Parameterized Algorithms and Complexity

of Non-Crossing Spanning Trees

Magnis M. Halldérsson!, Christian Knauer?, Andreas Spillner®, and
Takeshi Tokuyama?*

! Dept. of Computer Science, Faculty of Engineering, University of Iceland,

IS-107 Reykjavik, Iceland. Email: mmh@hi.is

2 Institute of Computer Science, Freie Universitit Berlin.
Email: christian.knauer@inf.fu-berlin.de

3 School of Computing Sciences, University of East Anglia.

Email: aspillner@cmp.uea.ac.uk
* Graduate School of Information Sciences, Tohoku University,
Sendai, 980-8579 Japan. Email: tokuyama@dais.is.tohoku.ac. jp

Abstract. We consider the problem of computing non-crossing span-
ning trees in topological graphs. Deciding whether a non-crossing span-
ning tree exists is known to be NP-hard, and minimizing the number of
crossings in a spanning tree is also known to be very hard to approximate.
We consider the parametric complexities of the problem for the follow-
ing natural input parameters: the number k& of crossing edge pairs, the
number p of crossing edges, and the number ¢ of vertices in the interior
of the convex hull of the vertex set. We start with an improved strategy
of the simple search-tree method to obtain an O™ (1.93%) time algorithm.
Although not a major theoretical improvement, it provides a guideline
for the implementation of the search-tree method. We then give more
sophisticated algorithms based on graph separators, with a novel tech-
nique to ensure connectivity. The time complexities of our algorithms are
O*(QO(‘/E)), o* (,uo(”2/3)), and O*(:°VY). By giving a reduction from
3-SAT, we show that the O* (2‘@) complexity is hard to improve under
an established hypothesis of the complexity of 3-SAT.

1 Introduction

A topological graph is a graph with an embedding of its edges as curve segments
in the plane such that each pair of edge curves intersect at most once [13]. We
refer to the embeddings of the vertices also as vertices, and to the geometric
curve segments as curves. A topological graph is said to be non-crossing if none
of the edge curves cross. We consider non-crossing subgraph problems that in-
volve finding a non-crossing subgraph satisfying some property: spanning tree,
s—t path, and cycle. All of these problems are known to be NP-hard [5,10]. We
shall focus on the non-crossing spanning tree problem (NCST) in this extended
abstract. The corresponding minimization problem may be of interest when fo-
cusing on finding structures in the drawing of an embedded graph. Removing as



many edges and crossings as possible makes it easier to recognize the structure
of the graph in terms of connectivity.

Let G be a topological graph on n vertices and m edges. A crossing is a pair of
edges that meet in a non-vertex point, and a crossing edge is one that participates
in some crossing. A crossing point is a non-vertex point that is contained in at
least two edge curves. Note that if d edges intersect in a single crossing point, they
create (g) crossings. Let k be the number of crossings and let u be the number
of crossing edges in the input graph. Observe that p/2 < k < p(p —1)/2. We
assume that the curves intersect only in individual points, not in curve segments.
Note that sometimes, e.g in [6], a topological graph is allowed to have multiple
crossings between a pair of edges. Our algorithms can easily be modified to deal
with that more general situation. As long as the number of multiple crossings
between each pair of edges is bounded by a constant the asymptotic bounds on
the running time of the algorithms are not effected.

A very naive method for any of the non-crossing subgraph problems men-
tioned above is to exhaustively check all subgraphs of a given topological graph.
This can be done in exponential time in the number m of edges of the graph.
However, if k is small and the desired subgraph property (e.g. spanning tree,
cycle and s-t path) can be ckecked in polynomial time, we have the following
better strategy: For every crossing pair of edges, we delete one of the crossing
edges. This yields a non-crossing subgraph. By checking all of the at most 2*
possible combinations of deletions we can decide whether the given topological
graph admits, for example, a non-crossing spanning tree in O*(2*) time. The
O*-notation hides polynomial terms. Recently, Knauer et al. [6, 8] gave an algo-
rithm for NCST running in O*(1.9999992*) time. This left the question whether
a more substantial improvement of the naive method is possible.

