
Sum Coloring Interval and k-Claw Free Graphs withApplication to Scheduling Dependent Jobs�Magnús M. Halldórssony Guy Kortsarzz Hadas ShachnaixMarch 8, 2003AbstractWe consider the sum coloring and sum multicoloring problems on several fundamen-tal classes of graphs, including the classes of interval and k-claw free graphs. We givean algorithm that approximates sum coloring within a factor of 1:796, for any graphin which the maximum k-colorable subgraph problem is polynomially solvable. In par-ticular, this improves on the previous best ratio known of 2 for interval graphs. Weintroduce a new measure of coloring, robust throughput, that indicates how `quickly'the graph is colored, and show that our algorithm approximates this measure withina factor of 1.4575. In addition, we study the contiguous (or non-preemptive) summulticoloring problem on k-claw free graphs. This models, for example, the schedulingof dependent jobs on multiple dedicated machines, where each job requires the exclusiveuse of at most k machines. Assuming that k is a �xed constant, we obtain the �rstconstant factor approximation for the problem.1 IntroductionWe consider the problem of graph multicoloring, with the objective of minimizing the sumof highest colors. A multicoloring of a graph assigns to each vertex a collection of positiveintegers (colors) so that the sets of colors assigned to a given pair of adjacent vertices aredisjoint. The sum multicoloring of an assignment is the sum over all vertices v of the highestcolor assigned to v. We need to �nd an assignment of colors to the vertices, such that sum�A preliminary version of this paper appeared in Proc. of the Fourth International Workshop on Approx-imation algorithms (APPROX '01). LNCS #2129, Springer-Verlag, pp. 114�126.yDepartment of Computer Science, University of Iceland, IS-107 Reykjavik, Iceland. E-mail: mmh@hi.is.zDepartment of Computer Science, Rutgers University, Camden, NJ. E-mail: guyk@crab.rutgers.edu.xContact author: Department of Computer Science, The Technion, Haifa 32000, Israel.E-mail: hadas@cs.technion.ac.il. Currently on leave at Bell Laboratories, Lucent Technologies, 600Mountain Ave., Murray Hill, NJ 07974. 1

multicoloring is minimized. This is known as the sum multicoloring (SMC) problem (see, e.g.[BHK+00]). In the special case where each vertex is assigned a single color, our objectiveis to minimize the total sum of the colors assigned to the vertices, or the sum coloring ofthe assignment. This is known as the sum coloring (SC) (or chromatic sum) problem (see,e.g., [BK98, BHK99, KKK89, NSS99]).The sum coloring and summulticoloring problems often model scheduling jobs which aredependent because they utilize the same non-sharable resource. The exclusivity requirementcan be captured by a graph of the pairwise con�icts; the vertices of the graph represent thejobs, and an edge in the graph between two vertices represents a dependency or con�ictbetween the two corresponding jobs, which forbids scheduling these jobs at the same time.Assuming that jobs may have arbitrary integral execution times, a schedule of the jobscorresponds to a multicoloring of the graph, where each vertex is assigned as many colorsas the processing time of the corresponding job. The large body of research on coloringvarious classes of graphs therefore translates to statements about the qualities of schedules.We elaborate on that in Section 1.1.1.1 De�nitionsColorings Let G = (V;E) be a undirected graph, possibly with vertex weights. Wedenote by n the number of vertices. A coloring of a graph is an assignment : V (G)! INof positive integers to the vertices such that adjacent vertices are assigned di�erent colors.The vertices receiving the same color then form an independent set and are called a colorclass.The chromatic number of G, denoted by �(G), is the minimal number of colors requiredfor coloring the vertices in G properly. The chromatic sum of is the sum of the colorsassigned to the vertices, or SC(G;) =Pv (v). The sum coloring problem is that of �ndinga coloring of a given graph G with the minimum chromatic sum SC(G). We also denote bySC(G;Alg) the chromatic sum of the coloring found by a given algorithm Alg.In the maximum size k-colorable subgraph problem we seek a k-colorable subgraph ofmaximum cardinality, i.e. an induced subgraph whose chromatic number is at most k. Themaximum size k-colorable subgraph problem is solvable, for example, on interval graphs,by a greedy algorithm [YG87], on chordal graph with constant maximum clique size (ork-trees), and on comparability graphs and their complements [F80] (see below the precisede�nitions of these classes). This holds also for the vertex-weighted problem, where weseek a k-colorable subgraph of maximum total weight. We denote by kc(G) the size of themaximum k-colorable subgraph in G.The throughput of a partial coloring is the number of vertices colored. The maximumthroughput possible with k colors is kc(G), the size of a maximum k-colorable subgraph.Given an algorithm that �nds a coloring with color classes I1; I2; : : :, we can ask, for any2

given k, for the throughput of the �rst color classes, Thr(; k) = Pki=1 jIij, and comparethat to the optimal throughput after k colors, kc(G). We say that the throughput of acoloring is robust, if it is good for each value of k simultaneously. The robust throughput(RT) measure of a coloring compares the throughput to the optimal throughput for eachcolor bound k, and takes the maximum. That is,RT(G;) = maxk kc(G)Thr(; k) :The robust throughput problem is to �nd a coloring that minimizes RT(G;).Multicolorings An instance of a multicoloring problem is a pair (G;x), where G = (V;E)is a graph, and x is a vector of color requirements (or lengths) of the vertices. For a giveninstance, we denote by p = maxv2V x(v) the maximum color requirement. A multicoloringof G is an assignment : V ! 2N , such that each vertex v 2 V is assigned a set of x(v)distinct colors, and adjacent vertices receive non-intersecting sets of colors.Taking the cue from the relation to scheduling (see below), a multicoloring is callednon-preemptive if the colors assigned to each vertex are contiguous, i.e. if for any v 2 V ,(maxi2 (v) i)� (mini2 (v) i) + 1 = x(v). Otherwise, it is preemptive.Denote by f (v) = maxi2 (v) i the largest color assigned to v by a multicoloring . Thesum multicoloring (SMC) of on G isSMC(G;) = Xv2V f (v) :The SMC problem is to �nd a multicoloring , such that SMC(G;) is minimized; the non-preemptive version is npSMC. When all the color requirements are equal to 1, the problemreduces to the sum coloring (SC) problem.Relationships of colorings and schedules As mentioned above, many scheduling prob-lems can be represented as graph coloring problems. Traditionally, such problems arise inrelation with timetabling. In general, they occur when jobs (represented by vertices in thegraph) may con�ict due to the fact that they need exclusive use of some resources. Whenthe jobs are of di�erent lengths (under some discrete measure), we obtain a multicoloring in-stance; when the lengths are identical, we obtain an ordinary graph coloring instance. Whenjobs must be run without interruption, we have a non-preemptive instance, and otherwisepreemptive.There are several measures that are considered for schedules. One is the makespan,or the time from the start to �nish; this corresponds to the number of colors used in the(multi)coloring. Another measure is the sum of completion times of the jobs, or equivalently3

