Sum Coloring Interval and k-Claw Free Graphs with
Application to Scheduling Dependent Jobs*

Magniis M. Halldérsson® Guy Kortsarz? Hadas Shachnai®

March 8, 2003

Abstract

We consider the sum coloring and sum multicoloring problems on several fundamen-
tal classes of graphs, including the classes of interval and k-claw free graphs. We give
an algorithm that approximates sum coloring within a factor of 1.796, for any graph
in which the maximum k-colorable subgraph problem is polynomially solvable. In par-
ticular, this improves on the previous best ratio known of 2 for interval graphs. We
introduce a new measure of coloring, robust throughput, that indicates how ‘quickly’
the graph is colored, and show that our algorithm approximates this measure within
a factor of 1.4575. In addition, we study the contiguous (or non-preemptive) sum
multicoloring problem on k-claw free graphs. This models, for example, the scheduling
of dependent jobs on multiple dedicated machines, where each job requires the exclusive
use of at most k£ machines. Assuming that k is a fixed constant, we obtain the first
constant factor approximation for the problem.

1 Introduction

We consider the problem of graph multicoloring, with the objective of minimizing the sum
of highest colors. A multicoloring of a graph assigns to each vertex a collection of positive
integers (colors) so that the sets of colors assigned to a given pair of adjacent vertices are
disjoint. The sum multicoloring of an assignment is the sum over all vertices v of the highest
color assigned to v. We need to find an assignment of colors to the vertices, such that sum

*A preliminary version of this paper appeared in Proc. of the Fourth International Workshop on Approz-
imation algorithms (APPROX ’01). LNCS #2129, Springer-Verlag, pp. 114-126.

"Department of Computer Science, University of Iceland, IS-107 Reykjavik, Iceland. E-mail: mmh@hi.is.

tDepartment of Computer Science, Rutgers University, Camden, NJ. E-mail: guykQcrab.rutgers.edu.

$Contact author: Department of Computer Science, The Technion, Haifa 32000, Israel.
E-mail: hadas@cs.technion.ac.il. Currently on leave at Bell Laboratories, Lucent Technologies, 600
Mountain Ave., Murray Hill, NJ 07974.

multicoloring is minimized. This is known as the sum multicoloring (SMC) problem (see, e.g.
[BHK'00]). In the special case where each vertex is assigned a single color, our objective
is to minimize the total sum of the colors assigned to the vertices, or the sum coloring of
the assignment. This is known as the sum coloring (SC) (or chromatic sum) problem (see,
e.g., [BK98, BHK99, KKK89, NSS99]).

The sum coloring and sum multicoloring problems often model scheduling jobs which are
dependent because they utilize the same non-sharable resource. The exclusivity requirement
can be captured by a graph of the pairwise conflicts; the vertices of the graph represent the
jobs, and an edge in the graph between two vertices represents a dependency or conflict
between the two corresponding jobs, which forbids scheduling these jobs at the same time.
Assuming that jobs may have arbitrary integral execution times, a schedule of the jobs
corresponds to a multicoloring of the graph, where each vertex is assigned as many colors
as the processing time of the corresponding job. The large body of research on coloring
various classes of graphs therefore translates to statements about the qualities of schedules.
We elaborate on that in Section 1.1.

1.1 Definitions

Colorings Let G = (V,E) be a undirected graph, possibly with vertex weights. We
denote by n the number of vertices. A coloring of a graph is an assignment ¢ : V(G) — IN
of positive integers to the vertices such that adjacent vertices are assigned different colors.
The vertices receiving the same color then form an independent set and are called a color
class.

The chromatic number of G, denoted by x(G), is the minimal number of colors required
for coloring the vertices in G properly. The chromatic sum of ¢ is the sum of the colors
assigned to the vertices, or SC(G,) = Y, ¥ (v). The sum coloring problem is that of finding
a coloring of a given graph G with the minimum chromatic sum SC(G). We also denote by
SC(G, Alg) the chromatic sum of the coloring found by a given algorithm Alg.

In the maximum size k-colorable subgraph problem we seek a k-colorable subgraph of
maximum cardinality, i.e. an induced subgraph whose chromatic number is at most k. The
maximum size k-colorable subgraph problem is solvable, for example, on interval graphs,
by a greedy algorithm [YG87|, on chordal graph with constant maximum clique size (or
k-trees), and on comparability graphs and their complements [F80] (see below the precise
definitions of these classes). This holds also for the vertex-weighted problem, where we
seek a k-colorable subgraph of maximum total weight. We denote by kc(G) the size of the
maximum k-colorable subgraph in G.

The throughput of a partial coloring is the number of vertices colored. The maximum
throughput possible with & colors is ke(G), the size of a maximum k-colorable subgraph.
Given an algorithm that finds a coloring with color classes Iy, Io, ..., we can ask, for any

given k, for the throughput of the first color classes, Thr(i,k) = Zle |Z;|, and compare
that to the optimal throughput after k colors, kc(G). We say that the throughput of a
coloring is robust, if it is good for each value of k simultaneously. The robust throughput
(RT) measure of a coloring 9 compares the throughput to the optimal throughput for each
color bound k, and takes the maximum. That is,

ke(G)

RT(G, 1)) = e Thr(, k)

The robust throughput problem is to find a coloring that minimizes RT(G,).

Multicolorings An instance of a multicoloring problem is a pair (G, z), where G = (V, E)
is a graph, and z is a vector of color requirements (or lengths) of the vertices. For a given
instance, we denote by p = max,cy 2(v) the maximum color requirement. A multicoloring
of G is an assignment 1 : V — 2V, such that each vertex v € V is assigned a set of z(v)
distinct colors, and adjacent vertices receive non-intersecting sets of colors.

Taking the cue from the relation to scheduling (see below), a multicoloring 1 is called
non-preemptive if the colors assigned to each vertex are contiguous, i.e. if for any v € V,
(max;cy(v) 1) — (Minjey(y) 4) + 1 = x(v). Otherwise, it is preemptive.

Denote by fy(v) = max;cy(y) ¢ the largest color assigned to v by a multicoloring 4. The
sum multicoloring (SMC) of 1) on G is

SMC(G,4) = D fu(v) -
veV
The SMC problem is to find a multicoloring v, such that SMC(G,) is minimized; the non-
preemptive version is npSMC. When all the color requirements are equal to 1, the problem
reduces to the sum coloring (SC) problem.

Relationships of colorings and schedules As mentioned above, many scheduling prob-
lems can be represented as graph coloring problems. Traditionally, such problems arise in
relation with timetabling. In general, they occur when jobs (represented by vertices in the
graph) may conflict due to the fact that they need exclusive use of some resources. When
the jobs are of different lengths (under some discrete measure), we obtain a multicoloring in-
stance; when the lengths are identical, we obtain an ordinary graph coloring instance. When
jobs must be run without interruption, we have a non-preemptive instance, and otherwise
preemptive.

There are several measures that are considered for schedules. One is the makespan,
or the time from the start to finish; this corresponds to the number of colors used in the
(multi)coloring. Another measure is the sum of completion times of the jobs, or equivalently

the average completion time. This corresponds to, and is a primary motivation for, the sum
(multi)coloring measure.

The robust throughput measure that we study here was previously studied in the area
of combinatorial optimization (see, e.g., [HR02|). Generally, robust throughput examines
the overall amount of “work” done until any given moment, throughout the execution of an
algorithm. It may be viewed as a stronger version of the traditional throughput measure
that is commonly studied in real-time scheduling (see, e.g. [BGT01]).