Our results. We give a number of results that answer many of the open questions
about the parameterized complexity of non-crossing subgraph problems.

We first give an improved O*(1.928%)-time algorithm for NCST. This is based
on a compact kernel for the problem and on a new set of reduction rules that take
advantage of the interdependencies between the various cases considered in the
algorithm. The approach actually applies to a more general problem involving
arbitrary pairwise conflicts on the edges of a given graph.

One of the main contributions of this paper is an algorithm for NCST with
an asymptotic improvement in the time complexity to 20(Vk) (we ignore poly-
nomial time preprocessing), see Section 3. This result is based on finding a cyclic
separator in a related planar graph and turns out to be best possible, under the
exponential time hypothesis that 3-SAT does not admit a 2°("™)_-time algorithm
(where n is the number of variables), as shown in Section 5.

We also present fixed-parameter algorithms for two further parameters. For
the parameter u, the number of crossing edges, we give a /,LO(”M)—time algorithm.
For the parameter ¢, the number of vertices lying in the interior of the convex hull
of the vertex set, we give a 12(V¥)-time algorithm. However, the latter can only
be applied to the special type of topological graphs where edges are represented
by straight line segments, so called geometric graphs. The parameter ¢ has been



used successfully to parameterize some hard geometric problems on points in
the plane, including the Euclidean Traveling Salesman Problem [1]. Note that it
is easy to come up with geometric graphs where ¢ is small but %k is large. Our
results are summarized in Table 1 (ignoring polynomial factors).

Parameters |k (crossing number)|u (crossing edges)|¢ (inner points)
90(Vk) pOw*%) )

92(Vk) NA 9292(V1)

Upper bounds

Lower bounds

Table 1. Parametric complexities for the NCST problem

2 Improved Search-Tree Algorithm

We first give a simple search-tree method to find a non-crossing spanning tree
in a topological graph with k crossings in time 1.9276* (plus polynomial time
preprocessing) if one exists. This improves on the previous bound of 1.99999%
as well as on the 1.968* bound for a Monte-Carlo algorithm [6]. Although it will

be improved asymptotically to 20(Vk) in Section 3, we feel the above result is
valuable since the search-tree algorithm is preferable in practice for the range
of k where the problem is reasonably feasible and our improved method adds
little burden to programmers who want to implement a search-tree method. We
reduce the original problem to a compact kernel problem, and then introduce
some simple rules for a naive search-tree algorithm to obtain the improved time
complexity.

Kernel. A kernel is a reduced problem instance, whose solution can be “easily”
turned into a solution of the original instance. To form a kernel for NCST we
use edge contractions, where contracting the edge uv in a graph G results in the
graph where the vertices u and v have been merged into a single new vertex w
and every vertex (distinct from u and v) that was a neighbor of u or v becomes
a neighbor of w.

If the edges in a pair of crossing edges share an endpoint v, we say they
are tangled, more specifically, they are tangled at v. To form a small kernel, we
contract all non-crossing edges of the graph G yielding a new topological graph
G'. More precisely, for each connected component of the subgraph of G induced
by the non-crossing edges, we select an arbitrary spanning tree, and contract
it. The other edges in the connected component are deleted. It is clear that the
kernel is obtained in polynomial (indeed, linear) time.

Note that this does not affect the crossing properties of the crossing edges.
However, it can lead to non-tangled pairs to become tangled. A planar subgraph
H' of G' maps to a subgraph H of G; adding the contracted edges to H preserves
planarity. Hence, there is a bijective mapping between maximal planar subgraphs
of G and G'.

Every edge in G' is crossing, thus the number of edges in G' is at most u. If
G’ is not connected then G’ has no non-crossing spanning tree. Otherwise the
number of vertices in G’ is at most the number of edges in G'. We further delete



all loop edges in G’ even if they are crossing. This resolves some crossings, but
does not affect the problem solution because of the property of a spanning tree.

Proposition 1. A kernel for NCST with at most p edges and vertices can be
computed in linear time.

