
Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs∗

Leah Epstein† Magnús M. Halldórsson‡ Asaf Levin§ Hadas Shachnai¶

Abstract

Motivated by applications in batch scheduling of jobs in manufacturing systems and
distributed computing, we study two related problems. Given is a set of jobs {J1, . . . , Jn},
where Jj has the processing time pj , and an undirected intersection graph G = ({1, 2, . . . , n}, E),
with an edge (i, j) whenever the pair of jobs Ji and Jj cannot be processed in the same
batch. We are to schedule the jobs in batches, where each batch completes its processing
when the last job in the batch completes execution. The goal is to minimize the sum
of job completion times. Our two problems differ in the definition of completion time of
a job within a given batch. In the first variant, a job completes its execution when its
batch is completed, whereas in the second variant, a job completes execution when its own
processing is completed.

For the first variant, we show that an adaptation of the greedy set cover algorithm gives
a 4-approximation for perfect graphs. For the second variant, we give new or improved
approximations for a number of different classes of graphs. The algorithms are of widely
different genres (LP, greedy, subgraph covering), yet they curiously share a common feature
in their use of randomized geometric partitioning.

1 Introduction

Batching is defined as follows (see e.g. Chapter 8 in [3]). A batch is a set of jobs that can
be processed jointly. The completion time of a batch is the last finishing time of a job in the
batch. Usually, one defines the completion time of a job in a batch as the completion time
of the batch that contains it. In the p-batch set of problems, the length of a batch is defined
as the maximum processing time of any job in the batch. The s-batch set of problems has a
different definition for the length of a batch, namely, it is partitioned into a setup time and the
sum of the processing times of the jobs in the batch. In this paper we study p-batch problems.

Consider a communication network (e.g., an optical network), which consists of a set of
vertices V = {1, . . . , n} interconnected by a given topology; any pair of vertices communicates
through a prespecified path. Given is a set of requests Ri = [ai, bi], where ai, bi ∈ V ; each
request Ri has a length pi, meaning that during a period of pi time units the communication
links along the path connecting ai and bi must be dedicated to the processing of Ri. When
communication is synchronous, time is divided into disjoint periods (or phases); during such
a period, each link is dedicated to at most a single request, so the processing of this request

∗An extended abstract of this paper appeared in Proceedings of the 9th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX ’06), pp. 116–127.

†Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il.
‡School of Computer Science, Reykjavik University, 103 Reykjavik, Iceland. mmh@ru.is.
§Department of Statistics, The Hebrew University, 91905 Jerusalem, Israel. levinas@mscc.huji.ac.il.
¶Department of Computer Science, The Technion, Haifa 32000, Israel. hadas@cs.technion.ac.il.

1

starts at the beginning of the period and ends at some point within the same period. When
the processing of all requests assigned to the same time period is completed, this time period
ends, and the system starts serving the requests of the next time period. A set of requests
can be modeled as an undirected graph, in which the vertices represent the requests, and two
vertices are adjacent if the paths of the corresponding requests contain common edges. In each
time period, an independent set in this graph can be processed. In the special case where the
network topology is a line, the intersection graph of the requests is an interval graph. Motivated
by the above scheduling problem and other batch scheduling problems arising in manufacturing
systems and in distributed computing (see below) we study two related problems.

Definitions. 1 In the minimum sum of batch completion times problem (MSBCT), we are
given a set of jobs J = {J1, . . . , Jn}, where Jj has processing time (or length) pj , 2 and an
undirected intersection graph G = (V,E), where V = {1, 2, . . . , n}; there is an edge (i, j) ∈ E
if the pair of jobs Ji and Jj cannot be processed in the same batch. In each time period we can
process a batch of jobs that forms an independent set in G. A batch is completed when the last
job in the batch finishes its processing, and all the jobs in a batch terminate once the batch
is completed. The goal is to minimize the sum of job completion times, where the completion
time of a job is the completion time of its batch. In other words, the goal is to partition V
into independent sets, and to sort these independent sets, so that the weighted sum of batch
completion times is minimized, where the weight of each batch (or, an independent set) S is
the number of vertices in S, and its processing time is equal to the maximum processing time
of any job in S.

The minimum sum of job completion times problem (MSJCT) is similar to MSBCT,
except that each job can terminate as soon as its processing is completed, i.e., a job need not
wait until the end of processing of the entire batch. However, jobs can still only be started
when a batch starts.