Graph classes We define below the graph classes for which we derive our results.

Comparability graphs: An undirected graph is a comparability graph if it admits a
transitive orientation, namely, it is possible to give a single direction to every edge (a,b) € E
so that if (a,b) is directed from a to b and (b, c) is directed from b to ¢, then (a,c) (exists
and) is directed from a to c¢. Co-comparability graphs are the complements of comparability
graphs.

A special class of comparability graphs is the class of permutation graphs. A permutation
graph is defined in terms of a permutation of the numbers {1, ... ,n}. The matching diagram
is obtained by writing the sequence of integers in a horizontal row and the sequence of its
permuted values in another row below it, and by drawing n straight line segments between
the two 1’s, the two 2’s, etc. Given some permutation o, the graph G(o) corresponding to
o has vertices {1,...,n} and ,j are joined by an edge in G(o) if their lines intersect. A
graph is called a permutation graph if there exists a permutation o such that G = G(o). It
is known that a graph G is a permutation graph if and only if G is both comparable and
co-comparable (c.f. [G80].)

Interval graphs: A graph G is an interval graph if its vertices can be mapped to inter-
vals on the real line so that two vertices are adjacent in G if and only if their correspond-
ing intervals intersect. It is well known that interval graphs are co-comparability graphs
(c.f. [F95, FMW9T]). A more general class of intersection graphs of geometric objects are
trapezoid graphs. They generalize to m-trapezoid graphs which form a proper hierarchy of
co-comparability graphs, with m = 0 corresponding to interval graphs, m = 1 correspond-
ing to trapezoid graphs, and m = oo corresponding to co-comparability graphs. Refer to
[F95, FMW97]| for definitions of these graph classes.

(k 4+ 1)-claw free graphs: A graph G is (k + 1)-claw free if it does not contain the star
K 41 as an induced subgraph. Claw-free graphs are those that are 3-claw free. Examples
of k£ + 1-claw free graphs include

e Line graphs: The line graph L(G) is the edge-adjacency graph of a graph G(V, E).
Namely, the edges of G are the vertices of L(G), and two vertices of L(G) are joined
in E(L(G)) if the two corresponding edges share a vertex in G. Any line graph is a
claw-free graph.

e Proper interval graphs: These are intersection graphs of a family of intervals, so that
no interval in the family is contained in another interval. Clearly, a proper interval
graph is claw free.

e Unit circle intersection graphs: In these graphs the vertices correspond to unit cir-
cles in the plane and two vertices are joined by an edge if the two corresponding
circles intersect. It is known that unit circle intersection graphs are 6-claw free (see,
e.g., IMBT95]).

The graph class that is most relevant for our applications is the class of intersection
graphs of hypergraphs of sets of size at most k; such hypergraphs can be represented also
as directed bipartite graphs of maximum out-degree k. Formally, consider a bipartite graph
B(V1, Va, E) so that all edges cross from V; to V. Let deg(v) denote the number of neighbors
of v and assume that max,cy, deg(v) = k. Form a new graph called the intersection graph
G of B so that its vertices are the V; vertices, and two vertices u,v € V] are adjacent in G if
and only if they have a mutual neighbor in B. Observe that the neighborhood in G of every
vertex v can be formed as a union of at most k cliques. Thus, the graph G is (k + 1)-claw
free.

This example is of particular importance as it can represent a scenario of dedicated
tasks. The collection of jobs is represented by Vi; Vs represents the processors and there is
an edge from v € V; to w € V5 if the job v requires the use of the processor w. The above
(k 4 1)-claw free example occurs if every job requires the use of at most k processors.

Partial k-trees: A graph is a k-tree if it can be constructed incrementally, so that in each
iteration a new vertex is added and made adjacent to a clique of size k already in the graph.
A partial k-tree is a subgraph of a k-tree. Trees are partial 1-trees. Outerplanar graphs,
namely, planar graphs that can be embedded in the plane so that all the vertices lie on the
exterior face, are partial 2-trees. Series parallel graphs (see e.g., [BF96]) are partial 2-trees
as well. Another example is chordal graph, which does not contain a cycle of length 4 (or
more) as an induced subgraph. If, in addition to being chordal, the graph has maximum
clique size k, then the resulting graph is a partial k-tree.

The above notions are closely related. For example, a split graph is a graph that can be
decomposed into a clique and an independent set with arbitrary edges between them. It is
easy to see that a split graph is chordal. A large group of split graphs are also comparability
graphs (see |G80]).

1.2 Our results

The current paper has two parts. In the first part (Section 2), we discuss the sum color-
ing problem. Our main result is an approximation algorithm with a performance ratio of
1.796 for SC. The algorithm runs in polynomial time on graphs for which the maximum

induced k-colorable subgraph problem is solvable in polynomial time. This class includes
comparability graphs and their complements (co-comparability graphs), which in turn in-
clude interval, trapezoid, and permutation graphs. They also include partial k-trees. Of
particular interest is the class of interval graphs, for which we improve the best previously
known approximation ratio of 2 [NSS99| for sum coloring. Our algorithm approximates also
the chromatic number and the robust throughput of a given graph, the former within factor
2.718 and the latter within factor 1.4575.

In the second part of the paper (Section 3), we discuss the sum multicoloring problem.
Our main result is a 2k(2k — 1)-approximation for (k4 1)-claw free graphs, and in particular
12-approximation for line graphs. The special case of line graph has important applications,
e.g, in biprocessor scheduling and data migration (see below). The previously best ratio
known for this problem was logn [BHK™00].!

Among other applications our approximation encompasses dedicated processor schedul-
ing, where the number of processors required by any job is at most k. We elaborate on that
in Section 1.4. The result is extended in Section 3.3 to yield the same approximation ratio
for the problem of minimizing the weighted sum of completion times of dedicated tasks with
release times, denoted in standard scheduling notation as P|fix;,r;]| >_jw;Cj. However, we
first discuss the unweighted case without release times, so as to make the exposition simpler.

1.3 Applications of the sum coloring problem

We list below some applications that give rise to the sum coloring problem in (co-)comparability
graphs and intervals graphs.

Train scheduling: Consider a railroad crossing, in which a set of n railroads, numbered by
1,...,n, intersect, and exchange their relative locations; that is, the i-th railroad becomes
the o(i)-th railroad after the intersection, where ¢ is a permutation of (1,...,n) (see in
Figure 1). The goal is to schedule the arrivals of the trains to the intersection, such that
two conflicting trains cross at distinct time intervals. When our objective is to minimize
the average time that it takes for the trains to cross the intersection, we get an instance of
the SC problem on permutation graph.

VLSI design: In the wire-minimization problem [NSS99|, terminals lie on a single vertical
line (each terminal is represented by an interval on this line), and with unit spacings are ver-
tical bus lanes. Pairs of terminals are to be connected via horizontal wires on each side to a
vertical lane, with non-overlapping pair utilizing the same lane. With the vertical segments
fixed, the wire cost corresponds to the total length of horizontal segments. Numbering the

1Unless specified otherwise, all the logarithms in the paper are to the base of 2.

61 2 63 . 5 @ @
M ON
O ¢ @ &

(a) (b)

Figure 1: A train scheduling example: (a) a 5-railroad crossing; (b) The intersection graph
of the railroad system.

lanes in increasing order of distance from the terminal line, lane assignment to a termi-
nal corresponds to coloring the terminal’s interval by an integer. The wire-minimization
problem then corresponds to sum coloring an interval graph.