Search-tree approach We give an efficient search tree algorithm for finding a non-
crossing connected spanning subgraph. If one exists a non-crossing spanning tree
can then easily be found.

In most nodes of the search tree we select an edge e for branching: either a
solution contains e or it does not. If it contains e, it cannot contain the edges Ce
crossing e. Hence, we obtain two subproblems: G — {e} and G — C.. In either of
the subproblems, we eliminate all crossings incident on e, and apply the available
contractions. The measure, T'(k), of a subproblem is the number of search tree
leaves in terms of the number k of crossings. In subproblem G — C, the number
of crossings is reduced by at least one, for a measure of T'(k — 1). We want to
show that the measure of G — {e} is less.

We select branching edges in the following order of preference:

1. If there is an edge crossing two or more other edges, then we choose such an
edge. The number of crossings is reduced by at least two in both G — {e} and
in G- C..

2. For tangled parallel edges, we can pick either of them, yielding the same
subproblem, since neither is twice-crossing (otherwise, we should apply rule 1).
This allows us to contract both edges, reducing & by one.

3. Consider a node v of degree at most 3. If v has degree 3 then at least one edge
e incident on v is not tangled with any of the other incident edges; otherwise,
one of them would be twice-crossing. We branch on e and obtain on one branch
a degree-2 node. For a degree-2 node with two incident tangled edges, branching
on either edge yields the same subproblem after contractions. Otherwise, we
branch on one of the incident edges, obtaining on one branch a degree-1 node.
A degree-1 node must be connected in a spanning tree, thus only one choice is
then possible. Hence, a subproblem with a measure at most T'(k — 1) when it
has a degree-1 node, at most T'(k — 1) + T'(k — 2) with a degree-2 node, and
T(k—1)+T(k—2)+T(k— 3) with a degree-3 node.

4. Consider a degree-4 node v with an untangled edge at v. Let e be an edge
incident on v that is not tangled with the other edges incident on v. When we
branch on e, the case where we exclude e from the spanning tree leaves us with
v being of degree-3. We then apply the degree-3 case above.

5. When none of the above rules apply, we branch on an arbitrary edge.

Let us consider what happens when we reach the last rule. In that case, all
nodes are of degree at least four. Further, only nodes that have two tangled
incident edge pairs have degree 4, while the others are of degree at least 5. Thus,
each edge that is tangled at node v appears untangled at the other endpoint, since
there are no tangled parallel edges and no twice-crossing edges. Thus, no two
degree 4 nodes are adjacent to each other. We claim that the number of nodes,



n, is at most 9u/20. Let a denote the number of degree 4 nodes, and note that
all neighbors of degree-4 nodes are of degree at least 5. Therefore, counting edge
incidences, p > 4“+5(” 9 = 5"2 ¢ and considering edges incident on degree-4
nodes, p > 4a. Combmlng the two inequalities, we have that p > (20/9)n. We
contract an edge, eliminating a vertex, in each round. Hence, the depth of the
recursion is at most n — 1 < (9/20)u = (9/10)k, for a time complexity of 20-%.

Let us now evaluate the effects of the other branching rules. In each rule,
we perform one or more branchings, yielding a set of subproblems measured in
terms of the number of remaining crossings. We express each case as a recurrence
relation:

2T(k — 2), Twice-crossing edge

T(k—1), Tangled parallel edges
T(k) <max{ T(k—1)+T(k—-2)+T(k-3), Degree-3 case

Tk—1)+T(k—2)+T(k—3)+T(k—4), Degree-4 case

209k Dense case

The worst case is the degree-4 case, which yields T'(k) < 1.9276% ~ 20-9468k 1

Generalized structures. Our arguments do not use planarity in any way, except
indirectly as prescribing conflicts between edges. Thus, the approach works more
generally for finding spanning forests of graphs with conflicts between edges.
More generally, we can formulate the Conflict-Free Spanning Tree (CFST) prob-
lem, where we are given a graph G and a conflict graph H defined on the edge
set E(G). We are to determine whether there exists a subset of mutually non-
conflicting edges forming a spanning tree. In NCST, the conflicts are given by the
crossings, and |E(H)| = k. For another example, the algorithm can be applied
to layouts of graphs on surfaces of higher genus.

