pessimistic estimator.

2.3 Getting the right constant

Our next result improves the value 1/3 —o0(1) of Lemma 3 to the existentially best-possible value
of 1 —o(1).

Theorem 6 There is a constant a > 0 such that for large enough Ag, for every graph G with
0
A=Ay, D(G) = LlnA—l—alnlnAJ‘

We remark that if A < Ay, the theorem holds by setting a large enough. For the special case
of A <2, the value of D(G) is well-known via a simple case analysis; there is also a linear-time
algorithm for the domatic partition problem if A < 2.

Proof. For the rest of Section 2.3, any “o(1)” term will denote a function of A alone that goes to
zero as A increases. We prove the theorem for a being any constant greater than 7, for all large
enough A; this choice of a can be further improved, but we do not attempt this optimization
here.

Preprocessing. We preprocess the graph as follows. As long as there is an edge that has both
end-points with degree more than §, remove such an edge from the graph. At the end of this
process, the minimum degree remains at §, and the maximum degree is at most A. We will
now show a lower bound on the domatic number of this preprocessed version, which clearly will
yield the same lower bound on the domatic number of the given graph. (This is because the
preprocessing only removes edges from the given graph.) The useful property that now holds is
that for each vertex wu, either d(u) = §, or all neighbors v of u have d(v) = 6.

There are two cases, the first one being simpler.

Case I: § < In*A. We assume that § > InA + alnln A, since the theorem is trivially true
otherwise. Define

‘= |watemna)
~ |InA+alnlnA]”

Color each vertex with a random color from [f], independent of all other vertices. We will now

use the LLL to show that P[A, . Ay,] > 0, in the same way as we did for Lemma 3. For each
(u,c), we have

1\ 4" (W)
> < e AW A A W/5 < (A(In A)Y) L. (5)

Prid, )= (1-5



Let No(u) denote the set of vertices at a distance of 0, 1, or 2 from w in G. As in our proof
of Lemma 3, each event A, . depends only on events A, » with v € Ny(u); so, it depends on at
most |Na(u)| - £ other such events. Our preprocessing step above helps bound |Ny(u)| for all w.
If d(u) = 0, then |[Ny(u)| < 14+5+0(A—1). If d(u) > §, our preprocessing ensures that d(v) = o
for all neighbors v of u; so, | No(u)| < 14+A+A(§—1). Thus, |No(u)| < dA+1 < Aln* A41 for
all u, since § < In* A. So, each A, . depends on at most O(A In* A) other such events. Recalling
the LLL and (5), we see that P[A, . Auc] > 0 as required, since a > 7.

Case IT: § > In* A. Let € = 1/(In A); define ¢; = [€*5] and €y = [In2 A/(1 +b(Inln A)/In A)],
where b is any constant larger than 5. We will show the existence of a domatic partition of
size £102, i.e., a coloring of V using ¢;¢5 colors, in such a way that for every vertex wu, there
is at least one vertex of each color in N*t(u). (Recall that § > In* A. By choosing b < 6, for
instance, we can ensure that ¢;4, > 6/(InA + 6InlnA), for all large enough A.) It will be
convenient to view the colors as elements of [/1] x [¢2]. We will apply a two-stage coloring: the
first coloring determines the first components of the vertex-colors, and the second coloring is for
the second components. We can view the first coloring as a coarse partition, which the second
coloring turns into a fine partition. The primary purpose of the first coloring is to reduce the
dependencies sufficiently for our analysis of the second coloring.

The first partitioning is as follows. Color each vertex with a random color from [/;], inde-
pendent of all other vertices. For each vertex u and each color ¢, define X;“, . to be the subset of
N*(u) that receives color c. We have E[| X" |] = d*(u)/l1. Let By be the “bad” event that
| [Xor el —d(u)/€y | > 3ed™ (u)/¢1. A Chernoff bound shows that

Pr[B,.] < 2-exp(—(9/2 — o(1)) - dT (u)e*/¢1) < exp(—(9/2 — o(1)) In A). (6)

Once again, B, . is independent of any Boolean combination of events of the form B, . for
vertices v at a distance of 3 or more from u. Thus, each B, . “depends” on o(A3) other such
events. Recalling (6), the LLL shows that Pr[A, . Bu] > 0.

Fix a coloring xi : V' — [¢1] which avoids all the events B, .. Choose a random color x»(u) €
[¢5] for each wu, independent of all other vertices; the final color of w is the pair (x1(u), x2(w)).
Let By, c, be the bad event that there is no vertex of color (ci,c¢2) in NT(u). We now use the
LLL to show that all these bad events can be avoided with positive probability.

For each vertex u and each ¢ € [(1], let N,f. = {v € NT(u) : xi(u) = c}, and define

df .= |N, |- Since x1 avoids all the events By ., we have
V(u,c), (1—3e)d"(u)/by < df . < (1+3e)d"(u)/ty. (7)
Fix an event B, ¢, ¢,. First,

i,
PrlBuael = (1= ) < e 0790 0/0E < (A A))~0-% < 0((AMA)) ) (®)
2

the first inequality here follows from (7). Next, which other events does By, ., depend on?
Given S C V, let N*(S) = U,cs NT(v). Note that By, c, simply says that all elements of
Nufq got a x2(-) value different from co. Thus, we can check that By, ¢, only depends on the
events in

S(u,c1,e2) ={By et ot v E NT(NS, ) and ¢| = ¢ }. (9)

u,C1
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More precisely, we claim that B, ., ., is independent of any Boolean function of the events lying
outside S(u,c1,cz); this can be verified by seeing that
N+ N ( U J\/v+ / ) - (b

u,c1

(v,c,ch): BU,CII,C{Z &S (u,c1,c2)

