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Abstract

In online set packing (OSP), elements arrive online, announcing which sets they belong to, and
the algorithm needs to assign each element, upon arrival, to one of its sets. The goal is to maximize
the number of sets that are assigned all their elements: a set that misses even a single element
is deemed worthless. This is a natural online optimization problem that abstracts allocation of
scarce compound resources, e.g., multi-packet data frames in communication networks. We present
a randomized competitive online algorithm for the weighted case with general capacity (namely,
where sets may have different values, and elements arrive with different multiplicities). We prove a
matching lower bound on the competitive ratio for any randomized online algorithm. Our bounds
are expressed in terms of the maximum set size and the maximum number of sets an element
belongs to. We also present refined bounds that depend on the uniformity of these parameters.
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1 Introduction

Consider the following abstract scenario, which we call on-line set packing (0SP) henceforth. There
is a collection of sets whose elements are initially unknown. In each time step, a new element arrives,
announcing which sets it belongs to. Our job is to assign each element to a bounded number of the
sets containing it before the next element arrives. When a set has all its elements assigned to it, we
get paid for that set (with no reward for unfinished sets). The goal is to maximize the number, or
value, of completed sets.

The problem appears to be a new fundamental online problem that, to the best of our knowledge,
was not studied explicitly in the past. Formally, the offline version of the problem we consider is
expressed by the following integer program:

m
maximize Z Wi T; (1)
=1
s.t. Z z; < b forj=1,...,n
i:5;Du;
x; € {0, 1} .

The value of x; indicates whether set 5; is taken or not, w; is the benefit obtained by completing
set S;, and b; is the number of sets element u; can be assigned to. The online character of 0OSPp is
expressed by the following additional assumptions: (1) constraints arrive one by one, (2) the variables
x; can only be decreased from 1 to 0 (i.e., a rejected set can not be taken later), and (3) the target
function at a given time is taken only over variables that will not be constrained anymore (we assume
that we know when all elements of a set have arrived).

Motivation. Online set packing models a variety of problems of scheduling a bounded-capacity
server, where tasks arrive piecewise, and a task is completed only if all its parts are processed. Let us
review a few motivating examples for OSP before we state our results.

Video transmission. In video transmission over the Internet, the situation can be roughly described
as follows. Data is produced in large units at the source (a video frame may be hundreds of
kilobytes long), while networks allow only for small transfer units (e.g., packets sent over Ethernet
are limited to 1.5 kilobytes), and therefore in many cases, video frames are broken into a number
of small packets. However, a video frame is useful at the receiving end only if all its constituent
packets arriveH Now consider an outgoing link in a network switch (router): the capacity of
the link is bounded, so when a large burst of packets headed to that link arrives, some packets
will be dropped (let us ignore buffering for simplicity). The router, in case of an overflow, needs
to decide which packets to drop, so as to maximize the number of complete frames delivered;
this decision is made online. When packets are parts of large data frames as described above,
the question of which packets to drop and which to transmit can be reduced to 0Sp a follows:
elements represent time steps, and sets represent data frames. Time step j is included in data

n reality the situation is more complicated. In MPEG, for example, the smallest useful information unit is actually

”

called a “slice,” which is typically a frame part. On the other hand, there are inter-frame dependencies. We ignore these

issues here, and assume that the basic information unit is a frame.



frame i if a packet of frame ¢ arrives at time j. The capacity of the link (the number of packets
that can be transmitted) at time j is b;. The w; parameters model data frames values.

Multihop packet scheduling. Another common scenario in packet-switching networks is the case
of packets that need to traverse multiple hops: a packet is delivered only if it is not dropped
by any of the switches along its route. This too can be formalized as OsP as follows. Let each
pair (t,¢) of time ¢t and link ¢ be modeled by an element of the 0sp formulation, and let each
packet be modeled by a set, whose elements are all time-link pairs which the packet is supposed
to cross (again, ignoring buffering). The capacity of link ¢ at time t is represented by b;, where

J=(t20).

Online combinatorial auction. In combinatorial auctions with single-minded bidders, the utility
of a bidder is non-zero only if it receives a certain set of items it desires. Consider an online
scenario, where items become available over time. The bidders may be reluctant to reveal their
exact utility function to the auctioneer, say for reasons of business competition. Initially, each
bidder declares a bid, which would be paid if it received the desired set. Later, bidders request
items as they appear. (To ensure agents’ actions are fair and that the adversary is oblivious, the
information on bids and sets can be stored with a third party escrow.)

Camera refurbishing. Consider a business that refurbishes cameras by assembling together the
good parts of defective products. There are many models of cameras, but some models share
parts. The mode of operation is as follows: When some part becomes available, the proprietor
decides what model it will be used for, and installs that part in that partly-done camera. When
a camera is complete, it is sold. In the language of 0SP, camera parts are elements, and cameras
are sets.

Service center. A service center (say, for printers) sells the following service package: The customer
gets to make up to k service calls. The customer is charged only if each of his calls is serviced
on the same day. The center can service at most b; calls on day j.

Distinction: Centralized and distributed algorithms. In many applications it is reasonable
to assume that the algorithm is centralized in the sense that a decision regarding an arriving element
may depend on the complete history of the algorithm thus far. However, some applications require
distributed decision making, in the sense that elements may arrive at different locations, so that it may
be hard (or impossible) to know which elements have arrived thus far, and—if the algorithm is not
deterministic—which sets they were assigned to. For example, in the video transmission case, packets
may traverse different routes in the network, and different routers will have to decide which packets
to drop and which to retain. Obviously, a distributed algorithm is more desirable, but centralized
algorithms may have better performance.