Theorem 1. Given graphs G and H, CFST can be solved in time O*(1.9276‘E(H)|).

3 Separator-Based Algorithm

We describe here our algorithm for the non-crossing spanning tree problem.
The approach bears some similarity to the algorithm of Deineko et al [2] for
the Hamilton cycle problem in planar graphs. Our method is based on a cycle
separator theorem of Miller.

Proposition 2. (Miller [12]) Let G’ be an embedded triangulated planar graph
on n vertices. Then, there is a linear time algorithm that finds in G' a simple
cycle C of at most \/8n vertices that partitions G' — C into a vertex set A that
lies within the region inside of C, and a vertex set B that lies outside of C, with
|A| <2n/3 and |B| < 2n/3.

1 1.9276 represents the positive-valued solution of the equation z* = 1+ z + 22 + 2°.



Before applying the above theorem, we resolve the multiplicities of the ker-
nel. The multiplicity of a crossing is the number of pairs of edges that meet
in the same point. Large multiplicity can confuse good algorithms, especially
those based on separators, and the same can be said of high-degree vertices.
Fortunately, we can assume without loss of generality that crossings are of unit
multiplicity and vertices of maximum degree 3. We omit details, but the basic
idea is to clip edges at high-degree vertices and to replace the clipped stars by
binary trees and to wiggle edge curves in order to avoid degenerate crossings.
We have the following theorem:

Theorem 2. Suppose there is an algorithm that solves NCST on degree-3 graphs
with unit crossing multiplicity in time T (k, u,n). Then, there is an algorithm for
NCST for general topological graphs running in time O(T (k, u,n)).

Given a kernelized topological graph H, we form an associated triangulated
plane graph P = Py as follows. We replace each crossing point of H by a vertex
and the curve of each crossing edge by line segments connecting the vertices and
the crossing points. Finally, we arbitrarily triangulate the graph. The edges of
the resulting graph P are therefore of three kinds: non-crossing edges from H,
segments of crossing edges (connecting a crossing point to either another crossing
point or to an original vertex), and newly introduced “dummy” edges. Observe
that the number n(Pg) of vertices in H equals p + k.

The idea of our algorithm is as follows. In the preprocessing step, we find a
kernel, as guaranteed by Proposition 1, and apply the multiplicity reduction of
Theorem 2 to ensure each crossing point involves exactly two crossing edges.

The main algorithm finds a cycle separator in the derived plane graph P,
and solves the two resulting subgraphs of H recursively, under all possible ways
of constraining one subsolution to contribute to the connectedness of the whole
solution. More precisely, if C' is a cycle separator of Py, we partition its nodes
into C,, a set of vertices of H, and C., a set of crossing points in H. The algorithm
tries all 2%l ways of breaking the crossings of C,. Consider one such decision
vector D, and let D, be the set of vertices of the chosen crossing edges that are
on the inside of the cycle C. Consider now the set S = C,, U D,,.. This set can be
topologically arranged on a circle C’, such that no edges cross the circle. Let H4
be the subgraph of H induced by vertices on the inside of or on the circle C’,
and Hpg the subgraph on the outside of or on C'. Then, V(H4)NV(Hg) = S.

Given H4 and Hp, the algorithm examines all the ways in which the vertices
of S can be connected inside C' (i.e. within Hpg) while maintaining planarity.
Namely, if we view S as an ordered set, we seek, in combinatorial terminology,
a non-crossing partition of S. A partition of an ordered set is non-crossing if no
two blocks “cross” each other, i.e. whenever a and b belong to one block and
z and y to another, they are not arranged in the order azby. For each non-
crossing partition I7, we form a star forest X = X with the leaves of each star
corresponding to a block of the partition and a new node as the root of the star.
Let Hy = HgUX. The algorithm recursively solves Hf, yielding a non-crossing
forest F'p in Hp. By induction, crossing edges in G have either all of its segments



in H in Fp or none. The algorithm then recursively solves Hy = H4UFp, giving
a non-crossing spanning tree in G.