We now bound |S(u,c1,c2)|, in order to apply the LLL; once again, our preprocessing step
will be of help. If d(u) = §, then [NT(N,. )| < A[N, . [; this is at most O(0A/¢y), by (7). If
d(u) > &, our preprocessing ensures that [N* (N, )| < 0[N, [; so, from (7), we again get that
INT(N, )l < O(0A/4y). Thus, [S(u,c1,c2)| < O(0AL /1) = O(Aln® A). We can now apply
the LLL, using (8) and the facts that: (i) b > 5, and (ii) each bad event By, ., depends on at
most |S(u, ¢, c2)| others. This completes the proof. L

To see why our two-stage coloring helps, note that the “dependence” |S(u,c1,c2)| in the
second coloring above is only Ao as compared to the dependence of A3T°(Y) that we could
get in the direct-coloring approach underlying Lemma 3. The constraint “v € NT(N,". )" in (9)
saves us a factor of A'=°() and the constraint “¢j = ¢;” saves another factor of A'~°(1). That
the first-stage coloring eliminates many dependencies in this fashion, is the main idea motivating
this approach.

It is an open question if a domatic partition of the size guaranteed by Theorem 6 can be

found in polynomial time.

2.4 Greedy algorithm

One natural approach to the domatic partition problem is to try to greedily choose small dom-
inating sets. The greedy algorithm iteratively pulls out dominating sets from the graph, until
the remainder is no longer dominating. The dominating sets are found by a standard O(logn)-
approximate greedy algorithm [20, 24].

Lemma 7 Suppose D(G) = n/k. Then, the greedy algorithm finds a domatic partition of
Q(n/(k?logn)) sets.

Proof. We count how many disjoint dominating sets our algorithm finds before the set of vertices
in them intersects at least half of the n/k vertex-disjoint dominating sets in the graph. During
this period, there are at least n/(2k) disjoint dominating sets, thus in each step there exists a
dominating set of size at most 2k and we find one of size at most 2k Inn. Hence, in each step,
a vertex from at most 2k Inn different dominating sets is removed. It then requires at least
(n/2k)/(2k Inn) steps to halve the original number of dominating sets in the graph. U

Since D(G) < n, the approximation ratio is maximized when k ~ \/n/(41nn).
Corollary 8 The performance ratio of the greedy domatic partition algorithm is O(vnlan).

Fujita [14] has shown examples where the performance of this and some other greedy algo-
rithms is Q(y/n).
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2.5 The domatic number of random graphs

We now show that the bound (1) is tight for a large range of values of 6 = §(n), by studying
D(G) for suitable random graphs G. Suppose G is drawn from the random graph model G(n, p):
i.e., we take n labeled vertices, and put an edge with probability p independently between each
pair of vertices. We will show that with probability 1 —o(1), D(G) < (1 +0(1))6(G)/In A(G).
(Throughout this section, the “o()” and “w()” notation refers to n getting large.)

Choose any p = p(n) such that np = (Inn)“(") and p = o(1). It is easy to check via a
Chernoff bound that with probability 1 — o(1), both § and A will lie in the range (1 + o(1))np
for our random graph G. Fix any constant € > 0, and let s = |(1 — €) In(np)/p|. We will show
that with probability 1 — o(1), any dominating set in G will have size more than s. (Thus, with
probability 1 —o(1), we will have D(G) < n/(s+1), completing the proof.) For any given subset
of the vertices S with |S| = s,

Pr[S is a dominating set] = (1 —(1—p)*)"*
< (1 — e 1HOm)spyn—s
< (1= (np) 'O
< o (s (mp)1ew
< es=(/p)(py=Ow

s~ (1/p)-(np)=oM)

Thus, the probability of existence of a dominating set of size s is at most

(”) et WD) T (s gty L s (/R (mp) TN (g8 g1y L gsnn=(1/p)-(p) D — (),
s
the bound slnn = o((1/p) - (np)c=°M) follows from the definition of s and from the fact that
np = (Inn)“M),

3 Hardness of approximating the domatic number

We say that a problem is hard to approxzimate within ratio p if having a polynomial time (ran-
domized) p-approximation algorithm for it would violate some standard hardness assumption,
such as P # NP. The hardness assumption that we use in this paper is that NP does not have
(randomized) algorithms that run in time nC°816™); for brevity we shall just use the term hard
to approrimate.

We shall prove the following theorem.

Theorem 9 For every fized € > 0, it is hard to approximate the domatic number within a ratio
of (1 —¢)ln|V|.

For this purpose, it is helpful to work with a related but different problem.

Definition 1 A one-sided dominating set in a bipartite graph G(V1,Va, E) is a set of vertices
U C Vi such that for every v € Vo there is some u € U with (u,v) € E. Here it is assumed
that the intended bipartition (Vi,Va) is given explicitly as part of the input and that every vertex
in Vo has some neighbor in V1. Observe that this problem is merely a reformulation of the well
known set-cover problem.

12



The one-sided domatic number of a bipartite graph is the mazimum number of mutually
disjoint one-sided dominating sets that the graph contains.

Observe that the dominating set and domatic number problems have a relation similar to the one
of the coloring versus maximum independent problem. A coloring is a packing of independent
sets while a domatic partition is a packing of dominating sets.

A related problem is the set cover problem, where a collection of subsets S of a base set U is
given, and we are to find a minimum cardinality subcollection that contains all elements of U.
The set cover packing number is then the maximum number of mutually disjoint set covers. It
is well-known that minimum dominating set, minimum one-sided dominating set and minimum
set cover are strongly related, and that Inn is the best approximation ratio for all of them within
lower order terms (details in Section 3.2). The one-sided domatic number problem can be shown
to be equivalent to the set cover packing problem in terms of optimization. We are not aware
of a similar relationship between one-sided domatic number and domatic number. However, we
can give a reduction that yields the necessary result.