Our contributions. In this paper we introduce the problem of online set packing and present a
randomized competitive algorithm for it. Our algorithm is naturally distributed. On the negative side,
we prove nearly matching lower bounds on the competitive ratio of any randomized online algorithm
for it, which holds even in the centralized case. Our bounds on the competitive ratio are expressed
in terms of the size of the sets and the degree of the elements, where the degree of an element is the
number of sets containing it. Specifically, let ky.x denote the maximal set size and oy.x denote the



maximal element degree. Our first main result is a randomized distributed algorithm that guarantees
to complete sets of total expected value at least OPT/(kmaxy/Omax), where OPT is the maximal value
of any feasible solution. The result extends to the general capacity case: Assume that each element j
arrives with multiplicity b; > 0, which allows it to be assigned to b; sets. In this case, our upper bound
generalizes using adjusted degree, defined as the degree of element j divided by b;. The algorithm is
inspired by the probabilistic version of Turdn’s theorem of Alon and Spencer [3]; in fact, our algorithm
reduces to theirs in the unweighted case when o = 2.

We also derive more refined bounds on the competitive ratio which are sensitive to the variability
of set sizes and element degrees: the more uniform they are, the better bounds we get. For example,
if all elements have the same degree, then the competitive ratio drops to kmax-

Our second main result is a lower bound that shows that no randomized online algorithm (in-
cluding centralized algorithms) can have competitive ratio much better than Amaxy/Tmax, €ven in
the unweighted case, and also show a simple lower bound of (oyax )1 for deterministic online
algorithms. Our construction for the randomized case is a bit involved, and our technique uses com-
binatorial designs based on affine planes.

Related work. Let us first consider off-line set packing. In this case set packing is as hard as Max-
imum Independent Set even when all elements have degree 2, and therefore cannot be approximated
to within O(m!~¢)-factor, where m denotes the number of sets and e is any positive constant [7]. In
terms of the number of elements, denoted n, offline set packing is O(y/n)-approximable, and hard to
approximate within n!/2-¢, for any € > 0 [9]. When set sizes are at most k, it is approximable to
within £/2 4 € for any € > 0 [12] and within (k + 1)/2 in the weighted case [5], but known to be hard
to approximate to within Q(k/log k)-factor [I1]. An important application for weighted set packing
is in combinatorial auctions (see, e.g., [21]).

Buchbinder and Naor have studied online primal-dual algorithms for covering and packing (see,
e.g., [6]). In their model, constraints of the primal (covering) program arrive one by one, and the
variables can only be increased by the algorithm. This approach was applied to online set cover [I],
and to the following variant of packing: In each step, a new set is introduced by listing all its elements;
the algorithm may accept the set only if it is disjoint to previously accepted sets, but it may also reject
it. If a set is accepted, the algorithm collects the set value immediately. In our setting, elements arrive
one by one, and the benefit is earned only after a set is complete. When specified as linear programs
(more precisely, as integer programs), both the packing framework of [6] and our formulation of osp
share the same matrix (Eq. above), but in [6] columns (variables) arrive online, while in our
formulation rows (constraints) arrive online.

In fact, all previous online algorithms for packing disjoint structures (possibly partially), whether
it be sets, vertices, or paths, assume that decisions are made on already completed structures. In this
case, a factor k-approximation is trivially obtained by a greedy algorithm for unweighted set packing.
When k = 2, we obtain an online matching problem; numerous results are known for a similar but
different problem, starting with the e/(e — 1)-competitive randomized algorithm of [14], that works
for a weighted bipartite version with a certain restriction on arrival order. For online independent set
problems, that relate to packing paths in graphs, very strong lower bounds generally hold [2, [§].

The problem of online throughput maximization of multi-packet frames (our video transmission
motivation) was introduced in [I5], with the additional complication of having a finite-capacity buffer.
The results there are not comparable to ours because of the buffering, and due to the following



additional differences: on one hand no bound on element degree is assumed in [I5] (i.e., arbitrarily
many packets may arrive simultaneously at the server), but on the other hand it assumed that the
arrival process is “well ordered” in some rather restrictive senseE] An upper bound of O(k?) and a
lower bound of (k) on the competitive factor for deterministic online algorithms in this model was
given in [15].

Distributed models for solving linear programs are considered in [I8], [I7], where the complete
matrix is input to the system at the start of execution, but it is distributed among different agents.
In [4] new variables and constraints can be introduced over time, and the system will stabilize to
an approximately optimal solution, but the variables may be both increased and decreased by the
algorithm, so the algorithm is not online in the sense considered in the current paper.

When ¢ = 2, the offline problem becomes the independent set problem in graphs. Our algorithm
matches a weighted extension of Turdn’s theorem, due to Sakai, Togasaki and Yamazaki [20], that
was achieved with a greedy offline algorithm. In the unweighted case, our algorithm then matches
the probabilistic version of Turdn’s theorem, due to Alon and Spencer [3]. It was generalized to
the weak independent set problem in hypergraphs by Shachnai and Srinivasan [22] (whereas, our set
packing problem is known as the strong independent set problem in hypergraphs). That algorithm
was recently treated in a similar setting to ours, but with a focus on the space requirements as a
streaming algorithm [10].

Paper organization. The remainder of this paper is organized as follows. In Section [2| we formalize
the problem and state our main results. In Section [3] we describe and analyze our algorithm. In
Section {4 we prove our lower bounds. We conclude in Section [5| with some open problems.

2 Notation, Problem Statement and Results

Problem statement. A weighted set system consists of a set U of n elements, a family C =
{S1,S2,...,Sn,} of m subsets of U, and a weight function assigning a non-negative weight w(S) to
each set S € C. We also assume that some capacity b(u) € N is associated with each element u € U.