Storage allocation: Storage allocation in a warehouse involves minimizing the total dis-
tance traveled by a robot [W97]. Goods are checked in and out at known times; thus, goods
that are not in the warehouse at the same time can share the same location. We represent
each of the goods by an interval on the line, which gives the time interval in which it is
available at the warehouse. Numbering the storage locations by their distance from the
counter, the total distance corresponds to sum coloring the intervals formed by the goods.

Session scheduling on a path: In a path network, pairs of nodes need to communicate,
for which they need use of the intervening path. If two paths intersect, the corresponding
sessions cannot be held simultaneously. In this case, it would be natural to expect the
sessions (i.e., “jobs”) to be of different lengths, leading to the sum multicoloring problem
on interval graphs.

1.4 Applications of sum multicoloring

Instances of sum multicoloring on (k + 1)-free graphs are derived mainly from applications
that involve resource constrained scheduling. Consider the following scenario that exempli-
fies the problem.

Example. Suppose that a set of jobs Ji,...,Js is initiated in a distributed computing
environment. Each of the jobs is available to run on a different processor, however, the jobs
share accesses to a set of files fi,..., f5, stored on the network file system. In particular,
Ji,J2, J5 and Jg require read/write operations in the files f1, fo, f3 and f4 respectively. J3
needs to copy data from fq, fo to f5; J4 requires simultaneous reading of the contents of

T Ja

P] pE K
/) Ts

Q 3| g T o] J5] 6]

(a) (b) (¢)

Figure 2: Resource constrained scheduling (Example 1): (a) the conflict graph; (b) A
schedule that minimizes overall completion time; (c¢) a schedule that minimizes sum of
completion times

f3, fa into the file f5. The execution time of Jy, Js, J5, Jg is one unit, while Js, Jy require 2
time units each. Note that each of the jobs requires an exclusive access to the corresponding
file/s throughout its execution. While we can schedule the jobs such that the latest comple-
tion time is 4, the only schedule that minimizes average completion time (or, equivalently
the sum of completion times) is the one that schedules the unit-length jobs first, using a
total of 5 time units. This is illustrated in Figure 2.

Generally, in resource-constrained scheduling we are given a collection of n jobs of in-
tegral lengths and a collection of resources. We assume that each job requires an exclusive
access to particular subset of the resources to execute. The resource-constrained scheduling
problem can then be modeled as a multicoloring problem on the conflict graph. We ad-
dress here the case where each task uses up to k resources. Hence, the conflict graph is an
intersection graph of a collection of sets of size at most k, and is thus k + 1-claw free.

A natural example of a limited resource is processors in a multi-processor system. In
the biprocessor task scheduling problem, we are given a set of jobs and a set of processors,
and each job requires the exclusive use of two dedicated processors. We are interested in
finding a schedule which minimizes the sum of completion times of the jobs. In scheduling
terms, this problem is denoted by Pl|fix;| > Cj, with [fix;| = 2. In the special case of two
resources per task, such as the biprocessor task scheduling problem, the conflict graph is a
line graph.

Another application of sum multicoloring of (k + 1)-free graphs is scheduling data mi-
gration over a network, also known as the file transfer problem (see, e.g., |CGT85, K03|).
Suppose that the network is fully connected, and we have a set of files fi,..., far; each
file f; needs to migrate from a source s; to a destination ¢;. During migration, f; requires
the exclusive access to s; and t;, for a prespecified time interval; thus, f; and f; are in
conflict if {s;,¢;} N {s;,t;} # 0. Our goal is to find a migration schedule that minimizes the
sum of completion times, where the sum is taken over all files. This translates to the sum

multicoloring problem on the conflict graph of the files, which is a line graph.

1.5 Related work

The sum coloring problem was introduced in [K89], and the sum multicoloring problem in
[BHK'00]. The paper studies two variants of SMC. In the non-preemptive SMC (npSMC), we
require that the set of colors assigned to each vertex is contiguous, while in the preemptive
SMC (pSMC) we allow any proper coloring of G. Table 1 summarizes the known results for
these problems in various classes of graphs. New bounds given in this paper are shown
in boldface.
preemptive SMC. Entries marked with - follow by inference, either by using containment of

The last two columns give known upper bounds for preemptive and non-

graph classes (comparability and interval graphs are perfect), or by SC being a special case
of SMC. When omitted, [BBH 98] is the references for SC and [BHK'00] for SMC.

SC SMC
u.b. [.b. pSMC npSMC

General graphs nt=e n/log?n n/logn
Perfect graphs 4 16 O(logn)
Comparability 1.796 . 7.184 .
Interval graphs | 1.796 (2 [NSS99|) | ¢ > 1 [GO01]
Bipartite graphs | 27/26 [GJT02] c¢>1[BK98| | 1.5 2.8
Line graphs 2 NPC 2 12
Partial k-trees | 1 [J97] PTAS [HK99] | FPAS [HK99|
Planar graphs | - NPC |[HK99| | PTAS [HK99] | PTAS [HK99]
Trees 1 [K89] PTAS [HK199] | 1 [HKT99]
k + 1-claw free k+1 k+1 4k? — 2k

Table 1: Known results for sum (multi-)coloring problems

Resource-constrained scheduling has been recently investigated in the literature (see,
e.g., [BKR96, K96]). Kubale [K96] studied the complexity of scheduling biprocessor tasks.
He also investigated special classes of graphs, and showed that npSMC of line graphs of trees
is NP-hard in the weak sense. Afrati et al. [ABT00| gave a polynomial time approxima-
tion scheme for the problem that we consider, minimizing the sum of completion times of
dedicated tasks. However, their method applies only to the case where the total number
of processors is a fixed constant. Later their results were generalized in [FJP01] to handle
weighted completion times and release times.

Very recently, our results for SMC on &+ 1-claw free graphs were improved in [K03], using
methods due to [CP196]. The approximation ratio for line graphs (bi-processor tasks) was

improved to 10, and for general k& the bound was improved to O(k). It is worth noting

that the [K03| paper uses exponentially large linear programs, which are solved with the
ellipsoid method. Our algorithm has the advantage of being a much faster combinatorial
algorithm. (In fact, we use a simple greedy algorithm). Moreover, it can be applied also in
an online setting (see Section 3.3).

Coffman et al. [CG'85] studied non-preemptive multicoloring of line graphs so as to
minimize the overall number of colors (or makespan), which arises in the data migration
problem. They showed that a class of greedy algorithms yields a 2-approximation and gave a
(2+¢€)-approximation for a version with more general resource constraints. A comprehensive
survey of other known results for scheduling dedicated tasks so as to minimize the overall
completion time is given in [BC100].

Few analyses have been done on the robust throughput measure. Hassin and Rubin-
stein [HR02] gave an optimal bound of v/2 for maximum (partial) weighted matching,
improving on the obvious bound of 2 for a greedy selection.

2 Approximating Sum Coloring of Interval and Comparabil-
ity Graphs

We consider algorithms for sum coloring on natural classes of graphs, and proceed to discuss
the less studied measure of robust throughput. In Sections 2.1-2.3 we give a parameterized
algorithm, ACS, and analyze its performance in terms of the sum coloring, robust through-
put, and chromatic number measures. In Section 2.4 we analyze the robust throughput of
two earlier algorithms, originally given for sum coloring.

2.1 An Algorithm Based on Finding k-Colorable Subgraphs

A common coloring strategy that often works well in practice is to iteratively color large
independent sets. If we can find maximum independent sets, this is the MaxIS algorithm
of |IBBH'98| which gives a 4-approximation for sum coloring. To improve on this idea, we
may look towards generalizations. Viewing independent sets as 1-colorable subgraphs, we
are easily led to the generalization of iteratively coloring maximum k-colorable subgraphs.