Proposition 10 Let ¢ > 1 and consider bipartite graphs G(Vi,Va, E) with |Vi| large enough
(e.g., [Vi| > 4¢), |Va| > |V1|¢, and the following promise: for some 0 < e <1 —1/c and for r
and q satisfying rq > (1 — €)|Vi|In|Va| (r and g may depend on the size of G) either

e The size of the smallest one-sided dominating set in G is at least r, or
e The one-sided domatic number of G is at least q.

Note that the two cases for the promise cannot both hold. If it is hard to distinguish which
of the two cases holds, then it is hard to approzimate the domatic number within a ratio of
(1-1/c—¢€)In|V].

The proof of Proposition 10 is given in Section 3.2. The main result of the section is the
following theorem, proved in Section 3.5.

Theorem 11 For every € > 0 and every integer ¢ > 1 the two cases of Proposition 10 cannot
be distinguished in (random) polynomial time unless NP has (randomized) algorithms that run

in time nOoglogn)

Theorem 9 now follows from Theorem 11 and Proposition 10.

Remark: Theorem 9 implies a In A hardness of approximation result, for A ~ n¥ for some
0 < 9 < 1 which is close to 1. To obtain In A hardness of approximation results when A is much
smaller compared to n, simply make many disjoint copies of the graph, increasing n without
changing A or the domatic number.

3.1 Overview and intuition

Before presenting the proof of Theorem 11, let us provide some background on proving hardness
of approximation results in general, and how hardness of approximation results were proved for
problems related to domatic number.

A convenient starting point for proving hardness of approximation results is the problem of
Max 3SAT. The input to this problem is a 3CNF formula and the desired output is an assignment
to the variables that satisfies as many clauses as possible. The well known PCP theorem of [3]
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implies (or in fact, is equivalent to) the following gap: for some € > 0 it is NP-hard to distinguish
between 3CNF formulas that are satisfiable (which we call yes instances) and 3CNF formulas
in which every assignment satisfies at most a (1 — €) fraction of the clauses (which we call no
instances). This hardness result can be extended to a restricted version of Max 3SAT in which
the input 3CNF formula has the property that each variable appears in exactly 5 clauses. (The
choice of 5 is arbitrary here. Any other constant greater than 5 would do as well.) We call this
restricted version Max 3SAT-5.

As noted above, the set cover problem is strongly related to the dominating set problem,
which in turn is related to the domatic number problem. Moreover, the one-sided domatic
number problem is equivalent to the set cover packing problem. Hence our plan for proving
Theorem 11 is to take known results regarding the hardness of approximation of set cover, and
modify their proof so that it shows hardness of approximation for the set cover packing problem
as well (and hence also for one-sided domatic number). To see more explicitly what needs to be
done, let us first review at a very high level the known result [11] that set cover (and one-sided
dominating set) is hard to approximate within a factor of (1 — ¢€)lnn.

The proof in [11] reduces instances of Max 3SAT-5 to instances of one-sided dominating set.
The reduction is slightly super polynomial (instances of size n are mapped to instances of size
no(loglog”)) and is a gap reduction in the following sense: yes instances give bipartite graphs
that have small one-sided dominating sets and no instances give graphs all of whose one-sided
dominating sets are much larger. To prove hardness of approximation for one-sided domatic
number, the requirement for no instances does not change, as it already implies a small one-
sided domatic number. However, we would like yes instances to give bipartite graphs that have
not just one small one-sided dominating set, but many disjoint small one-sided dominating sets,
and hence a large one-sided domatic number.

To achieve this extra property, we invoke an idea used in [13] when proving hardness of
approximation for chromatic number. In our context, it suffices to change the starting point
of the reduction, from the problem Max 3SAT-5 to the problem Max-3-colorability-5. This
is the problem of coloring a 5-regular graph with 3 colors, so as to maximize the number of
edges legally colored (see Section 3.3). It also has a gap similar to that of Max 3SAT-5. The
important property of Max 3-colorability-5 is that yes instances of it necessarily have many
“disjoint” solutions. When these instances are reduced to instances of one-sided dominating set,
the resulting bipartite graph has many disjoint small one-sided dominating sets. This implies a
large one-sided domatic number, as required by Theorem 11.

Hence, to complete the proof of Theorem 11, we need to accomplish three things.

1. Introduce the problem of Max 3-colorability-5 and its properties. This is done in Sec-
tion 3.3.

2. Give the reduction from Max 3-colorability-5 to one-sided dominating set. This reduction
closely follows the reduction of [11] from Max 3SAT-5 to set cover, except for one small
extra step (vertices on one side of the bipartite graph are duplicated many times, an
operation that was not performed in the reduction to set cover). This reduction is fairly
complicated, but essentially all complications come from the reduction in [11].

3. Prove the properties of the reduction. This has two parts. One is to show that yes in-
stances of Max 3-colorability-5 are reduced to bipartite graphs with high one-sided domatic
number, which is done in Lemma 17. The other is to show that no instances are reduced
to bipartite graphs with only large one-sided dominating sets. This part is not proved
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in this paper, because the proof in [11] that no instances of Max 3SAT-5 give instances
with a large set cover, extends virtually without change to our adaptation of the reduction
of [11].

Appendix B reviews some of the ingredients of the reduction used in [11] from Max 3SAT-5
to set cover, and explains some modifications used in our context. Some of these ingredients are
only used in the analysis of what happens on no instances, and hence do not come into any of
the proofs in this paper. They are included in the overview only so as to give some indication
on what led to the construction of the reduction. For more details, see [11].

3.2 Domination and one-sided domination

The three problems, minimum dominating set, one-sided dominating set and set cover, are
equivalent in the following sense (see e.g., [31]).

Proposition 12 [31] There is a polynomial-time reduction between any of the three problems
dominating set, one-sided dominating set and set cover that preserves the value of the minimum
solution.