Related problems. Our two batch scheduling problems generalize the sum coloring problem
defined as follows. Given an input graph G = (V,E), find a proper coloring f of V so that∑

v∈V f(v) is minimized, where a proper coloring of V is a function f : V → N, such that
for all (u, v) ∈ E, f(u) 6= f(v). Halldórsson et al. [14] considered a family of graph classes,
denoted below by F , defined as those for which the maximum `-colorable induced subgraph
problem is polynomial time solvable, for any value of `. This family includes interval graphs,
comparability graphs and co-comparability graphs (see [9, 27]). They presented a randomized
1.796-approximation algorithm and a deterministic (1.796 + ε)-approximation algorithm for
the sum coloring problem on graphs belonging to classes in F . This last result improves an
earlier 2-approximation algorithm of Nicoloso, Sarrafzadeh and Song [21] for sum coloring
interval graphs. Bar-Noy et al. [1] gave a 4-approximation for sum coloring perfect graphs, a
2-approximation for line graphs and a k-approximation for k + 1-claw free graphs (which are
graphs that contain no induced star with k + 1 leaves). They also showed that sum coloring
on general graphs is hard to approximate within factor n1−ε, unless P = NP. We note that
sum coloring is the special case of both MSBCT and MSJCT when all processing times are
identical. Due to the hardness result for sum coloring general graphs, which applies also to
our problems, we consider MSBCT and MSJCT only on special families of graphs.

1MMH3: How about shortening the names of the problems to SBC and SJC?
2MMH3: Should we specify the domain of the pj?

2

Feige, Lovász and Tetali [8] extended the definition of sum coloring to the following variant
of set cover, called minimum sum set cover problem (MSSC). We are given a collection of
subsets S1, S2, . . . , Sm of a base set S = {1, 2, . . . , n}. A feasible solution is an ordering π
of a subset S ′ of 1, 2, . . . ,m, such that

⋃
X∈S′

X = S, and for each element j of the base set

we incur a cost i, such that j ∈ Sπ(i) and j /∈ Sπ(k) for all k < i. The goal is to find an
ordering that minimizes the total cost. They obtained a 4-approximation algorithm for MSSC
by showing that a greedy algorithm for sum coloring perfect graphs attains the same ratio for
MSSC. In the context of a set system, this algorithm is equivalent to the well-known greedy
algorithm for the classical set cover problem that selects in each iteration the set that covers
the most number of uncovered elements [18, 19]. They further showed that this approximation
ratio is best possible unless P = NP . A weighted generalization of this problem, motivated
by database applications, was considered recently by Munagala et al. [20]. In this problem,
each subset S` has a weight c`. For an element j of the base set, let i be an index such that
j ∈ Sπ(i) and j /∈ Sπ(k) for all k < i. The cost incurred by j is

∑i
`=1 c`. They showed using

linear programming that an application of the weighted greedy set cover algorithm (see [5])
gives a 4-approximation for this problem as well. Note that the above results can be applied
to MSBCT on perfect graphs. In a graph, the sets Si are given implicitly, however, in perfect
graphs we can compute a maximum independent set in polynomial time. Recall also the
following properties of perfect graphs (see e.g. [23]): a subgraph of a perfect graph is a perfect
graph, and graph coloring is polynomial-time solvable in perfect graphs.

In the maximum independent set (MIS) problem, we are given an undirected graph G =
(V,E), and the goal is to find a subset U of V where E does not contain an edge between a
pair of vertices in U , such that the size of U is maximized. This problem is well-known to
be NP-hard on general graphs (see problem [GT20] in [11]). However, there are graph classes
for which it is solvable in polynomial time (e.g., perfect graphs [13] and line graphs [7]), and
there are graph classes for which there are efficient approximation algorithms. In this paper,
we denote by ρ ≤ 1 the best known approximation ratio of MIS on the graph class containing
the graph in question.

MSJCT was introduced by Bar-Noy et al. [2], who presented a 16-approximation for per-
fect graphs, and, more generally, a 16/ρ-approximation. No other results have been previously
reported for this problem.

1.1 Applications of MSBCT and MSJCT

Batch production A manufacturing system consists of a set of production lines, to be
loaded with raw material for processing/assembling the various products. A subset of the
products can be batched and manufactured in parallel in a certain shift if each uses a distinct
set of production lines. Suppose we are given a list of orders for products, and the goal is to
find a production schedule which minimizes the average completion time of an order. Thus,
we want to partition the orders to batches, to be run in a sequence of shifts. We can model the
problem as an undirected graph, where each vertex represents an order (=product), and two
vertices are adjacent if the corresponding products share the use of certain production line.
This yields an instance of MSJCT.

Scheduling in Distributed Systems Batch scheduling of conflicting jobs is used in dis-
tributed operating systems (see, e.g., [25]). In such systems, the scheduler identifies subsets
of non-conflicting or cooperating processes that can run concurrently (e.g., because these pro-

3

cesses do not use the same resources or communicate frequently with each other); each subset is
then executed simultaneously on several processors, until all the processes in the subset have
completed. Thus, the problem of finding a schedule that minimizes the sum of completion
times of all processes can be modeled as an instance of MSBCT with a general conflict graph.

1.2 Our Results

We describe below our main results for MSBCT and MSJCT. In Section 2 we define the
extension of the greedy algorithm and its analysis (due to [8]) to obtain a 4

ρ -approximation
algorithm for MSBCT, for any graph class with a a ρ-approximation for MIS. Note that the
case ρ = 1 also follows from the results of [20], but with a different proof technique.