We concentrate on the online set packing problem, defined as follows. Initially, for each set we

know only its weight and size (but not its members). In each step j, a new element u; arrives along

with its capacity b(u;) and with C(u;) ey {§ €C:u; € S}, ie., the names of all sets containing u;.

The algorithm must output in step j a collection of set names A(j) C C(u;) such that |A(j)| < b(u;).
The algorithm is said to complete a set S if S € A(j) for each of its elements u; € S. The output of an
algorithm for an instance Z, denoted ALG(Z) (or simply ALG), is the collection of sets completed by the
algorithm, and the benefit to the algorithm is in that case w(ALG(Z)), where the weight of a collection
of sets is the sum of the set weights. If the algorithm is randomized, the benefit for a given instance
is a random variable, and we shall use its expected value. We say that an online OsP algorithm is
distributed if the decisions it makes upon arrival of element u; depend only on the identities of the
sets in C(u;).

The performance of 0sP algorithms is measured using the standard notion of competitive analysis:
the competitive ratio of an algorithm is the supremum, over all instances Z, of w(oprT(Z))/w(ALG(Z)),

2The sets are said to be well ordered if for any 1 < ¢,¢' < k, the ¢th element of set A arrives before the ¢th element
of set B if and only if the £'th element of set A arrives before the £'th element of set B.



where OPT(Z) denotes the collection of subsets in C that maximizes the target function in ().

Special interesting classes of instances are the unweighted instances where w(S) =1 for all S € C,
and the unit capacity instances where b(u) = 1 for all u € U.

Notation. For a family of sets D C C and an element u of the universe, let D(u) = {S € D:u € S}.
For example, we will write opT(u). We also denote

) = 15I;

) = |C(u)| = degree of the element u;
u) = |D(u)l;

) = w(C(u);

)

)

= the capacity associated with the element u, assumed to be at most o(u);

o(u)

b(u)

For functions g and h defined on a set V, we write (g,h)y = > i g(v)h(v). When the set V' is not
explicitly indicated, we will assume V' to be the common domain of g and h. We will use 1 to denote
the function that maps all elements of the domain to 1.

Main results. We present a randomized algorithm ALG and analyze its performance. Our main
results are the following.

Theorem 1. For unit capacity instances,

Ew(ALG)] > max{ w(C)? w(OPT)Q} . w(C)uw(opT)

(o,wyv” (k,w)e (o, wyy (k,w)e
This theorem immediately gives the following bound on the competitive ratio.

Corollary 1. There is an OSP algorithm with competitive ratio at most kmaxy/Omax, where kmax =
maxgec k(S) and omax = maxyey o(u).

Note, however, that the competitive ratio can be much smaller than this bound: for example, if all
sets have the same size k and all elements have the same degree, then the competitive ratio improves
to k in the unweighted case. We discuss some of these special cases in Section [3.4

For the variable capacity case, the same bound holds, up to a factor of 2, after replacing the degree
o(u) of the element with its adjusted degree v(u).

Theorem 2. For general instances,

Elw(ALG)] > max{ w(C)’ w(OPT)2} > w(C)w(oPT)

2(v, wyp " 2(k, w)e 2/ (v, w)u (k,w)c

No algorithm can make a baseline improvement over our algorithm, or, more precisely:



Theorem 3. For any randomized online algorithm, there exists an infinite family of unweighted,
unit-capacity instances of OSP for which the competitive ratio is

10g10g Krmax \ 2
Q ((Hm) kmax\/ Umax)

log kmax

Our lower bound argument uses Yao’s principle: we build a distribution of the inputs for which
the optimal value is large, while the expected value for all deterministic algorithms is small. Also note
that we use two different lower bound constructions: in the first knax and omax are linearly related;
in the second K.y 1S constant.

The situation is much worse for deterministic algorithms:

Theorem 4. The competitive ratio of any deterministic OSP algorithm is at least O max "max 1

for unweighted unit-capacity instances.

, even

3 Randomized Upper Bounds

In this section we describe our randomized algorithm for OSP and analyze it. We start the section with
a description of the algorithm. Then, in Section we analyze the algorithm in the unit-capacity
model, in Section we extend the analysis to the general capacity model, and finally a few sharper
results for some special cases are given in Section

3.1 The Randomized Algorithm

Random variables. Recall that the (cumulative) distribution Fx : R — [0, 1] of a random variable
X is defined by
Fx(z) =Pr[X < z].

For w > 0, let D, : R — [0, 1] be defined by

0 if x < 0;
Dy(z) = v o<z <1, (2)
1 if 1 <ux.

Note that D; is the uniform distribution over [0, 1] and, in general, for a positive integer ¢, Dy is the
distribution of the maximum of ¢ independent and identically distributed variables, each uniformly
distributed over [0, 1].

Algorithm randPr. We first describe our algorithm for instances with unit capacities. For each
set S € C, we independently choose a random priority r(S) € [0, 1] with distribution D,,(g). When the
element u arrives with a list C(u) of parent sets, we assign u to the highest priority set in C(u).