Proof. To reduce dominating set to set cover, let V' (the set of vertices) become U (the ground
set) and let the collection S include the sets Nt (v) for every v € V. To reduce set cover to
one-sided dominating set, construct a bipartite graph G(V1, Vs, E) in which V5 is the ground set
U, and the vertices of V7 each represent a set in S. Put an edge (u,v) € E if v € V5 corresponds
to an item that is contained in the set that corresponds to the vertex uw € Vi. Finally, to
reduce one-sided dominating set to dominating set make a clique out of all vertices of V; and
let V= ViU Va; it is not hard to see that these reductions reserve feasibility of solutions, and
in addition it is not hard to see that the size of the minimum dominating set is preserved. [

For set cover, let n = |U|. It is known that minimum set cover can be approximated within
a ratio of Inn |20, 24|, and that for every fixed ¢ > 0, it is hard to approximate it within a
ratio of (1 —¢€)Inn [11]. By proposition 12, this implies a similar result for one-sided dominating
set, with n = |V3|. For dominating set, it is natural to take n = |V|. Then the approximation
ratio of Inn trivially applies, but in order to transfer the (1 — €) Inn hardness result from one-
sided dominating set to dominating set using the reduction of Proposition 12 we also need that
In |V| = In|V3|, which holds whenever |Vi| < |[Va|'*€. Tt turns out that this is indeed the case in
the construction of [11]. Hence it is known that up to low order terms, Inn is the best possible
approximation ratio for all three problems.

A proof similar to that of Proposition 12 shows that there is a polynomial-time reduction
from domatic number (whether one-sided or not) to set cover packing number that preserves
the value of the maximum solution. Likewise, there is a polynomial-time reduction from set
cover packing number to one-sided domatic number that preserves the value of the maximum
solution. However, we are not aware of such a reduction from one-sided domatic number to
domatic number. Instead, we use the following proposition.

Proposition 13 For every integer k > 0 (where k may be an arbitrary function bounded by a
polynomial in the size of the input) there is a polynomial time transformation mapping a bipartite
graph (V1,Va, E) to a graph (V, E") with the following properties:

o |V|=|Va| + k|Vi|; and
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e For the original graph, let q and r respectively denote the one-sided domatic number and the
minimum cardinality of a one-sided dominating set; hence g < |Vi|/r. Let p denote the domatic
number of the new graph. Then kq < p < min[|V|/r,1 + 2k|Vi|/7].

Proof. Let G = (V1, Vs, E) be a bipartite graph for which we are interested in computing the
one-sided domatic number. Construct a graph G'(V, E') as follows. V{ = U¥_, V{, where for
every i, V{ is a copy of Vi. V = V/ Vs, which gives |V| = |Va| + k|V1|. For every v € Va,
1 <i<kandue€ V}, place an edge (u,v) € E' iff there is an edge (u,v) € E. In addition, all
vertices of V{ form a clique.

Observe that every one-sided dominating set in G corresponds in a natural way to k£ mutually
disjoint dominating sets in G’, one on each copy of V{. Hence the optimal solution for G' can
be copied k times on G, giving p > kq. (If in addition, V4 has no isolated vertices, then V5 can
serve as one more dominating set disjoint from all the others, giving p > kg + 1.)

To upper bound p, let D1,..., D, be a maximum cardinality collection of disjoint dominating
sets in G’. Similar to the proof of Proposition 12, we can see that we can change maximum
dominating set D; to maximum dominating set D’ of no larger size, fully contained in V. As
D’ must dominate V2, we get that [D;| > |D}| > r for all j. Hence p < |V[/r.

We now turn to proving the second part of the upper bound, namely, p < 1+ 2k|Vy|/r.
This gives a tighter bound when |V5| > k|Vi|. Observe that (D;JD;) N V/ is a dominating set
contained in V{. So suppose we pair up any 2|p/2] of the D;’s into |p/2] pairs, each of which
forms a dominating set of size at least . Then, r|p/2| < k|V1]; so, p < 14 2k|V;]|/r. L

We are now ready to prove Proposition 10.

Proof. Perform the reduction of Proposition 13 with £ = |V5|. If the first case holds then the
domatic number of G’ is at most |V|/r. If the second case holds then the domatic number
is at least g|V2|. The ratio between these two values is ¢|Va|/(|V|/r) = qr|V2|/|V]|. We use
[Val/|V| = 1/(|]Vi] + 1) and gr > (1 — €)|V1|In|V3]| to obtain that the ratio is at least (1 — e —
1/|V1]) In|Va|. Using |Va| > |V1]¢ and |Vi| > 4° we obtain that In|V2| > (1 —1/(c+1/2))In|V].
Now Proposition 10 follows assuming that [V;] > 2(c + 1)%. U

Remark: The graphs G’ formed in the above reduction are split graphs, which are graphs
whose vertex-set can be partitioned into a clique and an independent set. These graphs are
both chordal and complements of chordal graphs, where a graph is chordal if it contains no cycle
with four or more vertices as an induced subgraph. Thus, a (1 —o(1)) Inn hardness for domatic
number holds also for split (and thus chordal and co-chordal) graphs. Furthermore, one can get
a similar result for bipartite graphs by the following modification. Instead of making a clique
out of V;, we add (6+1) vertices and connect them to every node in V. This affects the domatic
number by at most 1, and the approximability hardness follows.

3.3 The problem Max 3-colorability-5

We now introduce the NP-language that serves as the basis to our reduction.

Definition 2 Max 3-colorability is the problem of coloring the vertices of a graph with three
colors, so as to mazimize the number of legally colored edges (edges whose endpoints are colored
differently).
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An NP-witness for 3-colorability is an assignment of colors to the vertices, such that each
edge is legally colored. The witness can be checked in a probabilistic sense, by sampling an edge
at random and checking whether the colors of its two endpoints disagree. The actual names of
the colors of the vertices play no role because the names of the three colors can be arbitrarily
permuted without changing the legality of the 3-coloring. Hence every NP-witness gives rise to
six different witnesses (depending on the permutation used for the names of the colors), and
cycling over the six witnesses, every edge gets its six legal colorings. In our reductions to one-
sided dominating set, we shall use this structure of the set of witnesses for 3-colorability in order
to show that if the resulting bipartite graph has a small one-sided dominating set, then in fact it
has many disjoint one-sided dominating sets. We note that the same structure was used in [17]
to construct a zero knowledge proof system for NP.