the average completion time. This corresponds to, and is a primary motivation for, the sum(multi)coloring measure.The robust throughput measure that we study here was previously studied in the areaof combinatorial optimization (see, e.g., [HR02]). Generally, robust throughput examinesthe overall amount of �work� done until any given moment, throughout the execution of analgorithm. It may be viewed as a stronger version of the traditional throughput measurethat is commonly studied in real-time scheduling (see, e.g. [BG+01]).Graph classes We de�ne below the graph classes for which we derive our results.Comparability graphs: An undirected graph is a comparability graph if it admits atransitive orientation, namely, it is possible to give a single direction to every edge (a; b) 2 Eso that if (a; b) is directed from a to b and (b; c) is directed from b to c, then (a; c) (existsand) is directed from a to c. Co-comparability graphs are the complements of comparabilitygraphs.A special class of comparability graphs is the class of permutation graphs. A permutationgraph is de�ned in terms of a permutation of the numbers f1; : : : ; ng. The matching diagramis obtained by writing the sequence of integers in a horizontal row and the sequence of itspermuted values in another row below it, and by drawing n straight line segments betweenthe two 1's, the two 2's, etc. Given some permutation �, the graph G(�) corresponding to� has vertices f1; : : : ; ng and i; j are joined by an edge in G(�) if their lines intersect. Agraph is called a permutation graph if there exists a permutation � such that G = G(�). Itis known that a graph G is a permutation graph if and only if G is both comparable andco-comparable (c.f. [G80].)Interval graphs: A graph G is an interval graph if its vertices can be mapped to inter-vals on the real line so that two vertices are adjacent in G if and only if their correspond-ing intervals intersect. It is well known that interval graphs are co-comparability graphs(c.f. [F95, FMW97]). A more general class of intersection graphs of geometric objects aretrapezoid graphs. They generalize to m-trapezoid graphs which form a proper hierarchy ofco-comparability graphs, with m = 0 corresponding to interval graphs, m = 1 correspond-ing to trapezoid graphs, and m = 1 corresponding to co-comparability graphs. Refer to[F95, FMW97] for de�nitions of these graph classes.(k + 1)-claw free graphs: A graph G is (k + 1)-claw free if it does not contain the starK1;k+1 as an induced subgraph. Claw-free graphs are those that are 3-claw free. Examplesof k + 1-claw free graphs include� Line graphs: The line graph L(G) is the edge-adjacency graph of a graph G(V;E).Namely, the edges of G are the vertices of L(G), and two vertices of L(G) are joinedin E(L(G)) if the two corresponding edges share a vertex in G. Any line graph is aclaw-free graph. 4

� Proper interval graphs: These are intersection graphs of a family of intervals, so thatno interval in the family is contained in another interval. Clearly, a proper intervalgraph is claw free.� Unit circle intersection graphs: In these graphs the vertices correspond to unit cir-cles in the plane and two vertices are joined by an edge if the two correspondingcircles intersect. It is known that unit circle intersection graphs are 6-claw free (see,e.g., [MB+95]).The graph class that is most relevant for our applications is the class of intersectiongraphs of hypergraphs of sets of size at most k; such hypergraphs can be represented alsoas directed bipartite graphs of maximum out-degree k. Formally, consider a bipartite graphB(V1; V2; E) so that all edges cross from V1 to V2. Let deg(v) denote the number of neighborsof v and assume that maxv2V1 deg(v) = k. Form a new graph called the intersection graphG of B so that its vertices are the V1 vertices, and two vertices u; v 2 V1 are adjacent in G ifand only if they have a mutual neighbor in B. Observe that the neighborhood in G of everyvertex v can be formed as a union of at most k cliques. Thus, the graph G is (k + 1)-clawfree.This example is of particular importance as it can represent a scenario of dedicatedtasks. The collection of jobs is represented by V1; V2 represents the processors and there isan edge from v 2 V1 to w 2 V2 if the job v requires the use of the processor w. The above(k + 1)-claw free example occurs if every job requires the use of at most k processors.Partial k-trees: A graph is a k-tree if it can be constructed incrementally, so that in eachiteration a new vertex is added and made adjacent to a clique of size k already in the graph.A partial k-tree is a subgraph of a k-tree. Trees are partial 1-trees. Outerplanar graphs,namely, planar graphs that can be embedded in the plane so that all the vertices lie on theexterior face, are partial 2-trees. Series parallel graphs (see e.g., [BF96]) are partial 2-treesas well. Another example is chordal graph, which does not contain a cycle of length 4 (ormore) as an induced subgraph. If, in addition to being chordal, the graph has maximumclique size k, then the resulting graph is a partial k-tree.The above notions are closely related. For example, a split graph is a graph that can bedecomposed into a clique and an independent set with arbitrary edges between them. It iseasy to see that a split graph is chordal. A large group of split graphs are also comparabilitygraphs (see [G80]).1.2 Our resultsThe current paper has two parts. In the �rst part (Section 2), we discuss the sum color-ing problem. Our main result is an approximation algorithm with a performance ratio of1:796 for SC. The algorithm runs in polynomial time on graphs for which the maximum5

induced k-colorable subgraph problem is solvable in polynomial time. This class includescomparability graphs and their complements (co-comparability graphs), which in turn in-clude interval, trapezoid, and permutation graphs. They also include partial k-trees. Ofparticular interest is the class of interval graphs, for which we improve the best previouslyknown approximation ratio of 2 [NSS99] for sum coloring. Our algorithm approximates alsothe chromatic number and the robust throughput of a given graph, the former within factor2:718 and the latter within factor 1:4575.In the second part of the paper (Section 3), we discuss the sum multicoloring problem.Our main result is a 2k(2k�1)-approximation for (k+1)-claw free graphs, and in particular12-approximation for line graphs. The special case of line graph has important applications,e.g, in biprocessor scheduling and data migration (see below). The previously best ratioknown for this problem was logn [BHK+00].1Among other applications our approximation encompasses dedicated processor schedul-ing, where the number of processors required by any job is at most k. We elaborate on thatin Section 1.4. The result is extended in Section 3.3 to yield the same approximation ratiofor the problem of minimizing the weighted sum of completion times of dedicated tasks withrelease times, denoted in standard scheduling notation as P j�xj ; rj jPj wjCj. However, we�rst discuss the unweighted case without release times, so as to make the exposition simpler.1.3 Applications of the sum coloring problemWe list below some applications that give rise to the sum coloring problem in (co-)comparabilitygraphs and intervals graphs.Train scheduling: Consider a railroad crossing, in which a set of n railroads, numbered by1; : : : ; n, intersect, and exchange their relative locations; that is, the i-th railroad becomesthe �(i)-th railroad after the intersection, where � is a permutation of (1; : : : ; n) (see inFigure 1). The goal is to schedule the arrivals of the trains to the intersection, such thattwo con�icting trains cross at distinct time intervals. When our objective is to minimizethe average time that it takes for the trains to cross the intersection, we get an instance ofthe SC problem on permutation graph.VLSI design: In the wire-minimization problem [NSS99], terminals lie on a single verticalline (each terminal is represented by an interval on this line), and with unit spacings are ver-tical bus lanes. Pairs of terminals are to be connected via horizontal wires on each side to avertical lane, with non-overlapping pair utilizing the same lane. With the vertical segments�xed, the wire cost corresponds to the total length of horizontal segments. Numbering the1Unless speci�ed otherwise, all the logarithms in the paper are to the base of 2.6