Theorem 3. The algorithm solves NCST in time 20(‘/E)+O(m) and polynomial
space.

Proof. We first indicate the correctness of the algorithm. Suppose that the input
graph G contains a non-crossing spanning tree T'. Let T4 (T's) be the restriction
of T to Hs (Hg). Each tree of the forest T4 contains some nodes of the set S;
for the purpose of the solution of Hp, what matters is that it connects those
vertices together. Thus, if we replace each tree U of T4 by a star with nodes
in SN U as leaves, the resulting union, joined with Tg, induces a connected
tree spanning all the nodes. Hence, by induction, the first recursive call of the
algorithm returns a spanning tree of Hf, whose restriction to Hp is the forest
Fg. Now, FgpUT}y is connected and spans Fg U H 4. Hence, the second recursive
call will also result in a non-crossing spanning tree 7" of H)y = H4 U Fg. The
nodes of Fg are the nodes of Hp; hence, we have spanned all of G. Thus, the
algorithm correctly computes a non-crossing spanning tree. On the other hand,
if G does not contain a non-crossing spanning tree, the second recursive call
never finds a non-crossing spanning tree.

Next, we analyze the complexity. Let v = n(Py) = p + k be the measure of
the problem. By Proposition 2, the algorithm finds a cycle separator in P of size
at most z = v/8v. We have at most 2° ways of resolving the crossing edges on the
separator. The size of S and the cycle C' is still 2. The number of non-crossing
partitions of S equals the Catalan number C, = zil (2;) < 47.Thus, there are
less than 8% cases considered by the algorithm.

Each case involves two subproblems. The larger of the subproblems is of
measure M of at most 2v/3+ z. A more careful analysis actually shows that most
of the cases involve smaller subproblems. The measure of the smaller subproblem
is at most (v — M) + 2z. The time complexity for any subproblem, aside from
recursive calls, is linear in the size of the graph. Thus, the complexity of the
algorithm is bounded by T'(v) = O(8%/2%/2)-(T'(2v/3+ 2) + T(v/3+2)) + O(v).
This leads to T'(v) = O(2'8V¥). Since v = p + k < 3k, T(v) = 2°V®) | QED.

3.1 The parameter u

A straightforward O*(2*) algorithm for NCST follows by considering all subsets
of the set of crossing edges, and O*(2°-552#) can be obtained by the search-
tree method as follows. Suppose an edge crosses at least two other edges. Then,
branching on this edge yields two subproblems, with one fewer and three fewer
edges, respectively. Otherwise, when branching on an edge, both subproblems
have two fewer edges. The first case is the harder one, giving time complexity
of a*, where a ~ 0.552 is the solution to 2 = z? + 1. We give the following
asymptotic improvement by combining the search method and the separator-
based method:

Theorem 4. NCST can be solved in uo(“z/s) +0(m) time and polynomial space.



Fig. 1. A geometric graph, the polygon P, and the subgraph G.

Proof. We split the computation into two cases, depending on the size of
relative to v = p + k. Let R(u) be the number of subproblems in an instance
with p crossing edges. If v < 2u*/3 (Case 1), then the separator-based algorithm

gives R(p) < 27 < 22 Otherwise (Case 2), v > 2u%/3. Then there exists
an edge that participates in at least 2u'/® crossings. We branch on that edge,
resulting in two subproblems: one without that edge, and the other without all
the edges crossing it. This gives the recurrence R(p) < R(u—1)+R(u—2u"/3)+1.
The time complexity follows from this recurrence using Case 1 as the induction
basis.

4 Dynamic programming approach for the parameter ¢

A necessary prerequisite to successfully parameterize a problem with the number
of inner points is to be able to solve the problem in polynomial time for sets
of points in convex position. For geometric graphs whose vertices are in convex
position, it is easy to see that NCST can be solved using dynamic programming in
O(n?®) time. Note that, given a geometric graph G = (V, E), we can reformulate
NCST as the search for a triangulation 7 of V' such that the graph formed by
those edges of G contained in the triangulation 7 is connected. In this section
we want to give a brief outline of a dynamic programming algorithm to find such
a triangulation in the presence of inner vertices. To this end we first describe the
type of subproblems considered by our algorithm.