In order to prove a hardness result for Max 3-colorability-5, we rely on the hardness of Max
3-colorability and the use of expanders. Call a graph H with h vertices a (v, k)-expander if for
any subset S of the vertices of H with |S| < «yh, the number of edges leaving S is at least |S|.
For some constant x > 0 and for any € > 0, there is a hy such that for all h > hg, there is an
explicitly constructible (1/2, k)-expander with maximum degree at most 6 and with the number
of vertices lying in the range [h, h(1 + €)] [25|. Note that a (1/2, x)-expander is necessarily also
a (2/3,k/2)-expander. In particular, this implies that for any given integer h, we can construct
a (2/3,k")-expander with maximum degree at most 6 and with the number of vertices being
some F(h) that satisfies h < F(h) < 2h, for some absolute constant ' > 0. (We can proceed
as follows. If h < hg, where hg is a sufficiently large constant, just construct any connected
h-vertex graph of maximum degree 6. If h > hg, construct a (1/2, k)-expander with maximum
degree at most 6 and with the number of vertices lying in the range [h, 2h], using |25].)

We will also need the following theorem of [33]:

Theorem 14 ([33]) For some explicit constant 1 < 1, it is NP-hard to distinguish between
graphs that have a legal 3-coloring (that colors all edges legally), and graphs for which every
3-coloring legally colors at most a Y-fraction of the edges.

Proposition 15 For some explicit constant ¢ < 1, it is NP-hard to distinguish between 5-
reqular graphs that have a legal 3-coloring, and 5-regular graphs for which every 3-coloring legally
colors at most a Y-fraction of the edges.

Proof. Given a graph G(V, E), we show that it can be modified in polynomial time to a graph
G'(V', E') such that: (i) G’ is 5-regular; (ii) |E'| = O(|E|); (iii) G’ is legally 3-colorable iff G is,
and (iv) For some constant ¢ > 0 and every 1 < k < |E'|, every 3-coloring of G’ that leaves k
edges illegally colored can be transformed in polynomial time to a 3-coloring of G' that leaves at
most ck illegally colored edges. We can then invoke Theorem 14.

First, we may assume that every vertex in G has degree at least three. Indeed, suppose we
repeatedly remove any vertex of degree at most 2 until the remaining graph G” has minimum
degree at least 3. It is easy to see that given any 3-coloring of the vertices of G”, we can add
back the deleted vertices of G and color these added-back vertices in such a way that all the
edges incident with them are legally colored. So, we assume that G has minimum degree at least
3.

Assume first that all vertices in G have degree at most 13. Then we replace each vertex v
by a cluster of d(v) vertices', where each vertex handles one outgoing edge. (That is, if (v,u)

'Recall that d(v) denotes the degree of vertex v.
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Figure 1: Equality gadget

is an edge in G, then the vertex representing u in v’s cluster, is made adjacent to the vertex
representing v in u’s cluster.) These d(v) vertices are connected in a cycle by equality gadgets,
shown in Fig. 1. These equality gadgets are subgraphs that contain twelve vertices. Two of the
vertices are special and have degree two, and all the rest have degree five. The equality gadget
has the property that it is legally 3-colorable iff the special vertices receive the same color. The
two cluster vertices serve as the special vertices. As each cluster vertex participates in two
gadgets and also has one outgoing edge its degree is 5. Hence G’ is 5-regular. The number of
edges added is at most 27", d(v) < 54|E| and hence |E'| < 55|E|. Every legal 3-coloring of G’
colors all cluster vertices with the same color, and hence naturally gives a legal 3-coloring of G.
Similarly, a legal 3-coloring of G can be extended to a legal 3-coloring of G'. Any 3-coloring of G’
in which cluster vertices receive different colors causes at least two edges of G’ to be mis-colored.
Coloring the vertex corresponding to the cluster with an arbitrary color in G' causes at most
d(v) < 13 edges to be mis-colored. Hence the number of illegally colored edges in G’ is smaller
than that of G by a factor of at most 13/2.

If G has a vertex of degree more than 13, we create a new graph G as follows. Let F(-)
and k' be as in our discussion on expanders above. Similarly as [30], G; is the same as the
G’ constructed in the previous paragraph, except that for each vertex v, we create a (2/3, x')-
expander with F(d(v)) vertices and maximum degree at most 6 (instead of a cycle with d(v)
vertices), and do the above-seen operation of replacing the expander edges by equality gadgets.
(Of the F(d(v)) vertices, d(v) are “real” and represent the neighbors of v, and F(d(v)) — d(v)
are dummy vertices. As in the previous paragraph, if (v,u) is an edge in G, then the vertex
representing u in v’s cluster, is made adjacent to the vertex representing v in u’s cluster.) Note
that G has maximum degree at most 2 x 6+ 1 = 13, and has O(}, d(v)) = O(|E|) edges. Once
again, a 3-coloring of G can be efficiently transformed into one for G; in which the number of
miscolored edges remains the same. Conversely, suppose we have a 3-coloring x1 of G1. Let
X, be the number of original edges of G’ that are miscolored by x; and let Y; be the number
of edges in the equality gadgets miscolored by x1. We will produce the following coloring x of
G and then analyze x. For each vertex v, choose a largest subcluster C'(v) of vertices (from its
cluster of F(d(v)) vertices) that receive the same color in x1, and define x(v) to be the color
assigned to the vertices in C(v) by x;. Call an edge (u,v) of G bad if it was properly colored
by x1 in G; and was miscolored by x in G. Let X be the number of bad edges. Then the
number of edges miscolored by x is at most X; + X. An edge (u,v) is bad only if “u ¢ C(v) or
v &€ C(u)” holds. Thus, letting z(v) = F(d(v)) —|C(v)| < 2F(d(v))/3, we see that X <> z(v).
Since z(v) < 2F(d(v))/3 and recalling the property of (2/3, k")-expansion, we can check that
the number of edges in all the equality gadgets of v that are mis-colored in x; is (z(v)). Hence
Y1 = Q(X). Armed with this property and the facts that G; has O(|E|) edges and maximum
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degree 13, we transform G, into G’ as described in the previous paragraph. ]