(a) (b)
r1 r2 r3 r4 r5 r1 r2r5 r3r4

Figure 1: A train scheduling example: (a) a 5-railroad crossing; (b) The intersection graphof the railroad system.lanes in increasing order of distance from the terminal line, lane assignment to a termi-nal corresponds to coloring the terminal's interval by an integer. The wire-minimizationproblem then corresponds to sum coloring an interval graph.Storage allocation: Storage allocation in a warehouse involves minimizing the total dis-tance traveled by a robot [W97]. Goods are checked in and out at known times; thus, goodsthat are not in the warehouse at the same time can share the same location. We representeach of the goods by an interval on the line, which gives the time interval in which it isavailable at the warehouse. Numbering the storage locations by their distance from thecounter, the total distance corresponds to sum coloring the intervals formed by the goods.Session scheduling on a path: In a path network, pairs of nodes need to communicate,for which they need use of the intervening path. If two paths intersect, the correspondingsessions cannot be held simultaneously. In this case, it would be natural to expect thesessions (i.e., �jobs�) to be of di�erent lengths, leading to the sum multicoloring problemon interval graphs.1.4 Applications of sum multicoloringInstances of sum multicoloring on (k + 1)-free graphs are derived mainly from applicationsthat involve resource constrained scheduling. Consider the following scenario that exempli-�es the problem.Example. Suppose that a set of jobs J1; : : : ; J6 is initiated in a distributed computingenvironment. Each of the jobs is available to run on a di�erent processor, however, the jobsshare accesses to a set of �les f1; : : : ; f5, stored on the network �le system. In particular,J1; J2; J5 and J6 require read/write operations in the �les f1; f2; f3 and f4 respectively. J3needs to copy data from f1; f2 to f5; J4 requires simultaneous reading of the contents of7

J1 J6J3 (a) (b)J3J4 J5J6J1 J1 J2 J5 J6J3J4 (c)J4J5J2 J2
Figure 2: Resource constrained scheduling (Example 1): (a) the con�ict graph; (b) Aschedule that minimizes overall completion time; (c) a schedule that minimizes sum ofcompletion timesf3; f4 into the �le f5. The execution time of J1; J2; J5; J6 is one unit, while J3; J4 require 2time units each. Note that each of the jobs requires an exclusive access to the corresponding�le/s throughout its execution. While we can schedule the jobs such that the latest comple-tion time is 4, the only schedule that minimizes average completion time (or, equivalentlythe sum of completion times) is the one that schedules the unit-length jobs �rst, using atotal of 5 time units. This is illustrated in Figure 2.Generally, in resource-constrained scheduling we are given a collection of n jobs of in-tegral lengths and a collection of resources. We assume that each job requires an exclusiveaccess to particular subset of the resources to execute. The resource-constrained schedulingproblem can then be modeled as a multicoloring problem on the con�ict graph. We ad-dress here the case where each task uses up to k resources. Hence, the con�ict graph is anintersection graph of a collection of sets of size at most k, and is thus k + 1-claw free.A natural example of a limited resource is processors in a multi-processor system. Inthe biprocessor task scheduling problem, we are given a set of jobs and a set of processors,and each job requires the exclusive use of two dedicated processors. We are interested in�nding a schedule which minimizes the sum of completion times of the jobs. In schedulingterms, this problem is denoted by P j�xj jPCj, with j�xjj = 2. In the special case of tworesources per task, such as the biprocessor task scheduling problem, the con�ict graph is aline graph.Another application of sum multicoloring of (k + 1)-free graphs is scheduling data mi-gration over a network, also known as the �le transfer problem (see, e.g., [CG+85, K03]).Suppose that the network is fully connected, and we have a set of �les f1; : : : ; fM ; each�le fi needs to migrate from a source si to a destination ti. During migration, fi requiresthe exclusive access to si and ti, for a prespeci�ed time interval; thus, fi and fj are incon�ict if fsi; tig \ fsj; tjg 6= ;. Our goal is to �nd a migration schedule that minimizes thesum of completion times, where the sum is taken over all �les. This translates to the sum8

multicoloring problem on the con�ict graph of the �les, which is a line graph.1.5 Related workThe sum coloring problem was introduced in [K89], and the sum multicoloring problem in[BHK+00]. The paper studies two variants of SMC. In the non-preemptive SMC (npSMC), werequire that the set of colors assigned to each vertex is contiguous, while in the preemptiveSMC (pSMC) we allow any proper coloring of G. Table 1 summarizes the known results forthese problems in various classes of graphs. New bounds given in this paper are shownin boldface. The last two columns give known upper bounds for preemptive and non-preemptive SMC. Entries marked with � follow by inference, either by using containment ofgraph classes (comparability and interval graphs are perfect), or by SC being a special caseof SMC. When omitted, [BBH+98] is the references for SC and [BHK+00] for SMC.SC SMCu.b. l.b. pSMC npSMCGeneral graphs � n1�� n= log2 n n= lognPerfect graphs 4 � 16 O(logn)Comparability 1.796 � 7.184 �Interval graphs 1.796 (2 [NSS99]) c > 1 [G01] � �Bipartite graphs 27=26 [GJ+02] c > 1 [BK98] 1.5 2.8Line graphs 2 NPC 2 12Partial k-trees 1 [J97] PTAS [HK99] FPAS [HK99]Planar graphs � NPC [HK99] PTAS [HK99] PTAS [HK99]Trees 1 [K89] PTAS [HK+99] 1 [HK+99]k + 1-claw free k + 1 k + 1 4k2 � 2kTable 1: Known results for sum (multi-)coloring problemsResource-constrained scheduling has been recently investigated in the literature (see,e.g., [BKR96, K96]). Kubale [K96] studied the complexity of scheduling biprocessor tasks.He also investigated special classes of graphs, and showed that npSMC of line graphs of treesis NP-hard in the weak sense. Afrati et al. [AB+00] gave a polynomial time approxima-tion scheme for the problem that we consider, minimizing the sum of completion times ofdedicated tasks. However, their method applies only to the case where the total numberof processors is a �xed constant. Later their results were generalized in [FJP01] to handleweighted completion times and release times.Very recently, our results for SMC on k+1-claw free graphs were improved in [K03], usingmethods due to [CP+96]. The approximation ratio for line graphs (bi-processor tasks) wasimproved to 10, and for general k the bound was improved to O(k). It is worth noting9

that the [K03] paper uses exponentially large linear programs, which are solved with theellipsoid method. Our algorithm has the advantage of being a much faster combinatorialalgorithm. (In fact, we use a simple greedy algorithm). Moreover, it can be applied also inan online setting (see Section 3.3).Co�man et al. [CG+85] studied non-preemptive multicoloring of line graphs so as tominimize the overall number of colors (or makespan), which arises in the data migrationproblem. They showed that a class of greedy algorithms yields a 2-approximation and gave a(2+�)-approximation for a version with more general resource constraints. A comprehensivesurvey of other known results for scheduling dedicated tasks so as to minimize the overallcompletion time is given in [BC+00].Few analyses have been done on the robust throughput measure. Hassin and Rubin-stein [HR02] gave an optimal bound of p2 for maximum (partial) weighted matching,improving on the obvious bound of 2 for a greedy selection.2 Approximating Sum Coloring of Interval and Comparabil-ity GraphsWe consider algorithms for sum coloring on natural classes of graphs, and proceed to discussthe less studied measure of robust throughput. In Sections 2.1-2.3 we give a parameterizedalgorithm, ACS, and analyze its performance in terms of the sum coloring, robust through-put, and chromatic number measures. In Section 2.4 we analyze the robust throughput oftwo earlier algorithms, originally given for sum coloring.2.1 An Algorithm Based on Finding k-Colorable SubgraphsA common coloring strategy that often works well in practice is to iteratively color largeindependent sets. If we can �nd maximum independent sets, this is the MaxIS algorithmof [BBH+98] which gives a 4-approximation for sum coloring. To improve on this idea, wemay look towards generalizations. Viewing independent sets as 1-colorable subgraphs, weare easily led to the generalization of iteratively coloring maximum k-colorable subgraphs.The algorithm schema ACS (Assign Color Sets) colors subgraphs in rounds; in roundi it �nds and colors a ci-colorable subgraph, where c0; c1; : : : is a geometrically increasingsequence. The rounds correspond to the iterations of the main loop of ACS.ACS assumes as a subroutine an algorithm kIS(G,k) for �nding a maximum k-colorablesubgraph, where k can be as large as the chromatic number of G. Such an algorithm canbe run recursively to obtain a k-coloring of the subgraph that it �nds. Namely, if Hk =kIS(G, k), we can obtain Hi = kIS(Hi+1, i), for i = k� 1; k� 2; : : : ; 1, with the color classesbeing V (Hi)� V (Hi�1), for i = 1; : : : ; k (here, H0 denotes the empty graph).10