In Section 3 we consider MSJCT. Let e ≈ 2.71828 denote the base of the natural log-
arithm. We first present a 2e ≈ 5.437-approximation algorithm for the problem on interval
graphs, and later obtain a better bound of 1.296e + 3/2 + ε ≈ 5.022 for any graph class that
belongs to F . The first two algorithms can be combined to obtain an improved bound of
4.912 for interval graphs. Then, we show a 4e

ρ -approximation algorithm. We also show that
the classical greedy algorithm (given in Section 2) provides an alternative 4e

ρ -approximation
for MSJCT. Thus, both of these algorithms yield combinatorial 4e ≈ 10.873-approximation
for perfect graphs and line graphs, and a (2ek + ε)-approximation for (k + 1)-claw free graphs
(based on a 2/(k + ε)-approximation for MIS by Hurkens and Schrijver [15]). Finally, in Sec-
tion 4 we present a general LP-based scheme for batch scheduling that yields a bound of 9.9
for perfect graphs, and 9.9 + o(1) for line graphs.

Our results for MSJCT yield significant improvements over previous bounds; in particular,
the bounds that we derive for interval graphs, line graphs and perfect graphs improve upon
the uniform bound of 16 obtained for these graph classes in [2]. We summarize the known
results for MSJCT in Table 1. New bounds given in this paper are shown in boldface, with
the previous best known bound given in parenthesis. The reference to previous results is [2].

Graph class MSJCT
General graphs n/ log2 n

Perfect graphs 9.9 (16)
Family F 5.022
Interval graphs 4.912 (16)
k-colorable graphs 1.544k + 1
Bipartite graphs 2.796
k + 1-claw free graphs 2ek + ε

Line graphs 9.9 + o(1) (16)

Table 1: Known results for batch scheduling of conflicting jobs under minsum criteria

Techniques: While the algorithms that we develop for various graph classes are inherently
different and tailored to exploit the intrinsic properties of each graph class, the approaches at
the core of these algorithms share a common thread in the crucial use of randomized geometric
partitioning. This technique has an extensive history for non-graph problems; see [4] for a
recent survey on its applications to online problems. Our main partitioning lemma (Lemma 3)
uses randomized rounding to partition the jobs into length classes, which enables to improve

4

the bound of 16 obtained in [2] for MSJCT, to 4e. Our algorithm for the family F (see in
Section 3.4) randomizes on `, and then finds an `-colorable induced subgraph, from which to
construct batches. Finally, our LP-based scheme (in Section 4) combines randomized parti-
tioning in two different ways after solving a linear programming relaxation of the problem. We
show that the resulting algorithms can be derandomized while preserving their approximation
ratio within an additive ε, for any ε > 0. We believe that this powerful technique will find
more applications in solving other scheduling and partitioning problems.

2 Approximating MSBCT

In this section we present the greedy algorithm for MSBCT, and show that it yields a 4
ρ -

approximation for the problem. Our proof follows a similar proof of [8] for the unweighted
case, MSSC.

Greedy(G)
While G is non-empty do:

For each j = 1, 2, . . . , n do:
Let Gj be the induced subgraph of G over the vertex set {j′ : pj′ ≤ pj}.
Find a ρ-approximate independent set Sj in Gj .

Let j = argminj′=1,2,...,n
pj′
|Sj′ |

.
Schedule the independent set Sj in the next pj time units.
Remove Sj from G.

Theorem 1 Greedy yields a 4
ρ -approximation for MSBCT.

Proof. Let Xi be the independent set (Sj) of jobs found by Greedy in iteration i, for i =
1, 2, Let Ri be the set of jobs that are still not processed prior to the i-th iteration and
note that Xi ⊆ Ri. Denote by Pi = max{pj : j ∈ Xi} the processing time of the batch Xi. For
each j ∈ Xi we define the price of job j to be price(j) = |Ri|·Pi

|Xi| . Then, the cost of Greedy is
given both by

∑
i Pi · |Ri| and by

∑n
j=1 price(j).

Consider the following histogram corresponding to OPT. There are n columns, one for
every job, where the jobs are ordered from left to right by the order in which they were
processed by the optimal solution (breaking ties arbitrarily). The height of a column is the
time step at which the job was completed by the optimal solution (i.e., the time in which
the batch that contains the job is completed). Hence, we get a histogram with nondecreasing
heights. The total area beneath this histogram is exactly OPT.