The algorithm schema ACS (Assign Color Sets) colors subgraphs in rounds; in round
1 it finds and colors a c;-colorable subgraph, where ¢y, ¢y, ... is a geometrically increasing
sequence. The rounds correspond to the iterations of the main loop of ACS.

ACS assumes as a subroutine an algorithm kIS(G,k) for finding a maximum k-colorable
subgraph, where k£ can be as large as the chromatic number of G. Such an algorithm can
be run recursively to obtain a k-coloring of the subgraph that it finds. Namely, if H, =
kIS(G, k), we can obtain H; = kIS(H; 1, 1), for i =k —1,k—2,...,1, with the color classes
being V(H;) — V(H;-1), for i = 1,...,k (here, Hy denotes the empty graph).

10

ACS(G, g,)
3+ 0; EZ' ~—0
while (G # 0) do
¢ =gt
Gi — le(G, Ci)
Color G; with colors 4; + 1,4; +2,...,¢; +¢;
G+ G—-G;
biy1 < 4 + ¢
141+ 1;
end
end

Figure 3: The coloring algorithm ACS

Given parameters ¢ > 1 and « € [0,1), we denote by ¢; = [¢"*®] the number of colors
used in round z; ¢; = ;'-_:%) ¢; is the number of colors used by ACS before round i.

In the course of the analysis of the algorithm, we shall determine the optimal choice of
the parameter ¢ for the optimization measures at hand. The parameter o will be chosen
uniformly at random from the interval [0, 1). This can be simulated deterministically within
any desired precision by trying all sufficiently closely spaced values in the range [0,1). The
MaxIS algorithm of [BBHT98| corresponds to the choice of ¢ = 1 and o = 0, i.e., in each
step a single independent set is extracted from the graph.

2.2 The Chromatic Sum of Algorithm ACS

In our analysis, we relate the quality of the algorithm’s solutions to the optimal solutions
via two intermediate functions. These functions fill the role of normalizing the color values
given by the two solutions, as if the colors assigned in each round contribute equally to the
objective function.

The following definitions are used throughout this subsection. We denote by 1, the
coloring produced by ACS, for a given fixed «. Let g, denote the round in which ACS colors
v. Formally, g : V' — IN is defined by g(v) = g, = i such that ¢; < 1o (v) < £;11. Let ¢(i)
denote the average of the colors used by ACS in round 4, or

$(i) =L + (ci +1)/2. (1)

Let opr(G) denote the optimal sum coloring of G. Let h : V. — IN be defined by
h(v) = hy, = i such that ¢;_1 < Yopr(v) < ¢;. For convenience, let ¢_; = 0. Note that

11

the quantities and functions gy, hy, ¢;, ¢; and ¢(i) are all functions of o and ¢, even if not
explicitly marked so.

We note that the average of the colors of the vertices colored in round ¢ is at most ¢(i).
This is because the color classes are non-increasingly ordered by the number of vertices
assigned that color. This is coded in the following lemma.

Lemma 2.1 SC(G, %) = X, Yal(v) < >, ¢(gv)

Intuitively, we expect ACS to have colored a vertex v by round h,, since v is within
the first ¢, color classes of the optimal solution, but not the first ¢;,_; classes. This is
substantiated, on average, in the following claim.

Lemma 2.2 }°, ¢(g9,) < >, (hy)

Proof: By the definition of ACS, it will have colored by round i at least as many vertices

as those that have an h-value at most ¢. That is, for s =0,1,...,

{v:go <t} = Hv:hy <} (2)
Name the vertices vy, v9,...,v, in non-decreasing order by g-values, and uj,us,...,u, in
non-decreasing order by h-values. Then, by (2), g(v;) < h(u;), for j =1,2,...,n, and since
¢ is monotone non-decreasing, ¢(gy;) < ¢p(hy;). The lemma now follows. O

In the next lemma we bound ¢(h,) by a closed form expression.
Lemma 2.3 Forq>1 and a >0, let f(q,k,a) = qk"'o‘[q%1 + 3]. Then, for anyv €V,

¢(hy) < f(g,hy,) +1/2 —q%/(qg — 1).

Proof: By definition,

BN
|
—

pk) =l +(ck +1)/2 = lg""] + " /2 +1/2

IN
x> .
- o

=0

.

k_l qk
—|+1/2

= flg k) +1/2—q%/(q—1).

q
= q%

12

We can now deduce a bound on the worst-case performance ratio of a deterministic form
of ACS.

Theorem 2.1 The performance ratio of ACS for sum coloring is at most q(1/(q—1)+1/2),
when a = 1.

Proof: Observe that
SC(G) = Z'L/)OPT(,U) > Zchv_l +1> thvil+a- (3)
v v v

When « > log,(q — 1)/2, Lemma 2.3 gives that ¢(h,) < f(g, hy,). It then follows from
Lemmas 2.1 and 2.2 that

SC(G,a) D @, hy,a) =D "t

1 1
ﬁ+§]' (4)

Combining (3) and (4), we find that the performance ratio is bounded by

sqa¢@__[1 1‘

<gl— 4 =
sc@) ~Ylq=1t3

When ¢ = 1 + /2, this is at most 3/2 + v/2 ~ 2.91. L]

To obtain a better performance ratio, we analyze the expected performance of ACS when
the parameter « is chosen uniformly at random from [0,1).

Lemma 2.4 For any q € (1,¢?],

qg+1
2Ingq

E[¢(hy)] < Yot (v),

for any v € V, where the expectation is over the random choices of «.
Proof: By the definition of h,, the color 1opr(v) of vertex v in the optimal solution satisfies
Chy—1 = thvilJraJ < thopr(v) < cp, = thUJraJ- (5)

Let us write ¢opr(v) = ¢%, i.e. © = log, opr(v). Since thopr(v) is integral, we have in fact
that
qhv71+a < q" = 1hopr(v) < qhv+a-

Let y, = hy + a — x and note that y, is in the range [0,1). We may write

Yy = (@ — z) mod 1.

13

The values 1opr(v) and z are fixed and independent of «. Thus, when « is chosen uniformly
at random from [0, 1), y, is also uniformly distributed in [0,1). The random variable ¢¥*
then has expected value

1 -1
E[q%"] :/ ¢ldt = a .
0 Ing
Hence,
—1
E[qhv-i-a] _ E[qhv-i-a—a:] = ql opr (v). (6)
ngq
By Lemma 2.3,

E[p(ho)] < E[f (g, ho,a)] +1/2 = E[¢*]/(q — 1) = E[f (g, v,)] + (1/2 = 1/Ing).
Thus, when ¢ < €2, then Ing < 2, and we obtain that
qg—1 [1
Ing |¢g—1

1+(q— 1)/2'

E[¢(hy)] < E[f(q, ho,)] < thopr(v) Ing

+ H = Yopr(v)
U

Theorem 2.2 Let g be the solution of Inxz = (x+1)/z, or approzimately 3.591. Then, the
expected performance ratio of ACS for sum coloring is at most q/2 < 1.796.

Proof: By Lemma 2.4, we get for this value of ¢ that

q+1

E[¢(hy)] < thopr(v) - an

= z/JOPT(U) : (I/2 < 1.796 topr (U)
Combining Lemmas 2.1 and 2.2, and using the linearity of expectation, we get that

E[SC(G,ACS] < Y E[p(hy)] < 1.796 thopr (v) < 1.796 SC(G).