ACS(G, q, �)i 0; `i 0while (G 6= ;) doci = bqi+�cGi kIS(G, ci)Color Gi with colors `i + 1; `i + 2; : : : ; `i + ciG G�Gi`i+1 `i + cii i+ 1;endend Figure 3: The coloring algorithm ACSGiven parameters q � 1 and � 2 [0; 1), we denote by ci = bqi+�c the number of colorsused in round i; `i =Pi�1j=0 cj is the number of colors used by ACS before round i.In the course of the analysis of the algorithm, we shall determine the optimal choice ofthe parameter q for the optimization measures at hand. The parameter � will be chosenuniformly at random from the interval [0; 1). This can be simulated deterministically withinany desired precision by trying all su�ciently closely spaced values in the range [0; 1). TheMaxIS algorithm of [BBH+98] corresponds to the choice of q = 1 and � = 0, i.e., in eachstep a single independent set is extracted from the graph.2.2 The Chromatic Sum of Algorithm ACSIn our analysis, we relate the quality of the algorithm's solutions to the optimal solutionsvia two intermediate functions. These functions �ll the role of normalizing the color valuesgiven by the two solutions, as if the colors assigned in each round contribute equally to theobjective function.The following de�nitions are used throughout this subsection. We denote by � thecoloring produced by ACS, for a given �xed �. Let gv denote the round in which ACS colorsv. Formally, g : V ! IN is de�ned by g(v) = gv = i such that `i < �(v) � `i+1. Let �(i)denote the average of the colors used by ACS in round i, or�(i) = `i + (ci + 1)=2: (1)Let OPT(G) denote the optimal sum coloring of G. Let h : V ! IN be de�ned byh(v) = hv = i such that ci�1 < OPT(v) � ci. For convenience, let c�1 = 0. Note that11

the quantities and functions gv; hv ; ci; `i and �(i) are all functions of � and q, even if notexplicitly marked so.We note that the average of the colors of the vertices colored in round i is at most �(i).This is because the color classes are non-increasingly ordered by the number of verticesassigned that color. This is coded in the following lemma.Lemma 2.1 SC(G; �) =Pv �(v) �Pv �(gv)Intuitively, we expect ACS to have colored a vertex v by round hv, since v is withinthe �rst chv color classes of the optimal solution, but not the �rst chv�1 classes. This issubstantiated, on average, in the following claim.Lemma 2.2 Pv �(gv) �Pv �(hv)Proof: By the de�nition of ACS, it will have colored by round i at least as many verticesas those that have an h-value at most i. That is, for i = 0; 1; : : :,jfv : gv � igj � jfv : hv � igj: (2)Name the vertices v1; v2; : : : ; vn in non-decreasing order by g-values, and u1; u2; : : : ; un innon-decreasing order by h-values. Then, by (2), g(vj) � h(uj), for j = 1; 2; : : : ; n, and since� is monotone non-decreasing, �(gvj) � �(huj). The lemma now follows.In the next lemma we bound �(hv) by a closed form expression.Lemma 2.3 For q � 1 and � � 0, let f(q; k; �) = qk+�[1q�1 + 12]: Then, for any v 2 V ,�(hv) � f(q; hv; �) + 1=2� q�=(q � 1):Proof: By de�nition,�(k) = `k + (ck + 1)=2 = k�1Xi=0bqi+�c+ bqk+�c=2 + 1=2� k�1Xi=0 qi+� + qk+�=2 + 1=2= q�[qk � 1q � 1 + qk2] + 1=2= f(q; k; �) + 1=2� q�=(q � 1):12

We can now deduce a bound on the worst-case performance ratio of a deterministic formof ACS.Theorem 2.1 The performance ratio of ACS for sum coloring is at most q(1=(q�1)+1=2),when � = 1.Proof: Observe thatSC(G) =Xv OPT(v) �Xv chv�1 + 1 �Xv qhv�1+�: (3)When � � logq(q � 1)=2, Lemma 2.3 gives that �(hv) � f(q; hv; �). It then follows fromLemmas 2.1 and 2.2 thatSC(G; �) �Xv f(q; hv; �) =Xv qhv+� � 1q � 1 + 12� : (4)Combining (3) and (4), we �nd that the performance ratio is bounded bySC(G; �)SC(G) � q � 1q � 1 + 12� :When q = 1 +p2, this is at most 3=2 +p2 � 2:91.To obtain a better performance ratio, we analyze the expected performance of ACS whenthe parameter � is chosen uniformly at random from [0; 1).Lemma 2.4 For any q 2 (1; e2],E[�(hv)] � q + 12 ln q OPT(v);for any v 2 V , where the expectation is over the random choices of �.Proof: By the de�nition of hv, the color OPT(v) of vertex v in the optimal solution satis�eschv�1 = bqhv�1+�c < OPT(v) � chv = bqhv+�c: (5)Let us write OPT(v) = qx, i.e. x = logq OPT(v). Since OPT(v) is integral, we have in factthat qhv�1+� < qx = OPT(v) � qhv+�:Let yv = hv + �� x and note that yv is in the range [0; 1). We may writeyv = (� � x) mod 1:13

The values OPT(v) and x are �xed and independent of �. Thus, when � is chosen uniformlyat random from [0; 1), yv is also uniformly distributed in [0; 1). The random variable qyvthen has expected value E[qyv] = Z 10 qtdt = q � 1ln q :Hence, E[qhv+�] = E[qhv+��x] � qx = q � 1ln q OPT(v): (6)By Lemma 2.3,E[�(hv)] � E[f(q; hv ; �)] + 1=2 �E[q�]=(q � 1) = E[f(q; hv; �)] + (1=2 � 1= ln q):Thus, when q � e2, then ln q � 2, and we obtain thatE[�(hv)] � E[f(q; hv ; �)] � OPT(v)q � 1ln q � 1q � 1 + 12� = OPT(v)1 + (q � 1)=2ln q :Theorem 2.2 Let q be the solution of lnx = (x+1)=x, or approximately 3:591. Then, theexpected performance ratio of ACS for sum coloring is at most q=2 � 1:796.Proof: By Lemma 2.4, we get for this value of q thatE[�(hv)] � OPT(v) � q + 12 ln q = OPT(v) � q=2 � 1:796 OPT(v):Combining Lemmas 2.1 and 2.2, and using the linearity of expectation, we get thatE[SC(G;ACS] �Xv E[�(hv)] �Xv 1:796 OPT(v) � 1:796 SC(G):
Remarks Note that in our analysis we have only utilized the following obvious propertyof algorithm ACS. After the i-th round, ACS has colored as many vertices as contained inthe �rst ci colors of the optimal solution. We can argue that our analysis is tight for suchrestricted solutions. This would suggest that for general graphs, ACS would not performbetter than shown here.For the classes of graphs we are most concerned here, especially interval graphs, thisis a non-optimally weak property. A tighter analysis would undoubtedly uncover betterperformance of the algorithm, but just as it has proved hard to give a good analysis ofthe MaxIS algorithm of [BBH+98] for interval graphs, such an analysis would require someideas that are not currently in play. 14