Consider now a different diagram corresponding to the greedy solution. Again there are n
columns, one for every job, and in analogy to the previous diagram, the jobs are given in the
order in which they were processed by Greedy. But unlike the previous diagram, the height
of a column is not the time step by which the job was completed, but rather its price. Hence,
the heights are not necessarily monotone. The total area of the histogram is exactly the total
price, i.e., the cost of the greedy solution. We would like to show that the area of the second
histogram is at most 4

ρ times that of the first. To do this we shrink the second histogram by a
factor of 4

ρ as follows. We shrink the height of each column by a factor of 2
ρ . Hence, the column

heights are price(j)ρ
2 . We also shrink the width of each column by a factor of two. Hence, the

5

total width of the second histogram is now n
2 . We align the second histogram to the right.

Namely, it now occupies the space that was previously allocated to columns n
2 + 1 up to n

(assume for simplicity of notation and without loss of generality that n is even). Now we claim
that this shrunk version of the second histogram fits completely within the first histogram,
implying that its total area is no more than that of the first histogram. This suffices in order
to prove the approximation ratio of Greedy.

Consider an arbitrary point q in the original second histogram, let j be the job to which it
corresponds, and let i denote the iteration of Greedy in which we chose to process job j (i.e.,
j ∈ Xi). Then the height of q is at most price(j), and the distance of q from the right hand
side boundary is at most |Ri|. The shrinking of the second histogram maps q to a new point
q′. We now show that q′ must lie within the first histogram. The height of q′, which we denote
by h, satisfies h ≤ |Ri|·Pi·ρ

2|Xi| , and the distance of q′ from the right hand side boundary (which

we denote by r) satisfies r ≤ |Ri|
2 . For this point q′ to lie within the first histogram, it suffices

to show that by time step h, at least r jobs are still not completed by the optimal solution.
Consider now only the jobs in the set Ri. No independent set whatsoever can complete

more than |Xi|
Pi·ρ jobs from Ri per time unit. Hence, in h time units the optimal solution could

complete processing at most h|Xi|
Piρ

≤ |Ri|·Pi·ρ
2|Xi| · |Xi|

Pi·ρ = |Ri|
2 jobs from Ri, leaving at least |Ri|

2 jobs
of Ri that the optimal solution still has not completed. Hence, the point q′ indeed lies within
the first histogram.

Corollary 2 Greedy yields a 4-approximation for MSBCT on perfect and claw-free graphs.

3 Approximating MSJCT via Length Rounding

The outline of the algorithms is as follows: In the preprocessing phase, all of our algorithms
partition the jobs into classes according to their processing times and round up the processing
time of each job to the maximum processing time of a job in its class. Then, each batch
that we generate is devoted to a single class of jobs. For each class of graphs, we design a
specialized algorithm to find an approximate partition of each class into batches. Then, all of
our algorithms find an optimal sequence of the resulting batches using Smith’s rule.

3.1 Preprocessing

In this subsection we present our preprocessing step and analyze the degradation of the per-
formances caused by the preprocessing. We first introduce a randomized version of the prepro-
cessing, and derandomize it afterwards. W.l.o.g., we may assume that the minimum processing
time is at least e.

Length Rounding
Pick uniformly a random number α in the range [0, 1), i.e., α ∼ U[0, 1).
Partition the jobs into (length) classes according to their processing times,
i.e., let J0 = {j : pj ≤ eα}, and Ji = {j : ei−1+α < pj ≤ ei+α}.
Denote by k the largest index of a non-empty length class.
For each i = 0, 1, . . . , k and each job j in Ji,
round up the processing time of job j to p′j = ei+α.

6

We now show that by partitioning the input into the length classes Ji, rounding up the
processing times (as done in Length Rounding) and requiring that each batch contain only
jobs from a single class, we lose a factor of at most e.

One might first wonder why it is important to use randomization. It may be helpful to
consider the following related simplified problem. We have to come up with a number that is
at least as large as a secret value. We will then guess some sequence until the last value is as
large as the secret. Our cost will be the sum of all the numbers guessed. The best deterministic
strategy is to keep doubling the guesses, starting with a sufficiently smallest initial guess. This
is susceptible to the worst case when the secret is just incrementally smaller than the second-
to-last guess, yielding a factor of 4. By randomizing the starting guess, we can avoid this
worst case, reducing the expected cost. Increasing the doubling factor to e now gives the best
possible tradeoff between the expected cost incurred by the previous guesses and the expected
overshoot of the last guess. In the problem versions of this paper, the “secret” corresponds to
the contribution of each node, on average, to the cost of the optimal solution. We now proceed
with the analysis.

For a fixed value of α, denote by OPTα an optimal solution to the instance in which we use
the rounded up processing times p′j and the solution must satisfy the additional requirement
that for each batch the jobs scheduled in the batch have a common length class. Denote
also by OPTα the cost of OPTα. Recall that we similarly let OPT refer to both a fixed
optimal solution and its cost. Let p(V) =

∑
v∈V pv denote the sum of job processing times,

and p′(V) =
∑

v∈V p′v be the sum of rounded processing times.

Lemma 3 E[OPTα] ≤ e ·OPT, where the expectation is over the random choice of α.