A subproblem is defined by a non-crossing path 7 that starts at a vertex u
on the boundary of the convex hull of V, visits some inner vertices and ends at
another vertex v on the boundary of the convex hull of V. The path 7 splits the
convex hull of V' into two polygonal regions. Note that 7 is not necessarily a path
in the input graph, but an arbitrary noncrossing path connecting vertices by line
segments; indeed, we are searching for a path in the (unknown) triangulation.
By P, we denote the polygonal subregion to the left of 7. An example is given
in Figure 1(b), where Py is shaded. The subgraph G, induced by 7 consists of
all those vertices and edges of G that are contained in P,. This is illustrated in
Figure 1(c).

We now describe what we actually want to compute for each P;. It is not
enough to decide whether or not there is a crossing-free spanning tree in G.
Intuitively, we need a list of those crossing-free spanning forests of G, where
each tree in the forest shares at least one vertex with the path 7. However, it is
costly to consider the complete list of such spanning forests. Instead, it suffices



to know which vertices on 7 belong to the same tree in the spanning forest. We
can handle this by considering partitions of the set of vertices of the path 7. For
each such path 7 we have a collection of subproblems: one for each partition of
the vertices of 7. For such a subproblem we must decide whether or not there is
a spanning forest of G, such that every tree in the forest has at least one vertex
on 7 and vertices on 7 in a component of the partition belong to the same tree
in the forest.

The key fact for the analysis is that the existence of small simple cycle sep-
arators in planar triangulated graphs implies that we can restrict ourselves to
subproblems defined by paths with O(/t) vertices [9]. Thus, the number of
polygonal regions P, considered in the algorithm is bounded by n2.°V®) (se-
lecting two outer vertices and O(y/2) inner vertices), and there are (2(V%) possible
partitions for the vertices of the path 7 of each region. In the DP table we record
whether there is a triangulation containing a feasible forest for each partition of
each such polygonal region. Thus, the table size is O(n?:0(V¥).

It remains to sketch how we process a subproblem in P, by using information
for smaller polygons stored in the dynamic programming table. We check every
triangle A that is contained in Py, shares an edge with the path 7, and does not
contain a vertex of V in its interior. Checking A means to decide whether a suit-
able triangulation for the subproblem containing A exists. By removing A from
P, we have one or two subpolygons, and this leads to one or two smaller sub-
problems. We remark that we discard the choice of A if it generates a subpolygon
with too many interior points on its boundary. It is routine to see that we can
now solve the subproblem for P, by referencing the dynamic programming table.
Thus, we have the following theorem:

Theorem 5. Given a geometric graph G with n vertices we can decide in O* (Lo(ﬁ))
time and space if G admits o crossing-free spanning tree.

The time and space complexities are O(n®:©V) and O(n2.°V") if we con-
sider polynomial factors of n. We can also compute a crossing-free spanning tree
(not only decision) if one exists in the same time and space complexities.

5 Hardness Results

We show here that the results of Section 3 are in some sense best possible.

We are interested in the NCST,, problem, where we decide whether an input
geometric graph G = (V, E) with k crossings has a crossing free spanning tree,
and we use k(G) = [Vk]| as the parameter. We want to relate the question of
whether there is an algorithm solving NCST, in O*(2°(5(G))) time to an open
question concerning the 3SAT, (3-SAT with the parameter v):

Instance: Exact 3-SAT formula (CNF formula with exactly three literals
per clause) F.

Parameter: The number v(F) of variables occurring in F'.

Problem: Decide whether F' is satisfiable.



The exponential time hypothesis is that 3SAT, cannot be solved in time
0*(2°“(F))). This hypothesis was formalized by Impagliazzo, Paturi, and Zane [4].
Evidence was given there and in later papers for support of the hypothesis. If we
take the closure of 3SAT, under so called subexponential reduction families (serf)
(cf. [3]) we obtain the class S[1]. Our goal is to show that NCST, is S[1]-hard.
S[1]-hardness can be also shown for the parameter /¢, but we omit it because
of space limitation.