We next show how general instances can be reduced to unit capacity instances. Given a general
instance Z, the unit capacity instance Z’ is constructed as follows. The element u with capacity b(u)
is replaced by b(u) new elements: u,ug, ... ; Up(y), €ach with unit capacity. The sets are modified by
substituting v with one of the u;’s. This substitution is done randomly as follows. First partition
C(u) randomly into b(u) blocks of size [%-‘ or L%J (each such partition being equally likely):

6



Ci(u), C2(u), . . ., Cyeyy(u); replace u by u; in all sets in C;(u). This completes the description of the
unit capacity instance Z’. On this instance Z’, run the algorithm above: if u; is assigned to the set S
in 7', declare that u is assigned to the corresponding set S in Z (note that u is assigned to exactly
b(u) sets). (The proofs in this version do not require this kind of partitioning: it would work equally
well if we placed each set independently into a randomly chosen block (each with probability ﬁ))

Remarks about implementation. Algorithm RANDPR can be implemented by a distributed al-
gorithm. We assume that whenever the element u is to be assigned to some sets, the list of identifiers
of all the sets that u belongs to is provided explicitly. There are two types of random choices made
in the above algorithm. The first involves the choice of priorities for the various sets. These can be
made by a randomly chosen shared hash function with range [0, 1]E| By computing h(S) we obtain a
uniformly generated number in [0, 1]; we set 7(S) = h(s)ﬁ. The second type of random choices are
made while partitioning the lists that arrive with the elements. Note that these choices do not require
global coordination. Even though we state our algorithm using the unit capacity instance Z’ derived
from Z, the random choices are not required to be made right in the beginning, but can be made as
the elements arrive with their lists of parent sets.

3.2 Unit Capacity Instances

Clearly the algorithm completes a set S if and if and only if it assigns S a priority higher than that of
all other sets with whom it competes for some element.

w(S)

Lemma 2. Let N CC\ {S} . Then, Pr[r(S) > max{r(S’): S' € N}] = V) + (S

Proof. 1f the weights are all integral, then we may analyze the event in question by viewing r(S’) as
the maximum of w(S”) independent random variables, each uniformly distributed in [0,1]. For all the
sets in N U {S} put together, there are w(IN) + w(S) such variables, and, by symmetry, one of the

w(S) variables associated with S will be the maximum with probability %

When the weights are not necessarily integral, we have the following calculation. Let rp.x =
max{r(S’) : 8’ € N}. Then, for z € [0, 1] we have

Pr[rmax<x] = H PT[T(S/) <:U] _ H xw(sl) _ st’er(S/) _ Iw(N),
S'eN S’eN

namely ryax has distribution Dw( N)- Hence,

! ' s w(S)
Pr[r(S) > rmax] = / Prirmax < ] - fr(s)(@)dz = / 2N ()N = — L
0
as required. O

For aset S e€C,let N[S|={S"e€C:5nS" #0}.
> U)(D)2 .
~ 2sep w(N[S))

3Practically, any off-the-shelf hash function would do. And even theoretically, it suffices for the hash function to have
kmaxOmax-Wise independence, say using universal hashing.

Lemma 3. For any collection of sets D C C, E[w(ALG)]




Proof. By Lemma Pr[S € ALc] = 1(”(‘?)]) Thus, by linearity of expectation, we obtain

wS)  _ (Deepw(8)? _ _ w(D)

Elw(aLa)] = w(S) - > = ;
2 ) TN % Saep NS Saep (VD
where, to justify the second inequality, we used the following consequence (see [13]) of the Cauchy-
Schwarz inequality (with w(S) for a; and w(N[S]) for b;): For positive reals aj,as,...,a, and
a2 i Qi 2
b1 by, ... by: Zi?ﬁZ(Ziibi) . 0

We will apply the above lemma for two choices of D, the optimal solution OPT and the collection
C of all the sets in the instance. In both cases, we will need to derive appropriate upper bounds on
the denominator, ) ¢.p w(N[S]).

Lemma 4. For all D CC, Z w(N[S]) < (op,w)y. In particular,
SeD

Proof. Observe that

> = > Y we) < Y Y ww) = Y opwu(u) = (opw)y .

S'eD S'eD SeN[S’] uelU S’eD(u) uclU

Inequality follows from this by taking D = C. For Inequality , take D = OPT and note that
oopr(u) <1 for all u. It follows that (oopr, w)y < (1, w)y = (k, w)c. O

Proof of Theorem[1 Lemmas [3| and [4] imply that

Elw(sLc)] > max{ w(©)* w<OPT>2} _ w(@u(or)

(o,w)y” (k,w)c (o, 0y (k,w)c

where the last inequality holds because the maximum of two quantities is always at least their geometric
mean. O

Corollary (1| follows since (o, W)y < Omaxkmax - wW(C) and (k, w)c < kpax - w(C).

3.3 Instances with Arbitrary Capacities

Recall that our algorithm on a general instance Z derives a unit capacity instance Z’, and runs the
unit capacity algorithm on this instance. Note that every set in the instance Z corresponds to a set
in Z' with the same number of elements and the same weight, so we will continue to use the C, S,
k(S) and w(S) while referring to these sets. However, we will use special notation while referring to
the elements of the new instance: we use U’ to refer to the new universe of elements, and d’(u’) and
w'(u’) to refer to the degree and weighted degree of the element v’ € U’.



w(D)?
E[(dp,w')u]
Proof. This follows from Lemmas [3] and [4] and Jensen’s inequality
wo) ), ulD
(dp,whor] — E[{dp, w)v]

Lemma 5. Let D C C. Then, Elw(ALG)] >

Elw(ALG)] > E[
O

To complete our analysis we will find appropriate upper bounds for the denominator for two choices
of the subfamily D. Recall that v(u) = olu)

b(u)
Lemma 6.
E[(d, w)u] < 2(v,w)u; (5)
E[{dopr w)r] < (k,w)e + (k,w)orr < 2(k, w)c. (6)
Proof. We begin by opening out (dp,,w')yr. Fix u € U and consider its versions w1, ug, . .., up(y) in

the instance Z’. Now,

dp(udw'(u) = > > w(S)ns,s(u)