Derandomization We mentioned that ACS can be derandomized by trying su�cientlyclose values for �. To substantiate this, we need to examine the smoothness of the perfor-mance function.Suppose that a 2 [0; 1) is the value for � that minimizes the performance ratio of ACSfor sum coloring and let â = a+ �, for some � > 0. Recalling that hv and � depend on thevalue of �, let us denote them as h�v and ��.Observe that ci and hv are monotone with respect to the parameter �; thus, câi � caiand hâv � hav . Following the analysis of Lemma 2.3, we obtain that�â(hâv) = hâv�1Xi=1 bqi+a+�c+ bqhâv+a+�c2 + 12� q�(hav�1Xi=1 bqi+ac+ bqhav+ac2 + 12)= q��a(hav); (7)even if the possible increase in gv is not considered. Set � = q� � 1, in which case � =logq(1 + �). Then, from (7)Xv �â(hâv) � (1 + �)Xv �a(hav)� (1 + �)E[Xv �(hv)]� (1 + �)1:796 SC(G):Thus, it su�ces to deterministically examine 1= logq(1 + �) � (log q)=� distinct values for �to get within 1 + � factor of the randomized guarantee.Implications Since the analysis gave expected values for each vertex separately, the per-formance ratio in Theorem 2.2 holds also for the vertex-weighted variant problem. Intu-itively, we can view each weighted vertex as a compatible collection of unweighted vertices.Corollary 2.3 ACS approximates SC(G) within a factor of 1.796, even in the weighted case.This improves on the previously best ratio known of 2 by Nicoloso et al. [NSS99], statedfor (unweighted) sum coloring interval graphs. This also yields a corollary for the preemptivesum multicoloring problem. In [BHK+00], a 4�-ratio approximation is obtained for graphswhere SC can be approximated within a factor of �. We thus obtain an improvement,for graphs for which maximum size k-colorable subgraph is polynomial solvable, from theprevious 16-factor.Corollary 2.4 pSMC is approximable within 4 � 1:796 � 7:184 on interval and comparabilitygraphs and their complements. 15

2.3 The Robust Throughput of Algorithm ACSWe proceed to analyze the throughput behavior of ACS.Theorem 2.5 For any graph G, RT(G; �) � 1:45751. This holds also in the weighted case.Proof: The o�set parameter � is of no help here, and shall be set to 0. Further, forsimplicity, we look only at the case when q = 2, which we have experimentally found togive best results.Let k be any natural number. Recall that � is the coloring output by ACS. We comparethe number of vertices found by ACS in the �rst k color classes, given by Thr(�; k), to thenumber of vertices in the �rst k colors of an optimal solution, given by kc(G). To simplifythe notation in the calculations below, let A(k) = Thr(�; k) and O(k) = kc(G).Let m = blog kc denote the number of rounds. Recall that ci = 2i and `i = 2i � 1. Theset of vertices found by ACS then consists of the A(`m) vertices found in the �rst m � 1rounds, and at least a (k � `m)=k fraction of the vertices colored in the m-th round. Theanalysis uses the following simple observation. Since in each round i, 0 � i < m, ACS �ndsa maximum ci-colorable subgraph, clearly, the number of vertices colored in round i is atleast a ci=k-fraction of the vertices in O(k) that remained uncolored after round i� 1.A(`i+1)�A(`i) � cik (O(k)�A(`i)):Rewriting, we get O(k)�A(`i+1) � (1� cik)(O(k)�A(`i)):By induction, we have that O(k)�A(`m) � O(k)m�1Yi=0 (1� 2ik): (8)In the last round, we count the number of vertices covered by ACS with the �nal k � `mcolors. The fraction still not colored after that round amounts toO(k)�A(k) � (1� (k � (2m � 1))k)(O(k) �A(`m);and from (8), we get thatO(k)�A(k) � O(k)2m � 1k m�1Yi=0 (1� 2ik): (9)By computational analysis, we �nd that the r.h.s. of (9) is maximized when k=2m � 1:3625,converging to about 0:3139 O(k). This implies a performance ratio O(k)=A(k) � 1=(1 �0:3139) � 1:4575 for the throughput of the coloring, for a given value k. Since this boundis independent of k, we have derived a bound for RT(G; �), the robust throughput of ACS.16

On graphs for which maximum size k-colorable subgraph is not polynomially solvablebut approximable within a �-factor, we easily obtain a 1:4575� ratio for robust throughput.Finally, we can argue a bound on the number of colors used.Theorem 2.6 The expected number of colors used by ACS is at most qln q�(G). Whenq = e � 2:718, this is at most e � �(G).Proof: Let m be the �nal round of ACS, i.e. the minimal integer satisfying cm = bqm+�c ��(G). Since ACS �nished in round m and not in round m� 1,bqm+��1c < �(G) � bqm+�c;which, since �(G) is integral, implies thatqm+��1 < �(G) � qm+�:Let x = logq �(G) and o = m+ �� x. Thus, �(G) = qx = qm+��o, for o 2 [0; 1).The total number of colors used by ACS is at mostmXi=0 qi+� � qm+�+1q � 1 = qx+o+1q � 1 = �(G) � q1+oq � 1 :Following the proof of Lemma 2.4, the expected number of colors used by ACS is at mostE[qo] � qq � 1�(G) = qln q�(G):Indeed, since E[qo] � q, it also follows that in the worst case ACS uses fewer thanq2=(q � 1) � �(G) colors.We have seen that the same algorithm approximates all three measures: �(G), SC(G),and robust throughput. The parameters used to obtain optimum values were not the same;however, with judicious choices of the parameters, one can obtain colorings that approximatesimultaneously (in the expected sense) all the measures considered, as suggested in thefollowing result.Corollary 2.7 ACS, with q = 2, simultaneously approximates robust throughput within anexpected factor of 1.4575, SC(G) within a factor of 2.164, and �(G) within a factor of 2.88.
17