O

Remarks Note that in our analysis we have only utilized the following obvious property
of algorithm ACS. After the i-th round, ACS has colored as many vertices as contained in
the first ¢; colors of the optimal solution. We can argue that our analysis is tight for such
restricted solutions. This would suggest that for general graphs, ACS would not perform
better than shown here.

For the classes of graphs we are most concerned here, especially interval graphs, this
is a non-optimally weak property. A tighter analysis would undoubtedly uncover better
performance of the algorithm, but just as it has proved hard to give a good analysis of
the MaxIS algorithm of [BBH™ 98] for interval graphs, such an analysis would require some
ideas that are not currently in play.

14

Derandomization We mentioned that ACS can be derandomized by trying sufficiently
close values for a. To substantiate this, we need to examine the smoothness of the perfor-
mance function.

Suppose that @ € [0,1) is the value for @ that minimizes the performance ratio of ACS
for sum coloring and let ¢ = @ + ¢, for some € > 0. Recalling that h, and ¢ depend on the
value of ¢, let us denote them as A{ and ¢“.

Observe that ¢; and h, are monotone with respect to the parameter «; thus, c? > %
and h% < hZ. Following the analysis of Lemma 2.3, we obtain that

o hg—1 o thg-l-ﬁ—l—eJ 1
PU(hy) =D 1T+ 5 T3
i=1
hg—1 o hZ+a 1
< q%(Z l¢] + % + 5)
i=1
= q“¢°(h}), (7)

even if the possible increase in g, is not considered. Set § = ¢° — 1, in which case ¢ =
log,(1 + d). Then, from (7)

do¢h(hd) < (1+06))] ¢*(hG)
(1+0)ED> ¢(hy)]
< (1+6)1.796 SC(G).

IN

Thus, it suffices to deterministically examine 1/log,(1 + d) =~ (log ¢)/d distinct values for «
to get within 1 + ¢ factor of the randomized guarantee.

Implications Since the analysis gave expected values for each vertex separately, the per-
formance ratio in Theorem 2.2 holds also for the vertex-weighted variant problem. Intu-
itively, we can view each weighted vertex as a compatible collection of unweighted vertices.

Corollary 2.3 ACS approzimates SC(G) within a factor of 1.796, even in the weighted case.

This improves on the previously best ratio known of 2 by Nicoloso et al. [NSS99], stated
for (unweighted) sum coloring interval graphs. This also yields a corollary for the preemptive
sum multicoloring problem. In [BHK 00|, a 4p-ratio approximation is obtained for graphs
where SC can be approximated within a factor of p. We thus obtain an improvement,
for graphs for which maximum size k-colorable subgraph is polynomial solvable, from the
previous 16-factor.

Corollary 2.4 pSMC is approximable within 4-1.796 =~ 7.184 on interval and comparability
graphs and their complements.

15

2.3 The Robust Throughput of Algorithm ACS
We proceed to analyze the throughput behavior of ACS.
Theorem 2.5 For any graph G, RT(G, o) < 1.45751. This holds also in the weighted case.

Proof: The offset parameter « is of no help here, and shall be set to 0. Further, for
simplicity, we look only at the case when ¢ = 2, which we have experimentally found to
give best results.

Let k be any natural number. Recall that 1, is the coloring output by ACS. We compare
the number of vertices found by ACS in the first k& color classes, given by Thr (1, k), to the
number of vertices in the first £ colors of an optimal solution, given by kc(G). To simplify
the notation in the calculations below, let A(k) = Thr(1q, k) and O(k) = ke(G).

Let m = [log k| denote the number of rounds. Recall that ¢; = 2! and ¢; = 2 — 1. The
set of vertices found by ACS then consists of the A(¢,,) vertices found in the first m — 1
rounds, and at least a (k — ¢,,)/k fraction of the vertices colored in the m-th round. The
analysis uses the following simple observation. Since in each round i, 0 <4 < m, ACS finds
a maximum c¢;-colorable subgraph, clearly, the number of vertices colored in round ¢ is at
least a ¢;/k-fraction of the vertices in O(k) that remained uncolored after round 7 — 1.

Altia) = A(6) > Z(O(k) = A()).
Rewriting, we get

Ok) = Altir1) < (1= T)(O(K) — A(8:)),

By induction, we have that

m—1 i
O) ~ Altn) < O) T[(1 - 2). (8)
1=0

In the last round, we count the number of vertices covered by ACS with the final &k — £,
colors. The fraction still not colored after that round amounts to
(k—(2m—-1))

Ok) ~ A(k) < (1 -+

NO(k) — A(lm),
and from (8), we get that
p AL e

O(k) — Alk) < O(k)=—— [[(1= 7). ©
1=0

By computational analysis, we find that the r.h.s. of (9) is maximized when k/2" ~ 1.3625,
converging to about 0.3139 O(k). This implies a performance ratio O(k)/A(k) < 1/(1 —
0.3139) = 1.4575 for the throughput of the coloring, for a given value k. Since this bound
is independent of k, we have derived a bound for RT(G, 1)), the robust throughput of ACS.

]

16

On graphs for which maximum size k-colorable subgraph is not polynomially solvable
but approximable within a p-factor, we easily obtain a 1.4575p ratio for robust throughput.
Finally, we can argue a bound on the number of colors used.

Theorem 2.6 The ezxpected number of colors used by ACS is at most ﬁx(G). When
q = e~ 2.718, this is at most e - x(G).

Proof: Let m be the final round of ACS, i.e. the minimal integer satisfying c,, = [¢""*] >

X(G). Since ACS finished in round m and not in round m — 1,
lg™] < x(G) < g,
which, since x(G) is integral, implies that
¢t <x(G) < g

Let z = log, x(G) and 0 = m + « — z. Thus, x(G) = ¢* = g™t for o € [0,1).
The total number of colors used by ACS is at most

m m+a—+1 r+o+1 1+o0
i q q q

> ¢t < = = x(G) - :

= q—1 q—1 q—1

Following the proof of Lemma 2.4, the expected number of colors used by ACS is at most

q q
El -1)= -1 q).
[¢°] q— 1X(G) lan(G)
Indeed, since E[¢°] < g, it also follows that in the worst case ACS uses fewer than
¢?/(qg — 1) - x(G) colors. B

We have seen that the same algorithm approximates all three measures: x(G), SC(G),
and robust throughput. The parameters used to obtain optimum values were not the same;
however, with judicious choices of the parameters, one can obtain colorings that approximate
simultaneously (in the expected sense) all the measures considered, as suggested in the
following result.

Corollary 2.7 ACS, with ¢ = 2, simultaneously approzimates robust throughput within an
expected factor of 1.4575, SC(G) within a factor of 2.164, and x(G) within a factor of 2.88.

17

2.4 The Robust Throughput of Two Earlier Algorithms
2.4.1 Algorithm MaxIS

The MaxIS coloring algorithm is the iterative greedy method that colors in each round a
maximum independent set, among the yet-to-be colored vertices. It was first considered
for sum coloring in [BBH"98|, where it was shown to give a 4-approximation. This was
shown to be the tight bound for this algorithm in [BHK99|. The ratio of 4 holds for graphs
where the mazimum independent set (IS) problem is polynomially solvable; this includes
e.g. all perfect graphs. When IS is a-approximable, MaxIS yields a 4a-approximation for
sum coloring.
For robust throughput, we obtain the following result.

Theorem 2.8 The performance ratio of MaxlS for robust throughput is e/(e — 1) ~ 1.58,
and that is tight.