S'eD(u) S€C(u)

where ng s(u;) = 1if §" € D(u;) and S € C(u;), and ng g(u;) = 0 otherwise (that is, ng g(u;) is
the indicator function for the event S’ and S both use the same copy w; of u when the instance I’ is

constructed from T). Summing over i = 1,2,...,b(u), we have
b(u) b(u) b(u)
D dp(uu'(w) = 3, 3, Y w(Snssu) = > wS) Z
i=1 S'eD(u) SeC(u) i=1 sec(u) S/€D(u) i=1

Let us denote ZZ 1 ns.s(u;) by xs7,s(u), the indicator random variable for the event S” and S fall in
the same block in the random partition of C(u) used for constructing I' from T; thus, Pr[xgs g(u) =

1] < b( 5o if S"# S, and Prlxg g(u) =1 =11if S = 5" € D(u). We then have
b(u)
Zdl) Uz z = Z Z XSS

Sec(u) S'eD(u

We will split this sum depending on whether or not S € D(u), and whether or not S = 5.

b(u)
Dodplww'(w) = > wlS) D xssw) + Y w(S)xes(w) +
i=1 SeD(u) S'eD()\{S} S'eD(w)
> wd) Y xss(w)
SeC(w)\D(u) S/'€D(u)

Taking expectations we obtain,

deul wl e X el S w3 w28 @

S'€D(u) SeC(u)\D(u)




We are now ready to make specific choices for D to justify the inequalities claimed above. First,
we take D = C, so that the last sum vanishes, and the first two can be combined to obtain

deuz ()| < Zw(8)<%+1>.

SeC(u)

Summing over all u, we obtain

where, for the last inequality, we used % 29 )) (w). This justifies (5)).

2v
Next, to derive (6]), we take D = oPT. Note that op(u) < b(u). Then (by combining the last two
sums in (7)) we obtain

o) b(u) — 1
de ww' ()| <Y w(S)W—{— > w(s) .

Finally, summing over all u € U, we get

E[{dopr, w'hvr] < Zw(OPT( _|_Z Z

uelU uelU SeC(u

The first term is zero if b(u) = 1 for all u € U; in any case, it is at most (k, w)opr. The second term
is precisely Y ¢ k(S)w(S) = (k,w)c. Returning to (6]), we now have:

[<d/OPT7 />U’] < <k’w>C+<k’w>OPT < 2<k,’w>c

[
Proof of Theorem [ We combine Lemmas [5] and [6}
2 2
Efw(aLc)] > max{ w(C) ’ w(OPT) } > w(C)w(oPT)
2(v,w)u” 2(k, w)c 2y/(v,w)y (k,w)c
O

3.4 Some special cases

In this section we analyze algorithm RANDPR for special cases of the unit capacity model.

Graphs. When the degrees of all elements is 2, the OSP becomes an independent set problem in
graphs. The sets correspond to vertices of the graph, and the elements to its edges. The input is
presented to the algorithm as a stream of edges. Our online algorithm then achieves the following
weighted extension of Turdn’s bound, previously established by Sakai, Togasaki and Yamazaki [20]
by analyzing an offline greedy algorithm. Let G = (V| E) be the input graph, let deg(v) denote the

10



degree of v (i.e., k(5)), let w be a non-negative weight function on the vertices, and let N(v) be the
set of neighbors of v. Following [13], we define the average weighted degree of G by

deg,, (G) = —— w(v) - o(v).
@)= 4y S vl o
A w(V)
Theorem 5. If the input is viewed as a graph G, then E[w(ALG)] > ———— .
deg, (G) +1
Proof. Lemma [3] gives
w(V)? w(V)?
Elw(ALG)] > = )
WO) 2 S ) T N@) T w(V) T ey o) des(v)
The lemma follows. 0

Instances with unit weights. We have the following results when the sizes of the sets or the degrees
of the elements (or both) are assumed to be uniform. Let 6 = 2 > o(u); let 02 = 23" o (u).

=2

Theorem 6. If all sets have the same size k, then E[w(ALG)] > |oPT| - ka = -
o

Proof. From Theorem [I we have

m2 m2 TL2 5.2 2

E[jALG|] > = - = _ > 2
(o, W)y no? k2no? ko2

-w(OPT) ,

where the equality is due to the fact that mk = no always holds, and the last inequality is due to the
fact that |oPT| < n/k in the unit capacity, fixed k case. O

The following corollary of Theorem [0] is our only upper bound that is independent of o.
Corollary 7. If all sets have the same size k and all elements have the same degree, then

E[[aLc|] > ’OZT| .

opP
Theorem 7. If all elements have the same degree o, then E[|ALG|] > [oPT|

>t e

Proof. Our assumptions imply that (k,w)c = km and (o, w)y = o®n. Thus, it follows from Theorem
that

E[|aLc|] > lopT]-m
= Vkmo2n
Our claim follows from this by noting that dn = km. O
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4 Lower Bounds

In this section we prove lower bounds on the competitive ratio of online OsP algorithms. The bad
examples in our online lower bounds are all unweighted, and further, all sets have a common size k
and all elements have unit capacity. In view of Corollary [7], however, element degrees necessarily vary.
The deterministic lower bound is rather simple; the randomized lower bound is more involved, and
uses a construction based on combinatorial designs.

4.1 Deterministic Online Algorithms

In this section we establish a lower bound on the competitive ratio of any deterministic OSP algorithm.