To achieve the S[1]-hardness, it suffices to give a parameter preserving poly-
nomial time reduction from 3SAT, to NCST, . Such a reduction transforms a
given instance F' of 3SAT, in polynomial time into a instance G of NCST,; such
that kK(G) € O(w(F)). We can give such a reduction through some intermedi-
ate problems. The first is 3SAT,, , which has the same instance and problem as
3SAT, but the parameter is the number p(F) = 3m where m is the number of
clauses of F'. 35AT, is known to be S[1]-complete (cf. [3]).

With every 3-CNF formula F' we can associate a bipartite graph H(F) =
((V,C), E). The vertices in V represent the variables occurring in F'. The vertices
in C represent the clauses of F'. A variable is connected to a clause by an edge in
E iff the variable occurs in this clause. Lichtenstein [11] gives a polynomial time
algorithm that computes for every 3-CNF formula F a 3-CNF formula F’ such
that (1) formula F is satisfiable iff formula F’ is satisfiable, (2) the associated
bipartite graph H(F') is planar, and (3) Formula F’ has O((u(F))?) clauses.

This immediately gives a parameter preserving polynomial time reduction
from 3SAT, to the following planar 3SAT s .

Instance: Exact 3SAT formula F' such that the graph H(F') is planar.
Parameter: ' (F) = [\/m] where m is the number of clauses of F'.
Problem: Decide whether F' is satisfiable.

Moreover, it is shown in [11] that we can restrict to instances F' of planar 35AT
where the bipartite graph H(F) has a drawing that satisfies the following condi-
tions: Every vertex of H(F') that represents a variable in F' lies on a horizontal
line, no edge crosses the horizontal line, and no vertex representing a clause lies
on the horizontal line. Hence planar 3SAT,, with these properties is S[1]-hard.

Thus, it suffices to give a polynomial time reduction from this restricted
version of planar 35AT,/ to NCST, . We remark that this reduction was also
given in [7] in the context of NP-hardness and approximation hardness.

=, to clause T, to clause x , to clause
5 A A 4
— 2 Cle g-cooieeioieon. 02 o 0Cie @i
1 Va2 VT 5, : : o
ENENEN e o . . I N
_ = ‘ SRR
o VT3V Xy k-] I =
g b oo b+ o o [ S D . ) T
)
5 . oL ]
3 ; SR 9
x xZ = . oo S
Bl | b ; NSO S S .
2, R VR VR
5 Clog oo 026 6. e%Be o
TV T3 4 z VY to clause 2 ¥ to clause z VY to clause

Fig. 2. Overall structure of Gr (left), and a part of a variable gadget (right).

10



T A TA T A T A
P T e o e - ® @i e o o -
P o - [ . . >
SRS I U S R O S S
P T e o o - 6 e e o o P
zV zV TV zV
true false

Fig. 3. Spanning trees encoding true and false for a variable.

Our reduction maps a given instance F' of planar 35AT,, to a geometric
graph Gr such that Gr has a crossing-free spanning tree iff F' is satisfiable.
The overall structure of G is indicated in the left picture of Figure 2 for F' =
(1 VX2 VT A (22 VT3V x4) A (21 V23V 24).

We have a gadget for every variable occurring in F'. These gadgets are ar-
ranged along a horizontal line £. We further have a gadget for every clause in
F which is connected with every variable occurring in the clause. This gadget
looks like a three-legged comb.

Now let’s have a closer look at the gadgets. The leftmost part of the gadget
for a variable z is shown as the right picture in Figure 2. The gadget for x
consists of at most twice as many boxes as there are clauses in F' that contain x.
Three of these boxes are drawn with solid edges in Figure 2. The dotted edges
that emanate from the boxes fulfill three tasks. First they connect consecutive
boxes within one variable gadget. Second they connect the first and last box of
variable gadgets that are consecutive on the line £. Third they connect boxes
to clause gadgets. Each dotted edge that connects a variable gadget to a clause
gadget is associated with a literal. This literal will be true if the dotted edge is
part of the spanning tree of Gp.