Proof: Recall that a k-colorable subgraph in a graph G is a vertex subset S C V that can
be partitioned into k£ independent sets.

Let O(k) denote the cardinality of a maximum k-colorable subgraph H. Each inde-
pendent set colored by MaxIS contains at least 1/k fraction of vertices that remain in H.
Let I(i) denote the number of vertices in the first ¢ color classes found by MaxIS, where
I(0) = 0. Then, the number of vertices remaining after iteration ¢, ¢ > 1, is at most a
(k — 1)/k fraction of the number of vertices before this iteration, that is,

. 1 .
Ok) —1(2) = (1 =)(O(k) = I(i — 1)) (10)
Applying (10) recursively, we get that
1. 1.
O(k) —1(i) = (1 = £)"(O(k) = 1(0)) = (1 —) O(k)
Taking ¢ = k, we have
1
O(k) —I(k) < (1=)" O(k) < e~ O(k),
or)
I(k) > 2 0(k).
To show that the bound is tight, suppose that the optimal solution OPT consists of k
equi-sized color classes I,..., I, for some k > 1, and suppose that |I,| = k°, s > k, for

1 < /¢ < k. In the following we describe the structure of G that would allow MaxIS to select
in each step an independent set which contains 1/k of the remaining vertices in Iy, for all
1</¢<k.

18

We partition the vertices in Iy to (s + 1) subsets Ap1,...,Aps11. The size of Ay ; is

given by -
s(1._ 1\ji—

MMF=E@%%K—, (11)
for 1 <j <s,and |Ags41] = (k—1)°. The vertices in Ay ; are connected by edges to all the
vertices in Ay, p, m # £ and h # j; thus, the vertices B; = Ui?:lAg’j form an independent
set. Also, from (11) we have that |B;| = %7,13]_1
be connected in such a way that in iteration ¢, MaxIS can select all the vertices in B;

. Note that the vertices in A 411 can

plus a vertex in A; 41; therefore, the resulting IS is slightly larger than the size of each of
the remaining sets Ip,...,I;. This would make MaxIS select in each iteration 1/k of the
remaining vertices in Iy, 1 < £ < k.

Consider the end of iteration k. Then O(k) = |V| = k**1, while MaxIS still needs to
color

EStH(k — 1)F E—1

L —Ok)(——)"

vertices. For sufficiently large k, ((k — 1)/k)* is close to e~!. Hence, we get that I(k) —
e=ly| = <Lok). O

2.4.2 The algorithm of Nicoloso et al. for interval graphs

An algorithm of Nicoloso et al. [NSS99]| for sum coloring interval graphs starts by computing
G1,Gs,...,Gy (), where G; is a maximum ¢-colorable subgraph. They show that when G
is an interval graph and the G;’s are computed by a left-to-right greedy algorithm, then (a)
G; contains G;_1, and (b) the difference set G; — G;_1 is 2-colorable. Thus, the algorithm
colors G by coloring GG1 with the color 1, and coloring G; — G;_1 with 2 — 2 and 2¢ — 1, for
1> 1.

Nicoloso et al. showed that the performance of the algorithm for SC, and simultaneously
for chromatic number, was 2, and that it was tight. From this description of the algorithm,
it is easy to derive bounds on its performance for the robust throughput. Since, for each k&,
a maximum k-colorable subgraph is fully colored with the first 2k — 1 colors, a ratio of 2
follows for robust throughput.

Observation 2.9 The algorithm of [NSS99] attains a performance ratio of 2 for the robust
throughput of interval graphs (as well as sum coloring and chromatic number).

It should be fairly clear that these bounds on the performance of the algorithm cannot
be improved. They also crucially depend on special properties of interval graphs. Also, it
is not clear if these bounds hold when the algorithm is used on weighted graphs.

19

3 The npSMC problem on (k + 1)-claw free graphs

In this section we give an approximation algorithm for npSMC on k + 1-claw free graphs. As
noted earlier, one application of this result for constant k is an O(1)-ratio approximation
for the dedicated task scheduling problem P|fix;| > C; with |fix;| = k. Note that we place
no constraints on the number of machines in the dedicated task scheduling problem, which
can be arbitrarily fixed or unbounded. The constraint is only that the number of machines
required by a given job is at most k.

3.1 Algorithm SG

Let G be a given k + 1-claw free graph, and let 8 be a parameter dependent on %k to be
determined later. Informally, our strategy is the following. We allocate z'(v) = (84 1)z (v)
colors to each vertex v, or 6 + 1 times more than required. We constrain this allocation so
that the last z(v) colors be contiguous, as they will form the actual set of colors assigned
to v. We give higher priority to vertices with small z(v) over vertices with larger z(v). The
allocation is performed one color at a time to a maximal independent set of vertices that
have higher priority than others, either because they are shorter jobs, or because they have
become active. Observe that the independent set is maximal only in the graph induced by
the collection of not yet fully colored vertices. Active vertices are those v that have received
at least Sxz(v) + 1 colors (but fewer than (5 + 1)z(v)), and thus must receive a contiguous
set until fully allocated.

We assume that all color requirements are different, since ties can be broken in a fixed but
arbitrary way. Thus, the selected independent set I satisfies two constraints: (i) I contains
all currently active vertices (i7) if a not fully colored vertex v does not participate in the
independent set it either has an active neighbor, or it has a neighbor in the independent set
with strictly smaller color requirement.

The logic for allocating an additional (84 1)z(v) colors is to build a buffer so that a long
job does not accidentally become active and delay many short jobs for a long time. This
way, all the neighbors of v have fair chance to be colored to completion before v becomes
active.

SG(G)
1. j+« 1.

2. while G is not empty do

a) I; < all currently active vertices
J y
(b) while there exists a vertex with no neighbor in I; do

i. Let v be a vertex of minimum z(v) among those that
have no neighbors in I; (and not in I; themselves)

20

il Ij — Ij U {U}
(c) Assign color j to the vertices in set I}, decrease by 1
their color requirements in G.

(d) Update active vertices, and delete fully colored vertices from G.
(&) j g+l

3. The last x(v) colors allocated to v form the coloring of v in the npSMC solution.

See Figure 4 for an illustration of the algorithm.

‘ q@® 2@ ‘
q® z@

‘ q@® z @ ‘
q@® z@®

‘ q@® 2@ ‘
ve we®

Figure 4: The first 6 independent sets selected by the algorithm. The graph is 3-claw free.
Thus, § = 4. The algorithm allocates (6 + 1)z(q) = 5 colors to ¢, and 10 to z. At round
5, q becomes fully colored and so v takes its place in I5. Since z is not active yet, w which
has a lower color requirement is intersected into the sixth independent set.

3.2 Analysis of SG

We use in the analysis the following notation. Throughout this section, fix some optimum
solution, OPT, for the npSMC instance. A round consists of one iteration of the outer while
loop of SG. Namely, a round is the process of choosing the next I;. The first round is 1.
Observe that the vertices included in /; (namely, in the independent set of round 7) have j
as one of their assigned colors.

A vertex is smaller (larger) than its neighbor if its color-requirement is. Let N(v) be the
set of neighbors of v. The set of smaller (larger) neighbors of v is denoted Ny (v) (N;(v)). Let

21

O, (respectively, O and O') denote the collection of neighbors of v (respectively, smaller
and larger neighbors of v) colored before v in OPT. Similarly, let A,, A and A3 be the
vertices in N (v), respectively, colored before v by algorithm SG, colored before v by SG and
belonging to N;(v), and colored before v by SG and belonging to N(v).