Proof of Theorem[]]. Fix a deterministic OsP algorithm. We construct an unweighted OsP instance C
containing ¥ sets, each of size exactly k. The construction ensures that |[ALG| < 1 while |opT| > o*~1.

We describe the construction by building the sets incrementally, as a function of the algorithm at
hand. Call a set active at a given time if the algorithm assigned to it all its elements up to that point.

k—i

Initially, all 0% sets are active. After each phase i = 1,..., k& there will be at most o active sets.

k=i collections of o sets

This is ensured by partitioning the sets that are active before phase i into o
each; for each such collection of o sets we introduce a new element, which is a member of these o
sets. Clearly, at most one set from each collection remains active when the phase ends, and therefore

|aLG| < 1 after k phases.

Note that at this point most sets have less than k elements defined. We now introduce new elements
to complete all sets to size k. All these elements have degree one (i.e., each belongs to a single set).

Observe that in an optimal solution, it is possible to complete o*~! sets by assigning the first
phase elements to sets that were not chosen by the algorithm. These sets survive, since they do not
participate in the following & — 1 phases. The theorem follows. ]

4.2 Randomized Algorithms

We now turn to the main technical contribution of Section 4t developing lower bounds for the com-
petitive ratio of randomized OSP algorithms and establishing Theorem We show that for several
settings of the parameters, the upper bound on the competitive ratio guaranteed by our randomized
algorithm is nearly optimal. For this, we will describe suitable probability distributions on instances
such that the expected size of the solution returned by any deterministic algorithm is much smaller
than the optimal offline solution. It will follow from Yao’s min-max principle that every randomized
algorithm, for its worst-case input instance, suffers the same limitation.

4.2.1 Gadgets

Before we formally prove our lower bounds, let us consider an example.

Example 1. Fix a positive integer ¢. Consider the (deterministic) OSP instance Iy consisting of
one element and ¢ identical singleton sets A, Ag, ..., Ay. There are ¢ optimal solutions S; = {A;}.
Any algorithm, when presented with this instance, will have to assign the element to one of the sets
immediately. We will exploit this early commitment to design harder input instances.

12



Now, suppose ¢ independent instances Iy are presented to the algorithm (that is ¢2 sets on ¢
elements) one after the other. Call these instances I&,Ig, .. ,Ié. Recall that each instance Ig has /¢
optimal solutions; we call them Si(Ig ), for i =1,2,...,¢. Any deterministic algorithm must commit
to one solution for each Ig. Now, pick an s € [¢] uniformly at random, and introduce a new element e
and place it in all sets other than those in Ss(Ig) for j =1,2,...,¢. The optimal solution, Uj Ss(Ig),
has ¢ sets, but the expected size of the solution produced by any deterministic algorithm is at most 2.

We now build on the ideas contained in the above examples. The instances we produce below will
depend on a parameter £. We will assume that ¢ is a large prime power.

Definition 1 (Gadget). A (3, €)-gadget is a random OSP instance I with the following properties.

(a) There exist ¢ disjoint solutions to I, denoted Si (1), S2(I),...,Se(I), each of size exactly |C(I)|/¢.
These solutions will be referred to as the standard solutions.

(b) For any solution S of I, SN S;(I) # 0 for at most one i € [¢].

(c) For any deterministic algorithm ALG, Pr m?é)]( laLa(I)NS;(I)| > B < e
ic

Example 2 (Trivial gadget). The instance I defined above is a (1,0)-gadget.

Our goal is to produce a (3, €)-gadget I for small € (not 0 though) and 8 much smaller than C(I)/¢.
The trivial gadget in Example [2| does not achieve this (in fact, 5 = |C(I)|/¢). Nevertheless, it forms
the basis for our later nearly optimal gadgets.

4.2.2 Powering the gadget

We will consider a method for obtaining larger gadgets from smaller ones by taking their powers.
(Refer to Figure [1f for illustration.)

Product construction: Consider a gadget I with |C(I)| a (positive) power of ¢. The ¢-th power
of I is obtained from I as follows. First, ¢ independently generated instances of I are presented one
after the other; we refer to them as I, I2,..., It (For example, if I is the gadget Iy of Example
then this amounts to presenting ¢2 singleton sets supported on a universe of ¢ elements.) Recall that
each I/ comes with ¢ standard solutions: S;(I7),Sa(I7),...,S¢(I7). The weak product 1) is obtained
by performing the following shuffling and weak binding operations on these instances.

Shuffling: The shuffling step combines the standard solutions of the copies to produce the standard
solutions of the ¢-th power. Let 71,9, ..., m be random permutations of [¢], each independently
and uniformly chosen from the set of ¢! possibilities. The standard solutions of the new instance
I are defined by setting

¢
Si(1Y) = U SWj(i)(Ij)

j=1
fori=1,2,...,¢.

Weak binding: In the weak binding step, we introduce new elements (whose exact structure will be
determined later on) to bind the solutions such that the following two conditions hold.

13



S 7 S
{ {
7
1 1
{
Sy 1 Sy
(a) weak product (b) strong product
Figure 1: A matrix view of the standard solutions S, Ss, ..., S, (rows) and the instances I', 12, ..., I

(columns). In the shuffling step of the weak product construction (depicted by , each permutation
m; shuffles the standard solutions S (17),S2(17),...,S,(I7) of I so that the new standard solution
S;(I) gets one cell from each column j (the one corresponding to Sﬂj(i)(ﬂ )). The collating step
of the strong product construction uses the identity permutation for all j € [¢]. A single row of the
matrix (that corresponding to S;(I¥)) is then “kept alive” by the strong binding step (depicted by

(b))

(i) I S €S(IY) and T € S;(I0), i # 4, then SNT # 0.
(i) For all j € [{] and for all S,T € S;, SNT = 0.