3.4 Preliminaries

Our reduction closely follows that of [11]. The main differences are as follows. (i) The outcome
of the reduction is one-sided dominating set, rather than set cover (which is the same thing
termed differently). (ii) The starting point of the reduction is Max 3-colorability rather than
Max 3SAT. As mentioned earlier, the purpose of this change is to have the reduction apply
to one-sided domatic number, rather than just one-sided dominating set. (iii) Every vertex in
the V; side of the bipartite graph will be duplicated 2!/2 times, where [ is a parameter of the
reduction. This is a technical condition that seems to be required when we reason about the
one-sided domatic number.
To describe the reduction, we recall two notions used in [11].

Definition 3 A (k,l)-Hadamard code is a set of k binary words of length l, where every code-
word has Hamming weight 1/2 and the Hamming distance between every two codewords is /2.

There is a simple construction of Hadamard codes when [ is a power of 2 and k < [ (see,
e.g., [27]).

Definition 4 A partition system B(m, L, k,d) has the following properties:

e There is a ground set B of m points.

e There is a collection of L distinct partitions p1,...,pr.

e For 1 <i < L, partition p; is a collection of k disjoint subsets whose union is B.

e Any cover of the m points by subsets that appear in pairwise different partitions requires at
least d subsets.

The following lemma is proved in [11].

Lemma 16 For every ¢ > 0 and m sufficiently large there is a partition system B(m, L, k,d)
whose parameters satisfy the following:
e L ~ (logm)©.
e & can be chosen arbitrarily as long as k < 311:11%
o d=(1—- f(k))klnm, where f(k) — 0 as k — oo.

Moreover, a random collection of L partitions into k subsets with parameters chosen as above
gives with high probability a partition system with f(k) =2/k.

The randomized construction can be replaced by a deterministic construction (with a some-
what larger value for f(k)) using techniques developed in [29].

3.5 The construction

The input to the reduction is a 5-regular graph G(V, E) for which we want to determine whether
it is legally 3-colorable, or whether every 3-coloring of its vertices legally colors at most | E)|
edges. As noted in Proposition 15, for some explicit ) < 1 this problem is NP-hard. The
reduction uses the following parameters, which are chosen so that (k,/)-Hadamard codes exist
and Lemma 16 holds:
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e k =1 = cloglog|V| for some sufficiently large constant ¢. We assume that [ is a power
of 2.

o L =3 and m=|V|°0,

The output of the reduction is a bipartite graph G'(V1, Vs, E'); when we say “color” below,
we refer to a color-set of 3 colors. The left hand side vertex set V5 is composed of (2| E|)" clusters
of vertices, where each cluster contains m vertices. Each left hand side cluster is labeled by a
sequence of [ edges in G and a sequence of [ bits; for each 7, the 7th bit in the bit-sequence denotes
one endpoint (vertex) of the ith edge in the edge-sequence. Hence, this sequence of bits can also
be viewed as a sequence of vertices. The right hand side vertex set V; is composed of k disjoint
rays, and each ray is labeled by a codeword of the (k,[)-Hadamard code. Each ray is composed
of |[V|'/2|E|"/? clusters, where each cluster contains 6! vertices. Each right hand side cluster
is labeled by a sequence of [/2 vertices in G and a sequence of [/2 edges in G. Equivalently,
we may merge these two sequences to one sequence of length [, where the codeword of the ray
containing the cluster is used as a selector function specifying the order in which vertices and
edges are merged (a vertex when the corresponding bit in the codeword is 0, and an edge when
the corresponding bit in the codeword is 1). This is called the merged label of a right hand side
cluster. Individual vertices of right hand side clusters are further labeled by a sequence of /2
colors (i.e., a ternary sequence), a sequence of [/2 pairs of distinct colors (i.e., a sequence in
base 6), and a number between 1 and 2//2. Simple counting shows that for each of the labeling
schemes that we defined, the number of available labels is exactly equal to the number of objects
that need to be labeled.

We say that a left hand side cluster and a right hand side cluster are compatible if their
labels agree coordinate-wise in the following sense: for coordinate ¢, if the merged label of the
right hand side cluster has an edge, then this is the ith edge in the sequence of edges labeling
the left hand side cluster, and if the merged label has a vertex, then this is the ith vertex in
the sequence of vertices labeling the left hand side cluster. Edges in G’ only connect compatible
clusters (compatibility is necessary but not sufficient, as will be seen shortly). Note that each
left hand side cluster is compatible with exactly one cluster in each ray. Each right hand side
cluster is compatible with 5//22!/2 left hand side clusters; the term “5” here arises from the fact
that G is 5-regular, and the term “2” follows from the fact that every edge has two end-points.

In order to describe the edge set E’, we use the notion of a partition system. For each left
hand side cluster Cy, we have L = 3! partitions with properties as in Definition 4. (Recall that
Cy has m elements as required by Definition 4.) Each partition is labeled by a sequence of [
colors. This sequence of colors is interpreted as a sequence of colors for the sequence of vertices
that label Cy. Note that the same vertex of G may appear several times in the sequence of
vertices that labels Cp; we do not require the colors given to this vertex to be the same.