A not fully colored vertex is either selected, or delayed in a given round. It is selected if
placed in the current independent set, in which case it is either active or paying. A vertex
is active if it was given at least Sz (v) + 1 colors. Thus, this vertex needs less than z(v)
additional colors (to get to (8 + 1)z(v).) Active vertices are always inserted into the next
independent set until they are fully colored. Thus, the vertices of I; that are not active are
paying vertices.

The vertex can either have a good delay in a round, if it has a smaller selected neighbor,
or a bad delay, if it is delayed by a larger active neighbor.

We summarize this in the following fact. Let I be the current chosen independent set
and I, the set of active vertices, necessarily contained in 1.

Fact 3.1 In any given round, exactly one of the following holds for a given vertex v:
1. Good delay: I N Ny(v) #0
2. Bad delay: I, N Ny(v) # 0, and I N Ny(v) =0

3. Selected: v is paying or active.

Let dy(v) (dp(v)) denote the total good (bad) delay of v under SG. Fact 3.1 implies that
the final color of v is given by fsq(v) = (8 + 1)z (v) + dy(v) + dy(v). We proceed to bound
separately the good and bad delays. Define

Q(G):Z Z z(w) = Z min(z(v), z(w)).

vV weNs(v) vweE(G)

The quantity Q(G) provides an effective lower bound on the preemptive multicolor sum,
and thus also on the contiguous one. Let S(G) = >, cy z(v).

Lemma 3.1 Q(G) < k- (pSMC(G) — S(G)).

Proof: Recall that O, are the neighbors of v colored before v in OPT. Define the residual
demand of O, as follows. The initial residual demand of O, is D) = 3,0, z(u). Let
D! be the residual demand of O, vertices after color i of OPT. Namely, let x;(u) denote
the number of colors assigned to u be the first ¢ color-classes in OPT (colors 1 to %), then
Dy = Yo, (@(u) - zi(u)).

We note that D’*! > D! —k, as for every 1 < j < i at most k of the neighbors of v
belong to j color-class in OPT. This follows because the graph is (k 4+ 1)claw free. Since

22

the optimum does not start coloring v before the residual demand of O, is 0, the minimum
color assigned to v by OPT is at least DJ/k, and pSMC(G) > S(G) + X, DY/k. Now, as
every edge e = (u,v) either contributes z(u) to DY or z(v) to DY we have: ", DI > Q(G).
The required lemma, follows.]

Lemma 3.2 For any graph G, 3, dg(v) < (B +1) - Q(G).

Proof: A smaller neighbor u of v is selected for at most (8 + 1) - (u) time units, and can
delay v by at most that much. Thus, d¢(v) < (84 1) Xyen, @) z(w). (

Claim 3.2 Consider v and round j so that v € I;. Then at most k — 1 of the vertices of
AL can be paying (namely selected but not active) at that round.

Proof: By definition, if the round is good then I; N AJ # 0. Thus, |I; NAL| < k—1 because
the graph is (k + 1)claw free. In particular, at most k& — 1 of the Al vertices can be paying.
In addition, if the delay is bad, by definition I; must contain an active vertex u that
belongs to AL. Tt follows from the fact that the graph is (k + 1)-claw free that at most &k — 1
Al vertices can be paying. L]
Lemma 3.3 For any vertex v, dy(v) < k=1 dg(v).
B—k+1
Proof: The idea in the proof is to find a large collection of “events" all of which must occur
in the dy(v) 4 dy(v) rounds in which v is delayed.

These events are defined as follows. Observe that by definition, each round that has a
bad delay for v has some u € A} active at that round. Before u became active, there must
have been (- z(u) rounds in which u was paying; this is because u became active. Thus
the collection of events are all the times vertices of A were paying. Note that every such
event must occur in the dy(v) + dp(v) rounds that v is delayed. Indeed, by the definition of
Al v must be delayed as long at least one vertex in Al still need to pay.

Let Sy = Y ea, z(v), Sh = Y ucat ©(v), and S§ = 37,45 2(v). The total number of
times that some vertex in Af} was paying is exactly (3 - Sé. By Claim 3.2 the total delay of
v, dg(v) + dy(v) is at least 3-S'/(k — 1); this gives the total pay required by Al vertices
divided by the number of vertices simultaneously paying.

By the definition of AL, dj(v) is at most S!. In summary we have that dy(v) + dp(v) >
Bdp(v)/(k — 1), and the lemma follows.]

Theorem 3.3 SG approzimates npSMC(G) on k+1-claw free graphs by a factor of 2k(2k—1).
In particular, it achieves a factor 12 on line graphs and proper interval graphs.

23

Proof: Let = 2(k —1). Let SG(G) denote the multicolor sum of our algorithm on G.
Combining Lemmas 3.2, 3.3 and 3.1, we have that

k—1
B+1DSG)+(B+1)1 +m

= (2k —1)S(G) +2(2k — 1)Q(G)
< 2k(2k — 1)pSMC(G) — (2k — 1)2S(G).

SG(G)

IN

)Q(G)

O

As mentioned before, among the various classes of graphs this result holds for are line
graphs, proper interval graphs and the intersection graphs of families of unit circles.

Note that in the proof of Theorem 3.3 the npSMC optima is bounded by a constant times
the pSMC optima. Therefore, the proof of Theorem 3.3 implies the following relation of the
optimum preemptive and non-preemptive solutions, that was not known before.

Corollary 3.4 For a k+ 1-claw free graph G, k a constant, npSMC(G) = O(pSMC(G)).

Proof: Note that since SG finds a non-preemptive coloring, npSMC(G) < SG(G), while by
(12), SG(G) < 2k(2k — 1)pSMC(@). 0

We observe that the number of colors used by our algorithm is within a constant factor
of optimal. Although the bound obtained is inferior to the best algorithms designed for that
purpose, it is interesting that we get a simultaneous approximation of both the chromatic
number and sum multicoloring measures.

Theorem 3.5 SG approzimates the (multi-)chromatic number (i.e. makespan) x(G,x) of
k + 1-claw free graphs by a factor of 2k(2k — 1). In particular, it achieves a factor 12 for
line graphs.

Proof: Let v be a vertex so that z(v)+ 3¢, (v) (1) is maximum. In any legal coloring, at
each round only at most k of the neighbors of v can be colored. Whenever v is selected, no
neighbor of v can be paying. Thus we have that x(G,z) > 2(v) + X e n, (») #(v)/k. In turn,
previous analysis gives that for every u, dy(u) < dg(u), and dg(u) < (2k—1) 3o en, () 2(W)-
Thus, fsg(u) < z(u) +2(2k — 1) 3 yen, () Z(w). The lemma follows from the choice of v.

0

3.3 Extensions

Vertex weights We now show that our result can be extended to handle vertex weights.
Jobs may have different priorities, which are reflected in the nonnegative weight w(v) at-
tached to each vertex v. The objective function becomes the sum of weighted final colors,

24

>, w(v) f(v). Straightforward modifications of the approach of Section 3.1 yield the same
bound; the unweighted case was the one presented in detail just for the simplicity of ex-
position. Following [BHK00], we change the priority order to follow the ratio of color
requirement to the weight: v is preferred over u iff z(v)/w(v) < z(u)/w(w). Update the
definition Ng(v) accordingly. Redefine Q(G) as

QG) =) w) Y =z(w) =) min(w()z(u),w(w)z(v)).

veV wE N, (v) wekl

Lemma 3.3 now follows unchanged, Lemma 3.2 holds with d4(v) modified to w(v)d,(v),
and Lemma 3.1 was argued in [BHK'00]. Then we obtain the same ratio of 2k(2k — 1) by
Theorem 3.3.