This ensures that any solution to the new instance I®) may use sets from only one of the standard
solutions S;(I9).

We also need a slightly different product construction. The strong product I¥! is is obtained by
performing the following collating and strong binding (instead of shuffling and weak binding) operations
on the instances I', 1%, ..., I*.

Collating: The collating is similar to the shuffling step in the construction of the weak product,
only that here we use the identity permutation for ¢ = 1,2,...,¢; we then obtain £ families
S1(111), Sy (1), ..., Sp(I?) just as we did while constructing I¥) above.

Strong binding: Of the ¢ potential standard solutions, we choose one uniformly at random; denote its
index by i € [(]. We then introduce new elements (once again, their structure will be determined
later on) such that the following condition holds.

(iii) SNT = 0 if and only if both sets S and T are in the standard solution S;(119).

This ensures that any solution can save at most one set from outside S;(719). Note that in
contrast to the weak product I¥), the strong product I is not a gadget; in particular, the
families Sy (1), ..., 81 (I¥), S; 1 (1), ..., Sp(11) are not valid solutions anymore.

We now turn to analyze how well a deterministic algorithm might perform on our powering prod-
ucts. This analysis will not depend on the implementation of the binding steps, as long as conditions
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(i), (ii), and (iii) are respected (the first two for weak binding; the third one for strong binding).
However, the implementation of the binding steps affects other parameters of our lower bound such
as the sizes of sets, the number of elements, and their degrees. To show that the performance of
the randomized algorithm established in Section [3] is nearly optimal, careful binding schemes will be

designed in Sections and

Lemma 8. If I is a (f3,€)-gadget, then the weak product I¥) is a (5 - lzzlﬁ)ggi,ﬁ_s + €l)-gadget.

Proof. After I', 1% ... I are presented to a deterministic algorithm, the sets it saves from I’ reside
within just one of its standard solutions, say S;. (1 7). Since I is a (3, €)-gadget, by the union bound,
the probability that any of these solutions exceeds 3 is at most e/. We now present a routine balls and
bins argument to show that our shuffling ensures that only a small number of these saved sets can fall
inside any one standard solution of 1.

When the permutations are chosen at random, the probability that ¢ of the &;, (I7)’s (where the
sets saved by the deterministic algorithm are confined) are mapped to any fixed standard solution of

D) = ()6 =0

Fort = K 10log ¢ >—‘ , the RHS of the last inequality is at most £=°. Finally, using the union bound (to

I® is at most

loglog ¢
account for all ¢ standard solutions of the new instance), we conclude that

Pr |max [ac(I") N S;(17)] > 3 - e |
J loglog?

The assertion follows. O

Example 3. Let [} = Iég) and [, = Ifg). Since Iy is a (1,0)-gadget, I; is an (liglﬁgggzg,f_s)—gadget.

2
Consequently, I is an <<1£(;11%gg€€ ) 726—7> -gadget.

Lemma 9. If I is a (3, €)-gadget, then the strong product I satisfies E[|aLc(I)]] < 1+8+3IC(I)].

Proof. Consider the sets saved by the algorithm just before the new elements are presented to it (in
the strong binding step). We know that all the sets saved from I’ reside in a single standard solution
S;,(17), and the expected number of such sets is at most 8+ €[S, (17)| = B+ (§)|C(I)|. It follows that
the expected total number of sets saved by the algorithm before the new elements are presented to it
is at most £(8 + (£)|C(I)]). Now, since i is chosen uniformly at random out of [¢], only a fraction % of
these sets are mapped to S;(1 [Z]). Once the strong binding is applied, the algorithm can save at most
one set outside S;(119). The assertion follows. O

Example 4. Ij is a (1,0)-gadget. Thus, the expected number of sets saved by any deterministic
algorithm when presented with I([f] is at most 2.

10log¥¢
loglog ¢

)2,2077)-gadget with £3 sets. Thus, the expected number of sets saved

by any deterministic algorithm when presented with _72[5] is at most

10logl\* _ . [0 10log ¢\ 2
2/ — | < 2.
+ <loglog€> + (6 ~ \loglog¥ +
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We will soon show that the bounds stated in Examples [4] and [5] are all we need. But first, we turn
to bound other parameters, namely, the degrees of the elements and the sizes of the sets.

4.2.3 Implementation of the binding steps
In this section, we formally describe some constructions based on affine planes.

Lemma 10. Let t be a prime power and let r < t.

(A) Let Fi,Fo,...,F be disjoint families with t sets each. It is possible to assign t> new elements
to the sets in these families such that (1) each element is assigned to exactly one set in each F;;
(2) for every i,j € [r], i # j, S € F, and T € Fj, there is a unique new element assigned to
SNT; and (3) each set receives exactly t new elements.

(B) Let F be a family of tr sets. It is possible to assign t> +r new elements to the sets in this family
such that (1) for every S, T € F, S # T, there exists a unique new element in SNT; (2) of the
new elements, t> have degree v and the remaining r have degree t; and (8) each set is assigned
exactly t degree-r elements and 1 degree-t element.

Proof. We begin with the proof of part (A). Identify [¢t] with the field F; and [r] with a subset of F;
of cardinality r. Index the elements in F; using elements of [t], referring to its i-th element as F;(4).
The t? elements we introduce will be called ey, where a,b range over F;. The element ey, is assigned
to the sets Fj(aj +b), j € [r]. (Recall that we view [r] as a subset of F;, and so we may perform
field arithmetic using the index j € [r].) It is easy to verify that this assignment has the required
properties; in particular, the unique element assigned to F; (i) N Fj (i') is eq, where a = (' —14)/(j' — j)
and b= —(i'j — i)/ - ).