2.4 The Robust Throughput of Two Earlier Algorithms2.4.1 Algorithm MaxISThe MaxIS coloring algorithm is the iterative greedy method that colors in each round amaximum independent set, among the yet-to-be colored vertices. It was �rst consideredfor sum coloring in [BBH+98], where it was shown to give a 4-approximation. This wasshown to be the tight bound for this algorithm in [BHK99]. The ratio of 4 holds for graphswhere the maximum independent set (IS) problem is polynomially solvable; this includese.g. all perfect graphs. When IS is �-approximable, MaxIS yields a 4�-approximation forsum coloring.For robust throughput, we obtain the following result.Theorem 2.8 The performance ratio of MaxIS for robust throughput is e=(e � 1) � 1:58,and that is tight.Proof: Recall that a k-colorable subgraph in a graph G is a vertex subset S � V that canbe partitioned into k independent sets.Let O(k) denote the cardinality of a maximum k-colorable subgraph H. Each inde-pendent set colored by MaxIS contains at least 1=k fraction of vertices that remain in H.Let I(i) denote the number of vertices in the �rst i color classes found by MaxIS, whereI(0) = 0. Then, the number of vertices remaining after iteration i, i � 1, is at most a(k � 1)=k fraction of the number of vertices before this iteration, that is,O(k)� I(i) � (1� 1k)(O(k) � I(i� 1)) (10)Applying (10) recursively, we get thatO(k)� I(i) � (1� 1k)i(O(k)� I(0)) = (1� 1k)iO(k):Taking i = k, we have O(k)� I(k) � (1� 1k)kO(k) � e�1O(k);or I(k) � e� 1e O(k):To show that the bound is tight, suppose that the optimal solution OPT consists of kequi-sized color classes I1; : : : ; Ik, for some k > 1, and suppose that jI`j = ks, s > k, for1 � ` � k. In the following we describe the structure of G that would allow MaxIS to selectin each step an independent set which contains 1=k of the remaining vertices in I`, for all1 � ` � k. 18

We partition the vertices in I` to (s + 1) subsets A`;1; : : : ; A`;s+1. The size of A`;j isgiven by jA`;j j = ks(k � 1)j�1kj ; (11)for 1 � j � s, and jA`;s+1j = (k� 1)s. The vertices in A`;j are connected by edges to all thevertices in Am;h, m 6= ` and h 6= j; thus, the vertices Bj = [k̀=1A`;j form an independentset. Also, from (11) we have that jBj j = ks(k�1)j�1kj�1 . Note that the vertices in A1;s+1 canbe connected in such a way that in iteration `, MaxIS can select all the vertices in Bjplus a vertex in A1;s+1; therefore, the resulting IS is slightly larger than the size of each ofthe remaining sets I1; : : : ; Ik. This would make MaxIS select in each iteration 1=k of theremaining vertices in I`, 1 � ` � k.Consider the end of iteration k. Then O(k) = jV j = ks+1, while MaxIS still needs tocolor ks+1(k � 1)kkk = O(k)(k � 1k)kvertices. For su�ciently large k, ((k � 1)=k)k is close to e�1. Hence, we get that I(k) !e�1e jV j = e�1e O(k):2.4.2 The algorithm of Nicoloso et al. for interval graphsAn algorithm of Nicoloso et al. [NSS99] for sum coloring interval graphs starts by computingG1; G2; : : : ; G�(G), where Gi is a maximum i-colorable subgraph. They show that when Gis an interval graph and the Gi's are computed by a left-to-right greedy algorithm, then (a)Gi contains Gi�1, and (b) the di�erence set Gi �Gi�1 is 2-colorable. Thus, the algorithmcolors G by coloring G1 with the color 1, and coloring Gi�Gi�1 with 2i� 2 and 2i� 1, fori > 1.Nicoloso et al. showed that the performance of the algorithm for SC, and simultaneouslyfor chromatic number, was 2, and that it was tight. From this description of the algorithm,it is easy to derive bounds on its performance for the robust throughput. Since, for each k,a maximum k-colorable subgraph is fully colored with the �rst 2k � 1 colors, a ratio of 2follows for robust throughput.Observation 2.9 The algorithm of [NSS99] attains a performance ratio of 2 for the robustthroughput of interval graphs (as well as sum coloring and chromatic number).It should be fairly clear that these bounds on the performance of the algorithm cannotbe improved. They also crucially depend on special properties of interval graphs. Also, itis not clear if these bounds hold when the algorithm is used on weighted graphs.19

3 The npSMC problem on (k + 1)-claw free graphsIn this section we give an approximation algorithm for npSMC on k+1-claw free graphs. Asnoted earlier, one application of this result for constant k is an O(1)-ratio approximationfor the dedicated task scheduling problem P j�xjjPCj with j�xj j = k. Note that we placeno constraints on the number of machines in the dedicated task scheduling problem, whichcan be arbitrarily �xed or unbounded. The constraint is only that the number of machinesrequired by a given job is at most k.3.1 Algorithm SGLet G be a given k + 1-claw free graph, and let � be a parameter dependent on k to bedetermined later. Informally, our strategy is the following. We allocate x0(v) = (� +1)x(v)colors to each vertex v, or � + 1 times more than required. We constrain this allocation sothat the last x(v) colors be contiguous, as they will form the actual set of colors assignedto v. We give higher priority to vertices with small x(v) over vertices with larger x(v). Theallocation is performed one color at a time to a maximal independent set of vertices thathave higher priority than others, either because they are shorter jobs, or because they havebecome active. Observe that the independent set is maximal only in the graph induced bythe collection of not yet fully colored vertices. Active vertices are those v that have receivedat least �x(v) + 1 colors (but fewer than (� + 1)x(v)), and thus must receive a contiguousset until fully allocated.We assume that all color requirements are di�erent, since ties can be broken in a �xed butarbitrary way. Thus, the selected independent set I satis�es two constraints: (i) I containsall currently active vertices (ii) if a not fully colored vertex v does not participate in theindependent set it either has an active neighbor, or it has a neighbor in the independent setwith strictly smaller color requirement.The logic for allocating an additional (�+1)x(v) colors is to build a bu�er so that a longjob does not accidentally become active and delay many short jobs for a long time. Thisway, all the neighbors of v have fair chance to be colored to completion before v becomesactive.SG(G)1. j 1.2. while G is not empty do(a) Ij all currently active vertices(b) while there exists a vertex with no neighbor in Ij doi. Let v be a vertex of minimum x(v) among those thathave no neighbors in Ij (and not in Ij themselves)20

ii. Ij Ij [fvg(c) Assign color j to the vertices in set Ij, decrease by 1their color requirements in G.(d) Update active vertices, and delete fully colored vertices from G.(e) j j + 1.3. The last x(v) colors allocated to v form the coloring of v in the npSMC solution.See Figure 4 for an illustration of the algorithm.
v

w z

q

2 1 2

1
q z

q

q

q

q

z

z

z

z

v wFigure 4: The �rst 6 independent sets selected by the algorithm. The graph is 3-claw free.Thus, � = 4. The algorithm allocates (� + 1)x(q) = 5 colors to q, and 10 to z. At round5, q becomes fully colored and so v takes its place in I6. Since z is not active yet, w whichhas a lower color requirement is intersected into the sixth independent set.3.2 Analysis of SGWe use in the analysis the following notation. Throughout this section, �x some optimumsolution, OPT , for the npSMC instance. A round consists of one iteration of the outer whileloop of SG. Namely, a round is the process of choosing the next Ij. The �rst round is 1.Observe that the vertices included in Ij (namely, in the independent set of round j) have jas one of their assigned colors.A vertex is smaller (larger) than its neighbor if its color-requirement is. Let N(v) be theset of neighbors of v. The set of smaller (larger) neighbors of v is denoted Ns(v) (Nl(v)). Let21