Proof. We shall show how to replace each batch of OPT with a sequence of batches, each
containing identical length class jobs, while satisfying the stated bound on the total cost.

Consider a fixed batch B of OPT with job set J . Let x be such that the maximum
processing time of a job in J is ex (i.e., x = ln maxj∈J pj), and let imax = dx− αe. Note that
imax + α ≥ x. We replace B with a set of batches B = {Ji ∩ J : i = 0, 1, . . . , imax}. The total
processing time of B is at most

imax∑
i=0

ei+α ≤ eimax+α · e

e− 1
. (1)

To bound the expected processing time of B, it suffices to show that E[eimax+α−x] = e − 1,
since the processing time of B is ex. Since α is uniformly distributed in [0, 1), so is the random
variable dx− αe − (x− α) = imax + α − x. The claim regarding the length of the batch then
follows by noting that for u ∼ U[0, 1), E[eu] =

∫ 1
u=0 eudu = e1 − e0 = e− 1.

We also need to show that the completion time of a job j within the set of batches replacing
its batch also grows by an expected multiplicative factor of e. The proof is largely identical to
the above. Indeed, suppose that a job j has original length ey, so its processing time within
the batch B was ey. Letting i′ = dy − αe and rounding the job length to ei′+α, the time until
the new batch of j is completed is now at most

∑i′

i=0 ei+α ≤ ei′+αe/(e − 1). Similar to the
above, to get the ratio between the expected completion time of j in its new batch and its
original completion time, it suffices to show that E[ei′+α−y] = e − 1, which gives the ratio of
e.

We next fix a value of α and show how to design algorithms that approximate OPTα within
constant factors. Then, using Lemma 3, the approximation ratio of the combined algorithms
will be e times these constants. In fact, we can obtain a slight improvement.

7

Lemma 4 Let G′ be the graph with rounded processing times. Suppose an algorithm finds a
solution of expected cost X on G′ (with expectation taken over values of α). Then, the expected
cost of the algorithm on G is X − (p′(V)− p(V)) = X − (2− e)p(V).

Proof. We note that a job does not need to wait until the end of its rounded-up processing
time, but ends as soon as the original processing time (from the start time of the job) elapses.
Therefore, for each job v we gain p′v − pv time units when we consider the output as a solution
to the original instance of MSJCT, instead of a solution to the rounded-up instance. The
reduction in the cost is then p′(V)− p(V).

We claim that E[p′(V)] = (e − 1)p(V). To see that, observe that for a given job j, the

random variable
E[p′j]

pj
= E

[
p′j
pj

]
is equivalent to eu, where u ∼ U(0, 1]. We have already found

in the proof of Lemma 3 that E[eu] = e− 1, establishing the claim.

3.1.1 Derandomization of the preprocessing step

A result of Lemma 3 is that there exists a value of α whose effect on the rounding and
classification is an increase of the total cost by a factor of at most e.

In order to derandomize the algorithm we can use a finite number of values for α that are
δ > 0 apart, and obtain an increase of the approximation ratio of the preprocessing step within
ε > 0 where ε is a linear function of δ. We refer to [14], for such approach.

In the following, we argue that it is enough to test O(n) values of α so that the performance
guarantee of Lemma 3 will not be hurt. To see this, note to begin with that each job length
can fall into at most two length classes, since α is from [0, 1). Different values of α result in
different class partitions if and only if at least one job moves from one class to another class.
This means that there are at most n threshold values of α in which a job moves from one class
to another class. Each value is related to at least one job. Moreover, the best value of α is a
result of picking one of these n values, and choosing α, so that the job which relates to this
threshold value gets a rounded value which is its exact original value. This holds since if no
such job (that is not actually rounded) exists, then decreasing α to the closest such threshold
will result in a solution which is not worse.

Picking the best solution among the at most n solutions (obtained for the different values
of α that we test) is clearly at least as good as picking α randomly. Thus we obtain a
derandomization technique without an increase of the performance guarantee of Lemma 3.

Remark 3.1 A similar derandomization method can be applied to the randomized algorithm
of [14] for the sum coloring problem on a graph that belongs to F . This gives a deterministic
1.796-approximation algorithm, improving the deterministic 1.796+ε approximation algorithm
of [14].

3.2 The final step of the algorithms

To approximate OPTα, we use a different algorithm for each class of graphs, so the choice of
algorithm depends on the smallest class to which the graph G belongs. In the next sections we
present approximation algorithms for interval graphs, and for graphs that belong to F , and
finally we show that a greedy algorithm is a 4

ρ -approximation algorithm. Recall that ρ is the
best known approximation ratio for the maximum independent set problem on the smallest
graph class that contains the input graph. However, the final step of the algorithms is identical
and is therefore presented now.

8

We assume that the algorithm has determined a partition of the jobs of each length class
into batches. Therefore, we have a set of batches, each is a set of jobs with a common (rounded-
up) processing time, and we need to schedule the batches so as to minimize the sum of job
completion times.