Consider an arbitrary vertex v in a cluster C, that belongs to ray . We now describe the
set of neighbors that it has in a compatible left hand side cluster Cy. Recall that v is labeled
by a sequence of [/2 colors and a sequence of [/2 pairs of distinct colors. These colors give in
a natural way a coloring for the merged sequence of vertices and edges labeling C,. The vertex
v was also labeled by a number between 1 and 2/2; this label is ignored when determining the
set of neighbors of v (that is, C, has 2//? identical copies of v).

The coloring of the merged sequence of C, induces in a natural way a coloring for the sequence
of vertices labeling Cy. This coloring labels one particular partition p. Vertex v is connected to
all vertices (points) of the ith part of partition p (recall that i is the ray to which C, belongs).
This completes the description of E'.
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Lemma 17 If G is legally 3-colorable, then the one-sided domatic number of G' is 6.

Proof. We first show that G’ has a one-sided dominating set that includes exactly one vertex
from every right hand side cluster. Consider a sequence of [ arbitrary legal 3-colorings of G (the
same legal 3-coloring may appear multiple times in the sequence). Consider now an arbitrary
right hand side cluster. It is labeled by a length ! merged sequence of vertices and edges. The
sequence of legal 3-colorings induces a coloring on this merged sequence. The cluster contains
exactly 2/2 vertices whose label induces the same coloring. Select one of them arbitrarily to be
included in the one-sided dominating set.

To show that indeed we have a one-sided dominating set, we need to show that every left
hand side vertex u is covered. Counsider the cluster Cy to which u belongs. It is labeled by a
sequence of [ edges and a sequence of [ vertices. The sequence of legal 3-colorings induces a
coloring for the sequence of vertices. This coloring agrees with the name of one partition p. Let
1 be the part of partition p to which u belongs. Consider the right hand side cluster C, that is
compatible with Cy and belongs to ray i. The vertex selected from C, necessarily covers w.

We now show that the one-sided domatic number is at least 6! (in fact, it is exactly 6').
Consider an arbitrary legal 3-coloring of G. From it, we can derive 6! distinct length [ sequences
of legal 3-colorings, where in each of the [ coordinates we put one of the six permutations of the
legal 3-coloring. Each of these sequences gives a one-sided dominating set as described above.
We show that these one-sided dominating sets can be chosen to be distinct. This follows from
the fact that for each sequence of legal 3-colorings and every right hand side cluster, we can have
6//23!/2 equivalence classes of 2//2 vertices (who differ only in the number they are given in the
third label), and 6//23!/2 equivalence classes of 2/2 sequences of colorings (who differ only in the
way they color vertices not in the merged sequence of the right hand side cluster). Preserving
the structure of the equivalent classes, we can match the sequences of legal 3-colorings with the
vertices of a right hand side cluster. ]

Lemma 18 If every 3-coloring of G legally colors at most ¢|E| edges, than the smallest one-
sided dominating set in G' is of cardinality at least (1 — o(1))|Vi|Inm/6'.

Proof. The proof is essentially identical to that of Lemma 7 in [11] and is omitted. U

By making m sufficiently large, we can have |V3| > |V1| and Inm =~ In |V3|, and the proof of
Theorem 11 follows.
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A Multicoloring version

In the domatic multi-partition problem, we are additionally given an integral weight z : V — N
indicating in how many dominating sets each vertex can appear. The domatic number problem
has z(v) = 1, for each v; the r-Conf problem of [15] has z(v) = r, for each v.

We can reduce the multi-partition problem to the ordinary partition problem. Given a graph
G and weight vector z, form a graph G’ as follows. G’ has z(v) copies of each vertex v connected
as a clique. For each edge wv in G, the copies of u and v form a complete bipartite graph in
G’. Any minimal dominating set in G’ is also a dominating set in GG, and taking one copy of
each vertex of a dominating set in G also gives a dominating set in G’. Further, a domatic
partition of G’ is in one-to-one correspondence with a multi-partition of G (within the weight
constraints). Thus, the results obtained in this paper for the domatic number problem carry
over to the domatic multi-partition problem, replacing J by min, d(v)z(v) and n by >, z(v).

B Overview of some ingredients from [11]

Parallel repetition of two-prover proof systems: There is a straightforward one-round
two-prover proof system for Max 3-colorability-5 that has the following properties: on yes in-
stances, the verifier always accepts, and on no instances (when at most a (1 — €) fraction of the
edges can be legally colored simultaneously) the verifier accepts with probability at most 1 —¢/3.
Give a b-regular graph G, the proof system proceeds as follows. The verifier sends to the first
prover a random edge in G, and to the second prover a random vertex from that edge. We
call this vertex the common vertex. It is important that the first prover does not know which
endpoint of the edge is the common vertex, and that the second prover does not know which
edge was received by the first prover. The first prover replies with two different colors (out of
the three allowable colors) for the two vertices that are the endpoints of the edge. The second
prover replies with a color for the common vertex. The verifier accepts only if the two provers
give the same color to the common vertex. For a yes instance G the two provers can answer
according to the global legal 3-coloring and ensure that the verifier accepts with probability 1.
For a no instance G, regardless of the strategy of each prover (where a strategy is a function
from questions to answers), the acceptance probability is at most 1 — €/2, where probability is
computed over the random choices of the verifier.

The [-fold parallel repetition of this one-round two-prover proof system is as follows. The
verifier sends to the first prover a tuple of [ random edges and to the second prover a tuple
of [ random vertices, one from each of these edges. Each prover replies with colors to all the
vertices that it receives. The verifier accepts if on every one of the [ common vertices, the two
provers agree on the color that they give. It is not hard to see that on yes instances, the provers
still have a strategy that makes the verifier accept with probability 1. The parallel repetition
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theorem [36] shows that on no instances, the verifier accepts with probability at most (1 — €)¢,
where ¢ is a constant (that depends on €).