The intended way of simulating the truth assignment of the variable z is
indicated in Figure 3. The Boolean values of x correspond to the two ways in
which a crossing-free spanning tree can be chosen among the edges of the gadget
of z. Note that only every other box can be connected to a clause gadget above
(below) £. This way we ensure that according to the value of z either only the
dotted edges associated to positive literals or only the dotted edges associated to
negative literals can connect z to clause gadgets. Not all points of type ¢; or ¢} in
a variable gadget are used—only those where the variable is in fact connected to
a clause gadget in Gp. A clause gadget is just a vertex of degree three connecting
to the corresponding literals.

It remains to argue that our reduction is parameter preserving. We charge
the crossings in one box of a variable gadget to a clause that is connected to
this box or its predecessor or its successor. At least one of these boxes must
be connected to a clause, otherwise we could omit them. This way a clause is
charged only a constant number of times and every time we charge the clause
we charge it only with a constant number of crossings. Hence, the number of

11



crossings in G is in O(m) where m is the number of clauses of F. But this gives
k(GFr) € O(p'(F)), as desired.

6 Concluding Remarks

As we have claimed in the introduction, we can apply our method to several
other problems such as non-crossing s—t paths and cycles. We can also deal with
the optimization problems, minimizing either the number of components in a
non-crossing spanning forest or the number of crossing edges in a spanning tree.
These extensions will be given in the full paper.

Acknowledgement. The authors gratefully acknowledge to Alexander Wolff
for valuable suggestions, and also for his help to organize this joint research.

References

1. V. G. Deineko, M. Hoffmann, Y. Okamoto, and G. J. Woeginger. The traveling
salesman problem with few inner points. Operations Research Letters, 34(1):106—
110, 2006.
2. V. G. Deineko, B. Klinz, and G. J. Woeginger. Exact algorithms for the Hamilton
cycle problem in planar graphs. Inf. Process. Lett., 34:269-274, 2006.
J. Flum and M. Grohe. Parameterized Complezity Theory. Springer, 2006.
4. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity. Journal of Comput. Syst. Sci, 63:512-530, 2001.
5. K. Jansen and G. J. Woeginger. The complexity of detecting crossingfree configu-
rations in the plane. BIT, 33:580-595, 1993.
6. C. Knauer, E. Schramm, A. Spillner, and A. Wolff. Configurations with few cross-
ings in topological graphs. In X. Deng and D.-Z. Du, editors, Proc. 16th Annu. Int.
Symp. Algorithms Comput. (ISAAC’05), volume 3827 of Lecture Notes in Com-
puter Science, pages 604—613. Springer-Verlag, 2005.
7. C. Knauer, E. Schramm, A. Spillner, and A. Wolff. Spanning trees with few cross-
ings in geometric and topological graphs. In Proc. European Workshop on Com-
putational Geometry, pages 195-198, 2005.
8. C. Knauer, E. Schramm, A. Spillner, and A. Wolff. Configurations with few cross-
ings in topological graphs. Computational Geometry: Theory and Applications,
2006. To appear.
9. C. Knauer and A. Spillner. A fixed-parameter algorithm for the minimum weight
triangulation problem based on small graph separators. In Proc. Workshop Graph-
Theoretic Concepts Comput. Sci. (WG’06), pages 49-57, 2006.
10. J. Kratochvil, A. Lubiw, and J. NeSetfil. Noncrossing subgraphs in topological
layouts. SIAM J. Disc. Math., 4(2):223-244, 1991.

11. D. Lichtenstein. Planar formulae and their uses. SIAM J. Computing, 11:329-343,
1982.

12. G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs.
J. Comput. Syst. Sci, 32:265-279, 1986.

13. J. Pach and G. Té6th. Unavoidable configurations in complete topological graphs.
In J. Marks, editor, Proc. 8th Int. Symp. Graph Drawing (GD’00), volume 1984 of
LNCS, pages 328-337. Springer-Verlag, 2001.

w

12