We note that such an ordering can be found optimally using Smith’s rule [24, 3]. Sort the
batches according to a non-decreasing order of the ratio of the weight of the batch divided
by the (common) processing time of the jobs in the batch, where a weight of a batch is the
number of jobs assigned to this batch.

Since we find an optimal ordering of the batches, in our analysis we can consider some
fixed ordering (that may depend on the structure of the optimal solution), and note that our
algorithm will return a better solution than the one indicated by some other (sub-optimal)
order of the same batches. It remains to show how to partition the jobs of each length class
into a set of batches.

3.3 Interval graphs

Nicoloso, Sarrafzadeh, and Song [21] designed a 2-approximation algorithm for sum coloring
interval graphs. It computes, for all ` = 1, 2, . . . , χ(G), a maximum `-colorable induced sub-
graph G` of G in a greedy fashion from left to right according to an interval representation
of G (that can be found in polynomial time [12]). Given the output of such a process, they
showed that for all ` > 1, G` contains G`−1 and the difference graph G` −G`−1 is 2-colorable.
Thus, their algorithm simply colors G1 using color 1, and colors the difference graph G`−G`−1

using colors 2`− 2 and 2`− 1.
For the rounded-up instance resulting from the preprocessing step we apply the algorithm

of [21] on each length class Ji separately to partition it into batches (and then apply the final
step of the algorithm described in Section 3.2).

Theorem 5 The resulting algorithm for interval graphs is a 2e-approximation algorithm.
Moreover, the algorithm constructs a solution with cost at most 2eOPT− 2p′(V) + p(V).

Proof. The algorithm runs in polynomial time since a maximum size `-colorable subgraph
of an interval graph can be found in polynomial time, independent of ` [27]. The algorithm
returns a partition of the job set, and therefore yields a feasible solution. It remains to prove
its approximation ratio. We will first show that after fixing α to a constant value in [0, 1), our
algorithm approximates OPTα within a ratio of two.

Given OPTα we create another solution denoted as SOL whose odd numbered batches are
the batches of OPTα and even numbered batches are empty. The cost of SOL is then exactly
twice the cost of OPTα minus p′(V) . Using Lemmas 3 and 4, it suffices to show that our
algorithm returns a solution that costs at most the cost of SOL.

Denote by Gi the subgraph of G induced by the jobs of length class Ji. For any `, consider
the set L`

i of the first 2`−1 batches in SOL that were allocated to a particular length class Ji.
Of these, at most ` (the odd-numbered ones) are non-empty. Each one is an independent set
and therefore the number of jobs n` that are executed during these batches is at most the size
of a maximum `-colorable subgraph of Gi. Therefore, the solution returned by the algorithm
places in the first 2`− 1 batches allocated to Ji at least n` jobs. This holds for any value of `.

We define a sub-optimal order of the batches constructed by the algorithm (from all length
classes). Batch k of length class i is placed in the exact spot that SOL places the kth batch
of this class. At each point in time, the resulting solution completes at least as many jobs as

9

SOL does from every class. Therefore, the cost of the solution returned by the algorithm in
this sub-optimal order of the batches is at most the cost of SOL. Since the algorithm returns
the optimal order of the batches, we conclude that the algorithm returns a solution whose cost
is at most the cost of SOL.

3.4 Graphs that belong to F

We recall that given a graph G that belongs to F , for any ` ≥ 1, we are able to compute in
polynomial time a maximum size induced subgraph of G that is `-colorable.

We require the use of an algorithm A that is a fully polynomial time dual approximation
scheme for the following variant of the Knapsack problem. In this variant, we are given a
fixed budget B on the total size of all the packed items, each item can be packed at most
n times, and packing ` times of item i yields a profit that is a monotonically non-decreasing
integer valued function of `. The solution returned by A must have total size within (1 + ε)
multiplicative factor of the budget (i.e., at most (1 + ε)B), and total profit of packed items
of at least the total profit of the optimal solution that uses only total size that is at most the
given budget. Further, A should run in time polynomial in n and 1

ε . We will show how to
implement A in the sequel.

For each length class Ji, denote by Gi the subgraph of G induced by the vertices that
correspond to the jobs of Ji.

Our scheduling algorithm operates in iterations as follows. The algorithm creates a set of
batches in each iteration. The length of the iterations (referring to the sum of the batch lengths
formed in the iteration) grows geometrically between iterations. In each iteration, given the
current bound on the length, we pack a maximum number of jobs into batches, using a total
length of time within a 1 + ε factor of the required length.

Pack Subgraphs

1. Apply Length Rounding

2. Pick uniformly at random a number β from the range [0, 1) (independently of α). I.e.,
β ∼ U[0, 1). Set t = 0, and set q to a constant value to be determined later.