Ov (respectively, Osv and Olv) denote the collection of neighbors of v (respectively, smallerand larger neighbors of v) colored before v in OPT . Similarly, let Av, Alv and Asv be thevertices in N(v), respectively, colored before v by algorithm SG, colored before v by SG andbelonging to Nl(v), and colored before v by SG and belonging to Ns(v).A not fully colored vertex is either selected, or delayed in a given round. It is selected ifplaced in the current independent set, in which case it is either active or paying. A vertexis active if it was given at least �x(v) + 1 colors. Thus, this vertex needs less than x(v)additional colors (to get to (� + 1)x(v).) Active vertices are always inserted into the nextindependent set until they are fully colored. Thus, the vertices of Ij that are not active arepaying vertices.The vertex can either have a good delay in a round, if it has a smaller selected neighbor,or a bad delay, if it is delayed by a larger active neighbor.We summarize this in the following fact. Let I be the current chosen independent setand Ia the set of active vertices, necessarily contained in I.Fact 3.1 In any given round, exactly one of the following holds for a given vertex v:1. Good delay: I \Ns(v) 6= ;2. Bad delay: Ia \Nl(v) 6= ;, and I \Ns(v) = ;3. Selected: v is paying or active.Let dg(v) (db(v)) denote the total good (bad) delay of v under SG. Fact 3.1 implies thatthe �nal color of v is given by fSG(v) = (� + 1)x(v) + dg(v) + db(v): We proceed to boundseparately the good and bad delays. De�neQ(G) =Xv Xw2Ns(v) x(w) = Xvw2E(G)min(x(v); x(w)):The quantity Q(G) provides an e�ective lower bound on the preemptive multicolor sum,and thus also on the contiguous one. Let S(G) =Pv2V x(v).Lemma 3.1 Q(G) � k � (pSMC(G)� S(G)).Proof: Recall that Ov are the neighbors of v colored before v in OPT . De�ne the residualdemand of Ov as follows. The initial residual demand of Ov is D0v = Pu2Ov x(u). LetDiv be the residual demand of Ov vertices after color i of OPT . Namely, let xi(u) denotethe number of colors assigned to u be the �rst i color-classes in OPT (colors 1 to i), thenDiv =Pu2Ov(x(u)� xi(u)).We note that Di+1v � Div � k, as for every 1 � j � i at most k of the neighbors of vbelong to j color-class in OPT . This follows because the graph is (k + 1)claw free. Since22

the optimum does not start coloring v before the residual demand of Ov is 0, the minimumcolor assigned to v by OPT is at least D0v=k, and pSMC(G) � S(G) +Pv D0v=k: Now, asevery edge e = (u; v) either contributes x(u) to D0v or x(v) to D0u we have: PvD0v � Q(G).The required lemma follows.Lemma 3.2 For any graph G, Pv dg(v) � (� + 1) �Q(G).Proof: A smaller neighbor u of v is selected for at most (� + 1) � x(u) time units, and candelay v by at most that much. Thus, dg(v) � (� + 1)Pw2Ns(v) x(w).Claim 3.2 Consider v and round j so that v 62 Ij. Then at most k � 1 of the vertices ofAlv can be paying (namely selected but not active) at that round.Proof: By de�nition, if the round is good then Ij \Asv 6= ;. Thus, jIj \Alvj � k�1 becausethe graph is (k+1)claw free. In particular, at most k� 1 of the Alv vertices can be paying.In addition, if the delay is bad, by de�nition Ij must contain an active vertex u thatbelongs to Alv. It follows from the fact that the graph is (k+1)-claw free that at most k�1Alv vertices can be paying.Lemma 3.3 For any vertex v, db(v) � k � 1� � k + 1 � dg(v):Proof: The idea in the proof is to �nd a large collection of �events" all of which must occurin the db(v) + dg(v) rounds in which v is delayed.These events are de�ned as follows. Observe that by de�nition, each round that has abad delay for v has some u 2 Alv active at that round. Before u became active, there musthave been � � x(u) rounds in which u was paying; this is because u became active. Thusthe collection of events are all the times vertices of Alv were paying. Note that every suchevent must occur in the dg(v) + db(v) rounds that v is delayed. Indeed, by the de�nition ofAlv, v must be delayed as long at least one vertex in Alv still need to pay.Let Sv = Pu2Av x(v), Slv = Pu2Alv x(v), and Ssv = Pu2Asv x(v). The total number oftimes that some vertex in Alv was paying is exactly � � Slv. By Claim 3.2 the total delay ofv, dg(v) + db(v) is at least � � Slv=(k � 1); this gives the total pay required by Alv verticesdivided by the number of vertices simultaneously paying.By the de�nition of Alv, db(v) is at most Slv. In summary we have that dg(v) + db(v) ��db(v)=(k � 1), and the lemma follows.Theorem 3.3 SG approximates npSMC(G) on k+1-claw free graphs by a factor of 2k(2k�1).In particular, it achieves a factor 12 on line graphs and proper interval graphs.23

Proof: Let � = 2(k � 1). Let SG(G) denote the multicolor sum of our algorithm on G.Combining Lemmas 3.2, 3.3 and 3.1, we have thatSG(G) � (� + 1)S(G) + (� + 1)(1 + k � 1� � k + 1)Q(G)= (2k � 1)S(G) + 2(2k � 1)Q(G)� 2k(2k � 1)pSMC(G)� (2k � 1)2S(G):As mentioned before, among the various classes of graphs this result holds for are linegraphs, proper interval graphs and the intersection graphs of families of unit circles.Note that in the proof of Theorem 3.3 the npSMC optima is bounded by a constant timesthe pSMC optima. Therefore, the proof of Theorem 3.3 implies the following relation of theoptimum preemptive and non-preemptive solutions, that was not known before.Corollary 3.4 For a k + 1-claw free graph G, k a constant, npSMC(G) = O(pSMC(G)).Proof: Note that since SG �nds a non-preemptive coloring, npSMC(G) � SG(G), while by(12), SG(G) � 2k(2k � 1)pSMC(G).We observe that the number of colors used by our algorithm is within a constant factorof optimal. Although the bound obtained is inferior to the best algorithms designed for thatpurpose, it is interesting that we get a simultaneous approximation of both the chromaticnumber and sum multicoloring measures.Theorem 3.5 SG approximates the (multi-)chromatic number (i.e. makespan) �(G;x) ofk + 1-claw free graphs by a factor of 2k(2k � 1). In particular, it achieves a factor 12 forline graphs.Proof: Let v be a vertex so that x(v)+Pu2Ns(v) x(u) is maximum. In any legal coloring, ateach round only at most k of the neighbors of v can be colored. Whenever v is selected, noneighbor of v can be paying. Thus we have that �(G;x) � x(v)+Pu2Ns(v) x(u)=k. In turn,previous analysis gives that for every u, db(u) � dg(u), and dg(u) � (2k�1)Pw2Ns(u) x(w).Thus, fSG(u) � x(u) + 2(2k � 1)Pw2Ns(u) x(w). The lemma follows from the choice of v.3.3 ExtensionsVertex weights We now show that our result can be extended to handle vertex weights.Jobs may have di�erent priorities, which are re�ected in the nonnegative weight w(v) at-tached to each vertex v. The objective function becomes the sum of weighted �nal colors,24