For part (B), partition F into r equal parts Fi, Fa,...,F, and introduce t* new elements of the
form eq, as in part (A). Further, add  new elements, fi, fo,..., fr, and assign f; to the ¢ sets in F;.
The assertion follows trivially. O

Now, consider the weak binding step used in constructing the gadget 1) from I. Let s denote
the number of sets in I. Recall that s is a (positive) power of ¢, hence s is also a prime power.
New elements are introduced as suggested by Lemma [L0(A) with ¢t < s, r « ¢, and the families
Fi,Fa,...,Fr replaced by the standard solutions S;(I9),So(1)),...,S,(I®). This immediately
yields the following.

Corollary 11. Let I be a gadget with |C(I)| = s sets. We can implement the weak binding step needed
for constructing I'Y) by introducing s> new degree-f elements, in such a way that each set gets s new
elements.

For the strong binding step, we use two different implementations that will be presented in the
next section.

4.2.4 Optimality

We now revisit the constructions described in the aforementioned examples. Corollary [L1] yields the
following account of the weak products.
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Gadget Sets Elements OPT E[ALG]
2
B m=t k=22 4042  n=20(140(1)) e O((lo{;ﬁf;g) )
Omax = 02 — €, 5 = 0(0)
g m=1{2 k=2 n=1{+1 ¢ <2
Omax =02 — 0,6 <20+1

Table 1: The parameters of the random OSP instances corresponding to the gadgets 12[41 and I([)a. The
fourth column presents the size of an optimal solution (of any OSP instance in the support), while the
fifth column presents the expected size of the solution returned by any deterministic algorithm ALG.

e The gadget Iy consists of ¢ sets of size 1 and a single element of degree .

e The gadget I = I(()e) consists of £2 sets. In addition to the ¢ original elements, it also contains
¢? new elements. The size of each set is £ + 1; the degree of each new element is .

e The gadget Io = Iy) consists of 3 sets. In addition to the £ (¢2 + ¢) = ¢3 + ¢? original elements,
it also contains ¢4 new elements. The size of each set is 2+ ¢+ 1; the degree of each new element
is £.

]

The strong binding step is used twice in our examples: once in the construction of I([)e and once

2[41_ We now turn to present how these constructions are implemented, starting

in the construction of I.
with the former. I(ga consists of ¢ independent instances of Iy. After the collating step, we have ¢2
sets, arranged in ¢ disjoint families Sl(I([f]), So (I([)@), .. ,Sg(I([)q) so that the sets within the same family
S; ([([)e]) are pairwise disjoint. All we have to do now in order to implement the strong binding step is
to pick some i € [¢] uniformly at random and to introduce a single new element appearing in every
set S € Sj(I([)ﬂ) such that j # ¢. In fact, the second OSP instance in our introductory Example (1| does
exactly that, hence it can be described as I([)@. Note that the sets in Sj(I([)@), j # i, are of size 2 while
the sets in Si(I([)a) are of size 1. To keep the set sizes uniform, we assign one additional new element

to each set in SZ-(Ig]) (a total of ¢ additional degree-1 elements).

Now, consider the random OSP instance Ig]. Recall that it consists of #* sets, of which £3 belong
to S;. We apply Lemma B) with t « 2, r «— (2 — ¢, and the family F replaced by the union
S1U---USi-1USi1U---US; (containing (£ —1) - £3 = £2. (£2 — ¢) sets). The lemma guarantees that
SNT #( for every two sets S, T such that S,T ¢ S;. Since the new elements do not involve the sets
of S;, the design of the collating step implies that S NT = @ for every two sets S,T € S;. In addition
to the £+ (044 £3 4 (%) = % + ¢* + /3 original elements (each of degree £), O(¢*) new elements of degree
O(£?) are introduced so that each set in S; U---US; 1 US; 1 U---USy gets £2 4+ 1 new elements. To
keep the set sizes uniform, we introduce ¢? + 1 additional new elements, each of degree 1, for every set
in S; (a total of £3 - (£2 + 1) = 5 + (3 additional new elements).

Combined with Lemmas [§] and [9] we obtain the parameters depicted by Table [l Theorem [3] is
now established by Yao’s principle as cast in the following two corollaries.

Corollary. For every randomized OSP algorithm ALG and for every £y, there exist some £ > £y and
some instance I in the support of Ig} with sets of size k = O(2) and mazimum degree omax = O(£?),
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2 ~
such that oPT(I) = 63 = Q(kmaxr/Fmax) and E[aLG(])] = O ((log’ﬁé Z) ) = 0(1).

Corollary. For every randomized OSP algorithm ALG and for every £y, there exist some £ > fy and
some instance I in the support of I([]Z] with sets of size k = 2 and mazimum degree omax = O(£2), such

that OPT(I) = £ = Q(kmax/Omax) and E[ALG(I)] = O(1).

5 Conclusions and Open Problems

We have introduced a new variant the online set packing problem and presented a competitive algo-
rithm that solves it. Many questions remain open in this area. We mention a few major ones.

e It seems interesting to generalize the problem to arbitrary packing problems, where the entries
in the matrix are arbitrary non-negative integers.

e Recalling the networking motivation, it is interesting to understand the effect of buffers on the
problem.

e We studied the scenario where the benefit of a set is collected by the algorithm only if all its
elements were assigned to it. In some cases, the benefit may be collected even if some elements
are missing. What is the effect on the upper and lower bounds in this case? (cf. [15]).
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