3. While G is not empty do:

(a) For i = 0 to k do:
ai = qi+α.
For ` = 1 to |Ji| do:

Let Wi,` be the vertex set of a maximum size `-colorable subgraph of Gi.

(b) Form a Knapsack instance where the profit from packing ` copies of the i-th element
is ci(`) = |Wi,`|, the size of the i-th element is ai, and the total budget B on the total
size of elements placed in the knapsack is qt+β. Apply Algorithm A to approximate
this Knapsack instance.

(c) For i = 0 to k do:
Assume that the approximate solution places bi copies of the i-th element. Then, we
use exactly bi batches for the length class Ji, and fill them by the jobs corresponding
to a maximum size bi-colorable induced subgraph of Gi (each batch formed by a
color class of the subgraph).

10

(d) Remove the selected jobs from G and increase t by 1.

4. Apply the final step.

We now turn to analyze the performance of Pack Subgraphs.

Lemma 6 Pack Subgraphs returns a feasible solution in polynomial time, for any q > 1.

Proof. The algorithm terminates right after an iteration t that assigns the last remaining jobs
in G. Observe that t ≤

⌈
logq

(∑
j p′j

)⌉
, since this budget allows all jobs to be packed, e.g.

each job in its own batch. Thus, the number of iterations is polynomial of the input size,
since processing times are given in binary in the input. Each iteration is polynomial-time
computable, since the graph G belongs to a graph class in F . The feasibility of the returned
solution follows since each batch packed is an independent set of G.

Consider the jobs sorted according to non-decreasing completion times in the solution
returned by Pack Subgraphs. Consider now the r-th job according to this order. Assume
that this job belongs to the set of batches created in an iteration τ . We define the modified
completion time of this job to be

πr = (1 + ε) ·

(
τ−1∑
i′=0

qi′+β +
qτ+β

2

)
.

Intuitively, the modified completion time will represent the halfway point in the processing of
the set of batches containing the job. Define also π(V) =

∑n
r=1 πr.

Instead of analyzing the solution we achieved, which orders all batches optimally by apply-
ing the final step, we analyze a solution which assigns the batches of each iteration consecu-
tively. At each time the algorithm defines a set of batches for a new iteration, it assigns them
right after the batches of the previous iteration. To assign the current batches, it is possible to
use Smith’s rule. In this way, the algorithm chooses the best order of these batches. Applying
Smith’s rule on the complete set of batches results in a solution that is not worse than this
solution.

Lemma 7 For any fixed value of α, the cost SOLα of the solution returned by Pack Subgraphs
is at most π(V) + p′(V)/2.

Proof. Consider the set Sτ of jobs selected in a given iteration τ = t of the while loop. By the
performance guarantee of A, we conclude that we use in this iteration a set of batches with
total processing times of at most (1 + ε) · qτ+β. Therefore, the time στ that a job waits for the
sets of batches from previous iterations is at most (1 + ε) ·

(∑τ−1
i′=0 qi′+β

)
.

It remains to consider the time spent on waiting on other jobs selected within the same
iteration. Define the service time of a job to be the intra-iteration completion time of the
job, i.e. its completion time less στ . Consider an arbitrary ordering of batches and its exact
opposite order. The sum of the service time of a job j under the two orders equals the length
of the batch plus the length of the job, or (1 + ε) · qτ+β + p′r. The ordering based on Smith’s
rule does no worse than the average of the two orders. Hence, the sum of the job service times
in Sτ is at most |Sτ |(1 + ε) · qτ+β

2 +
P

j∈Sτ
p′j

2 .

Consider now the class C of solutions that given the length rounding parameterized by α,
assign jobs of different rounded processing times to different batches. For any natural number

11

r, denote by dr the minimum time in any solution from C that is needed to complete at least
r jobs from V , and let

d(V) =
n∑

r=1

dr.

It is straightforward to see that dr is at most the completion time of the r-th job according to
OPTα. Summing up over all the vertices, we have the following observation.

Observation 8 d(V) ≤ OPTα.

We note that the variables dr, as well as OPTα and p′r are all random variables of α but
independent of β. The variable πr is also a random variable of α.

We next bound π(V) in terms of d(V).

Lemma 9 Let q be the root of the equation lnx = x+1
x , that is q ≈ 3.591. Then, for any fixed

α, we have that Eβ [π(V)] ≤ (1 + ε) · 1.796 · d(V).

Proof. Let δr = qτ+β for all r such that τ is the minimum index of an iteration such that we
are able to pack at least r jobs during the first τ iterations. By definition, as noted above, the
following inequality holds: πr ≤ (1 + ε) ·

(∑τ−1
i′=0 qi′+β + qτ+β

2

)
≤ (1 + ε) · qτ+β ·

(
1

q−1 + 1
2

)
.