Pv w(v)f(v). Straightforward modi�cations of the approach of Section 3.1 yield the samebound; the unweighted case was the one presented in detail just for the simplicity of ex-position. Following [BHK+00], we change the priority order to follow the ratio of colorrequirement to the weight: v is preferred over u i� x(v)=w(v) � x(u)=w(u). Update thede�nition Ns(v) accordingly. Rede�ne Q(G) asQ(G) = Xv2V w(v) Xw2Ns(v) x(w) = Xuv2Emin(w(v)x(u); w(u)x(v)):Lemma 3.3 now follows unchanged, Lemma 3.2 holds with dg(v) modi�ed to w(v)dg(v),and Lemma 3.1 was argued in [BHK+00]. Then we obtain the same ratio of 2k(2k � 1) byTheorem 3.3.Release times We now elaborate on the job scheduling application. Job scheduling istypically done dynamically, i.e., jobs arrive to the system at di�erent times. The releasetime of a job, v, is a lower bound on the �rst color that can be assigned to v. An easyconsideration shows that this has no detrimental e�ects on the performance of our algorithm,given its iterative nature. Our algorithm is online, in that it considers only jobs availableat the given time, where �colors� are equivalent to �time steps�.A seemingly more di�cult optimization measure (radically di�erent than the sum of�nishing times) is the the objective function of the �ow time. In this measure our goal is tominimize the sum of completion time less the sum of release time. This seemingly di�cultproblem is open, even for sum colorings. Only the exact algorithms for trees and partialk-trees [HK99] are known to apply to this case.AcknowledgmentsWe thank two anonymous referees for their helpful comments on the paper.References[AB+00] F. Afrati, E. Bampis, A. Fishkin, K. Jansen, and C. Kenyon. Scheduling tominimize the average completion time of dedicated tasks. In Proc. of 20thFoundations of Software Technology and Theoretical Computer Science, Lec-ture Notes in Computer Science Vol. 1974, pages 454�464, 2000.[BC+00] E. Bampis, M. Caramia, J. Fiala, A. Fishkin, A. Iovanella. Scheduling ofIndependent dedicated multiprocessor jobs. In Proc. of 13th Annual Interna-tional Symposium on Algorithms and Computation (ISAAC), Lecture Notes inComputer Science Vol. 2518, pages 391�402. 2002.25

[BG+01] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the Throughputof Multiple Machines in Real-Time Scheduling. SIAM Journal on Computing,31:331�352, 2001.[BK98] A. Bar-Noy and G. Kortsarz. The minimum color-sum of bipartite graphs.Journal of Algorithms, 28:339�365, 1998.[BBH+98] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. Onchromatic sums and distributed resource allocation. Information and Compu-tation, 140:183�202, 1998.[BF96] H.L. Bodlaender and B. de Fluiter. Parallel Algorithms for Series ParallelGraphs. 4th European Symposium on Algorithms, Lecture Notes in ComputerScience Vol. 1136, pages 277-289, 1996.[B-98] P. Brucker. Scheduling Algorithms. 2nd ed., Springer, Heidelberg, 1998.[BH94] D. Bullock and C. Hendrickson. Roadway tra�c control software. IEEE Trans-actions on Control Systems Technology, 2:255�264, 1994.[BHK99] A. Bar-Noy, M. M. Halldórsson, G. Kortsarz. Tight Bound for the Sum of aGreedy Coloring. Information Processing Letters 71, 135�140, 1999.[BHK+00] A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, H. Shachnai, and R. Salman.SumMulticoloring of Graphs. Journal of Algorithms, 37(2):422�450, November2000.[BKR96] P. Brucker and A. Krämer. Polynomial algorithms for resource-constrainedand multiprocessor task scheduling problems. European Journal of OperationalResearch, 90:214�226, 1996.[CP+96] S Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein andJ. Wein. Improved Scheduling Algorithms for Minsum Criteria. Proceed-ings 23rd International Colloquium on Automata, Languages and Programming(ICALP), pages 875-886, 1996.[CG+85] E. G. Co�man, Jr., M. R. Garey, D. S. Johnson and A. S. LaPaugh. SchedulingFile Transfers. SIAM J. Comput. 14:744�780, 1985.[FMW97] S. Felsner, R. Müller and L. Wernisch. Trapezoid Graphs and Generalizations,Geometry and Algorithms. Discrete Applied Mathematics, 74:13�32, 1997.[F95] C. Flotow. On Powers of m-Trapezoid Graphs. Discrete Applied Mathematics,63:187�192, 1995. 26

[F80] A. Frank. On Chain and Antichain Families of a Partially Ordered Set. J.Combinatorial Theory, Series B, 29:176�184, 1980.[FJP01] A. V. Fishkin and K. Jansen and L. Porkolab. On minimizing average weightedcompletion time of multiprocessor tasks with release dates. Proceedings 28th In-ternational Colloquium on Automata, Languages and Programming (ICALP),2001, pages 875-886.[GJ+02] K. Giaro, R. Janczewski, M. Kubale and M. Mala�ejski. A 27/26-approximation algorithm for the chromatic sum coloring of bipartite graphs.Proceedings of the 5th International Workshop on Approximation Algorithmsfor Combinatorial Optimization, 2002, pages 135�145.[G80] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. AcademicPress, 1980.[G01] M. Gonen. Coloring Problems on Interval Graphs and Trees. M.Sc. Thesis,School of Computer Science, The Open Univ., Tel-Aviv, 2001.[HK99] M. M. Halldórsson and G. Kortsarz. Multicoloring Planar Graphs and Partialk-trees. In Proceedings of the Second International Workshop on Approxima-tion algorithms (APPROX '99). Lecture Notes in Computer Science Vol. 1671,Springer-Verlag, August 1999.[HK+99] M. M. Halldórsson, G. Kortsarz, A. Proskurowski, R. Salman, H. Shachnai,and J. A. Telle. Multi-Coloring Trees. In Proceedings of the Fifth InternationalComputing and Combinatorics Conference (COCOON), Tokyo, Japan, LectureNotes in Computer Science Vol. 1627, Springer-Verlag, July 1999.[HR02] R. Hassin and S. Rubinstein. Robust Matchings and Maximum Clustering.SIAM Journal of Discrete Mathematics, 15:530-537.[J97] K. Jansen. The Optimum Cost Chromatic Partition Problem. Proc. of theThird Italian Conference on Algorithms and Complexity (CIAC '97). LectureNotes in Computer Science Vol. 1203, pages 25�36, 1997.[K03] Y. A. Kim. Data Migration to Minimize the Average Completion Time, Proc.14th Symposium on Discrete Algorithms (SODA), Jan 2003.[K89] E. Kubicka. The Chromatic Sum of a Graph. PhD thesis, Western MichiganUniversity, 1989. 27

[K96] M. Kubale. Preemptive versus non preemptive scheduling of biprocessor taskson dedicated processors. European Journal of Operational Research 94:242�251, 1996.[KKK89] E. Kubicka, G. Kubicki, and D. Kountanis. Approximation Algorithms forthe Chromatic Sum. In Proceedings of the First Great Lakes Computer Sci-ence Conference, Lecture Notes in Computer Science Vol. 1203, pages 15�21,Springer-Verlag, July 1989.[MB+95] Marathe, M. V., Breu, H., Hunt III, H. B., Ravi, S. S., and Rosenkrantz, D. J.Simple heuristics for unit disk graphs. Networks, 25:59�68, 1995.[NSS99] S. Nicoloso, M. Sarrafzadeh and X. Song. On the Sum Coloring Problem onInterval Graphs. Algorithmica, 23:109�126,1999.[W97] G. Woeginger. Private communication, 1997.[YG87] M. Yannakakis and F. Gavril. The maximum k-colorable subgraph problemfor chordal graphs. Inform. Proc. Letters, 24:133�137, 1987.

28