Separating codes and k-provers: To eventually get ~ Inn hardness of approximation re-
sults, two-prover proof systems are extended to k-prover systems in a special way. As in the
two-prover proof system, the verifier selects [ edges at random and a random vertex within each
edge. This gives a total of (2|E |)l possible queries. Each of the k provers is sent some subset
of the [ edges and [ vertices using the following rule. A (k,!)-Hadamard code is a collection of
k binary words of length [ each, for which the Hamming distance between any pair of words
is “large” (specifically, [/2). With each prover we associate one codeword from the Hadamard
code. The verifier sends to each prover [/2 edges and [/2 vertices, selected according to the 1’s
and 0’s in the codeword of the respective prover. Namely, if the ith bit in the code is 1, the
next entry in the query is the respective ith edge (among the [ edges in the tuple). If the ith
entry is 0, the sth vertex in the vertex tuple is sent. Considering separately two of the provers,
the fact that their codewords have a large Hamming distance implies that in many coordinates
one prover will receive an edge while the other prover will receive a vertex on this edge. This
is similar to the scenario in the two-prover proof system. Intuitively, we may view the k-prover
proof system as (g) correlated two-prover proof systems going on in parallel. It is natural to
have the verifier accept if all (’5) proof systems are accepting. The definition of acceptance used
in [11] is more subtle and will not be discussed in this overview.

Next a bipartite graph G'(V1, Vo, E') is built based on this scenario. Specifically, the vertices
in V; describe the provers/queries schema. The set V) corresponds to the provers and is parti-
tioned into k “rays” Vi, 1 < j <k, one ray for each prover. The sets VF are further partitioned
into disjoint subsets V7 (Q), where Q ranges over all the |V|//?|E|/? possible questions that a
prover can receive. On each possible question, the prover must answer with a coloring of the
[/2 edges and /2 vertices received. Thus, the V{(Q) sets are further divided into all possible
answers. Therefore, there are 3//2-6!/2 points inside V7 (Q) in this final division; a point for each
possible coloring of the /2 vertices and [/2 edges. In addition, for technical reasons, each point
(possible answer) of each prover is duplicated 2/2 times.

Ground sets and random partitions: To determine the structure of V5, some ideas essen-
tially due to [26] (and extended in [11]) are used.

The set V3 is partitioned into (2|E|)! ground sets Cy, one ground set per each possible query.
Each ground set contains m points for m = |V|®W), Tt is instructive to note the following
asymmetry. Given a query namely a sequence of / edges and [ corresponding endpoints for the
edges, consider its corresponding ground set in Va. There are exactly k sets V{(Q) that are
compatible with this sequence, one per prover (since the question to the provers is completely
determined by the Hadamard code). On the other hand, given a question cluster Vi (Q), many
possible query-base ground sets in V5 could have caused this question. Indeed, since the question
contains only 1/2 edges and /2 vertices, this partial information can be completed in 5l/291/2
ways to give compatible [ edges and [ vertices. Each vertex sent to this prover has 5 neighbors
and thus 5 ways of “completing” this vertex into a (compatible) edge. For each edge sent to this
prover, there are 2 possibilities for which of the two vertices to put in the resulting query.

We use L = 3! random partitions of Cy, each partitioning Cy into k parts. Consider the
[-tuple of vertices in a possible query (namely, the part of the query corresponding to the chosen
vertices, one per each edge). Note that the number L = 3' of partitions of each ground set
exactly equals the number of possible colorings 3! of the vertices in that query. We can thus
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form a 1-1 correspondence between the 3' partitionings and the 3-coloring (not necessarily a
consistent one) of the [ vertices in the query base. Each partition is now regarded as a coloring,
and vice-versa. Recall that a point in the final sub-partition cluster of Vi corresponds to an
answer to the coloring of the query of [/2 edge/vertex pairs. This corresponds to a coloring of
the [ vertices of the cluster Cp, hence gives a vertex coloring, and thus a partition of Cy. The
edges between the vertices of V; and V; are defined as follows. Each vertex (namely, coloring or
answer) v € V/(Q) is connected to the jth part of the partition corresponding to v (as v is a
coloring, a partition is also associated with v).

Now, consider the graph G’ resulting from a 3-colorable graph G. We can choose one point
(answer) per each question-cluster in V7, so as to cover each Cy. Thus all the Cy are covered
using at most k- (2 - E)l vertices. This will happen if the provers use strategies which are all
part of a global 3-coloring, and this gives a small dominating set. On the other hand, consider
the resulting graph G’ when only 1 — € of the edges of G can be simultaneously legally colored.
Because of the parallel repetition which greatly increases the gap, the provers essentially cannot
use a joint strategy. This means that each pair of answers v; € V{(Q),v, € V{¥(Q) chosen,
corresponds to two different colorings. Hence a ground set Cj is essentially covered via random
sets each containing m/k random elements of Cy. Thus, the number of elements needed in order
to cover Cy is roughly kInm. This gives a total of roughly & - (2 - E)l In|V’| minimum one-sided
dominating set for a logarithmic gap.

Zero knowledge and the domatic number: Given the fact that a single “small” one-sided
dominating set exists, we can permute the colors (as done in zero-knowledge protocols in order
to “hide” information) to show the existence of “many” disjoint dominating sets, hence a “large”
domatic number. Namely, once a 3-coloring of G exists, one gets 6 legal colorings for G. This
implies a total of 6' colorings (which can be completed into global coordinatewise-compatible
colorings) of any [ tuple of vertices. The possibility for color permutation was the main reason
for reducing from a coloring and not a satisfiability problem. Hence, we either get many small
dominating sets which implies a large one-sided domatic number, or any dominating set is large,
which gives a a small one-sided domatic number.
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