Release times We now elaborate on the job scheduling application. Job scheduling is
typically done dynamically, i.e., jobs arrive to the system at different times. The release
time of a job, v, is a lower bound on the first color that can be assigned to v. An easy
consideration shows that this has no detrimental effects on the performance of our algorithm,
given its iterative nature. Our algorithm is online, in that it considers only jobs available
at the given time, where “colors” are equivalent to “time steps”.

A seemingly more difficult optimization measure (radically different than the sum of
finishing times) is the the objective function of the flow time. In this measure our goal is to
minimize the sum of completion time less the sum of release time. This seemingly difficult
problem is open, even for sum colorings. Only the exact algorithms for trees and partial
k-trees [HK99| are known to apply to this case.

Acknowledgments

We thank two anonymous referees for their helpful comments on the paper.

References

[ABT00] F. Afrati, E. Bampis, A. Fishkin, K. Jansen, and C. Kenyon. Scheduling to
minimize the average completion time of dedicated tasks. In Proc. of 20th
Foundations of Software Technology and Theoretical Computer Science, Lec-
ture Notes in Computer Science Vol. 1974, pages 454-464, 2000.

[BCT00] E. Bampis, M. Caramia, J. Fiala, A. Fishkin, A. Iovanella. Scheduling of
Independent dedicated multiprocessor jobs. In Proc. of 13th Annual Interna-
tional Symposium on Algorithms and Computation (ISAAC), Lecture Notes in
Computer Science Vol. 2518, pages 391-402. 2002.

25

[BG*01]

[BK9S)

|[BBHT98]

[BF96)

[B-98]
[BH94]

[BHK99]

[BHK*00]

[BKRI6|

[CP+96]

[CG*85]

[FMW97|

[F95]

A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the Throughput
of Multiple Machines in Real-Time Scheduling. SIAM Journal on Computing,
31:331-352, 2001.

A. Bar-Noy and G. Kortsarz. The minimum color-sum of bipartite graphs.
Journal of Algorithms, 28:339-365, 1998.

A. Bar-Noy, M. Bellare, M. M. Halld6rsson, H. Shachnai, and T. Tamir. On
chromatic sums and distributed resource allocation. Information and Compu-
tation, 140:183-202, 1998.

H.L. Bodlaender and B. de Fluiter. Parallel Algorithms for Series Parallel
Graphs. 4th European Symposium on Algorithms, Lecture Notes in Computer
Science Vol. 1136, pages 277-289, 1996.

P. Brucker. Scheduling Algorithms. 2nd ed., Springer, Heidelberg, 1998.

D. Bullock and C. Hendrickson. Roadway traffic control software. IEEE Trans-
actions on Control Systems Technology, 2:255—-264, 1994.

A. Bar-Noy, M. M. Halldérsson, G. Kortsarz. Tight Bound for the Sum of a
Greedy Coloring. Information Processing Letters 71, 135-140, 1999.

A. Bar-Noy, M. M. Halldérsson, G. Kortsarz, H. Shachnai, and R. Salman.
Sum Multicoloring of Graphs. Journal of Algorithms, 37(2):422-450, November
2000.

P. Brucker and A. Krimer. Polynomial algorithms for resource-constrained
and multiprocessor task scheduling problems. Furopean Journal of Operational
Research, 90:214-226, 1996.

S Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein and
J. Wein. Improved Scheduling Algorithms for Minsum Criteria. Proceed-
ings 23rd International Colloguium on Automata, Languages and Programming
(ICALP), pages 875-886, 1996.

E. G. Coffman, Jr., M. R. Garey, D. S. Johnson and A. S. LaPaugh. Scheduling
File Transfers. SIAM J. Comput. 14:744-780, 1985.

S. Felsner, R. Miiller and L. Wernisch. Trapezoid Graphs and Generalizations,
Geometry and Algorithms. Discrete Applied Mathematics, 74:13-32, 1997.

C. Flotow. On Powers of m-Trapezoid Graphs. Discrete Applied Mathematics,
63:187-192, 1995.

26

[F80]

[FIPO1]

[GIH02]

|GS0]

[GO1

[HK99]

[HK+99)

[HR02|

797]

[KO03]

[K89]

A. Frank. On Chain and Antichain Families of a Partially Ordered Set. J.
Combinatorial Theory, Series B, 29:176-184, 1980.

A. V. Fishkin and K. Jansen and L. Porkolab. On minimizing average weighted
completion time of multiprocessor tasks with release dates. Proceedings 28th In-
ternational Colloquium on Automata, Languages and Programming (ICALP),
2001, pages 875-886.

K. Giaro, R. Janczewski, M. Kubale and M. Malafiejski. A 27/26-
approximation algorithm for the chromatic sum coloring of bipartite graphs.
Proceedings of the 5th International Workshop on Approximation Algorithms
for Combinatorial Optimization, 2002, pages 135-145.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980.

M. Gonen. Coloring Problems on Interval Graphs and Trees. M.Sc. Thesis,
School of Computer Science, The Open Univ., Tel-Aviv, 2001.

M. M. Halldérsson and G. Kortsarz. Multicoloring Planar Graphs and Partial
k-trees. In Proceedings of the Second International Workshop on Approxima-
tion algorithms (APPROX ’99). Lecture Notes in Computer Science Vol. 1671,
Springer-Verlag, August 1999.

M. M. Halldé6rsson, G. Kortsarz, A. Proskurowski, R. Salman, H. Shachnai,
and J. A. Telle. Multi-Coloring Trees. In Proceedings of the Fifth International
Computing and Combinatorics Conference (COCOON), Tokyo, Japan, Lecture
Notes in Computer Science Vol. 1627, Springer-Verlag, July 1999.

R. Hassin and S. Rubinstein. Robust Matchings and Maximum Clustering.
SIAM Journal of Discrete Mathematics, 15:530-537.

K. Jansen. The Optimum Cost Chromatic Partition Problem. Proc. of the
Third Italian Conference on Algorithms and Complexity (CIAC ’97). Lecture
Notes in Computer Science Vol. 1203, pages 25-36, 1997.

Y. A. Kim. Data Migration to Minimize the Average Completion Time, Proc.
14th Symposium on Discrete Algorithms (SODA), Jan 2003.

E. Kubicka. The Chromatic Sum of a Graph. PhD thesis, Western Michigan
University, 1989.

27

[K96]

[KKK89]

[MBT95]

[NSS99]

[W97]

[YG87]

M. Kubale. Preemptive versus non preemptive scheduling of biprocessor tasks
on dedicated processors. Furopean Journal of Operational Research 94:242—
251, 1996.

E. Kubicka, G. Kubicki, and D. Kountanis. Approximation Algorithms for
the Chromatic Sum. In Proceedings of the First Great Lakes Computer Sci-
ence Conference, Lecture Notes in Computer Science Vol. 1203, pages 15-21,
Springer-Verlag, July 1989.

Marathe, M. V., Breu, H., Hunt III, H. B., Ravi, S. S., and Rosenkrantz, D. J.
Simple heuristics for unit disk graphs. Networks, 25:59-68, 1995.

S. Nicoloso, M. Sarrafzadeh and X. Song. On the Sum Coloring Problem on
Interval Graphs. Algorithmica, 23:109-126,1999.

G. Woeginger. Private communication, 1997.

M. Yannakakis and F. Gavril. The maximum k-colorable subgraph problem
for chordal graphs. Inform. Proc. Letters, 24:133-137, 1987.

28