We now turn to bound E[δr
dr

] where the expectation is over the random selection of β. Let
s be a real number such that dr = qs+β. Then, τ ≤ dse, and δr

dr
= qτ−s ≤ qdse−s. Since

β ∼ U[0, 1), so does dse − s, and therefore E[δr]
dr

= E
[

δr
dr

]
≤ E

[
qdse−s

]
=
∫ 1
0 qxdx = q−1

ln q .
Therefore, we establish the following inequality:

Eβ

[
n∑

r=1

πr

]
≤ (1 + ε) ·

(
1

q − 1
+

1
2

)
· Eβ

[
n∑

r=1

δr

]

≤ (1 + ε) · q + 1
2(q − 1)

· q − 1
ln q

·
n∑

r=1

dr

= (1 + ε) · q + 1
2 ln q

· d(V) .

We choose q ∼ 3.591 to minimize the expression q+1
2 ln q ∼ 1.796.

Theorem 10 Pack Subgraphs is a randomized (1.296e + 3
2 + ε)-approximation algorithm

for MSJCT on graphs that belong to classes in F .

Proof. Consider first the cost SOLα of the solution returned by the algorithm for a fixed value
of α. By Lemma 7, the expected sum of starting times of the jobs, over the random choice of
β, is at most Eβ[π(V)]− p′(V)/2. Thus, by Lemmas 7 and 9 and Observation 8,

Eβ [SOLα] ≤ Eβ [π(V)]− p′(V)/2 + p(V)
≤ (1 + ε) · 1.796 · d(V) + p(V)− p′(V)/2
≤ ((1 + ε) · 1.796 · e)OPTα + p(V)− p′(V)/2 .

We now bound the cost SOL of the algorithm solution in expectation over the random
choices for α. We showed in the proof Lemma 4 that Eα[p′(V)] = (e− 1)p(V) ≤ (e− 1)OPT .

12

The optimum cost is also easily bounded from below by both p(V) and by OPTα/e. Hence,
the expected cost of the algorithm’s solution is bounded by

E[SOL] ≤ Eα[((1 + ε) · 1.796 · e)OPTα + p(V)− p′(V)/2]

≤ (1 + ε) · 1.796 ·OPT +
(

1− e− 1
2

)
p(V)

≤ OPT ·
(

(1 + ε) · 1.796 · e +
3
2
− e

2

)
.

The claim then follows by adjusting the definition of ε appropriately.

In order to derandomize the algorithm, we could use a finite number of values for β that
are δ > 0 apart, and obtain an increase of the approximation ratio of the resulting algorithm
within ε(δ) > 0 where ε(δ) = eδ. This is so because by picking the best value of β denoted as β∗

from the interval [0, 1) we can only improve the approximation ratio of the resulting algorithm,
and since we test a value that is larger than β∗ by at most δ, then the budget used for each
iteration increases by a multiplicative factor of at most eδ, and the claim follows. By scaling
ε and δ accordingly, we can derandomize the algorithm without increasing the approximation
ratio. Hence, we establish the following.

Proposition 11 There is a deterministic (1.296 · e + 3
2 + ε)-approximation algorithm for

MSJCT on graphs that belong to F .

Note that this also improves the bound of Theorem 5 for interval graphs to 5.022.
We next analyze an improved algorithm for interval graphs, that combines the two algo-

rithms.

Theorem 12 Consider the algorithm that runs Pack Subgraphs and the algorithm for in-
terval graphs of Section 3.3, and picks the better solution. It achieves a 4.912-approximation
for MSJCT on interval graphs.

Proof. By Theorem 5, the cost of the solution is at most 2eOPT − 2p′(V) + p(V). Since
we have already established that E[p′(V)] = (e − 1)p(V), we have that the expected cost
E[SOL] of the returned solution (whose cost is the minimum of the two outputs) satisfies
E[SOL] ≤ 2eOPT−(2e−3)p(V). By the proof of Proposition 11, we conclude that E[SOL] ≤
(1.796e + ε)OPT +

(
3−e
2

)
p(V). We multiply the first inequality by 3−e

3e−3 and the second
inequality by 4e−6

3e−3 . Then, we obtain E[SOL] ≤ (1.807e + ε)OPT ≈ 4.912 ·OPT.

We note that since both algorithms can be derandomized without affecting the approxima-
tion ratio, the same applies to this combined algorithm.

Implementing Algorithm A It remains to show how to implement Algorithm A for our
Knapsack problem. Our algorithm is similar to the dual fully polynomial time approximation
scheme for the 0-1 Knapsack problem [16]. We fix a value of ε such that 0 < ε < 1.

We first present an exponential time dynamic programming procedure which produces an
optimal solution of the problem. The input is an integer budget B, a set of k integer sizes
a1, . . . , ak of items, and a profit function ci(`) for each size ai (for 1 ≤ ` ≤ n). For 1 ≤ i ≤ k
and 0 ≤ b ≤ B, we denote by Fi,b the maximum possible total profit from packing the items
i, i + 1, . . . , k using a total size of at most b (our goal is to compute F1,B).

13

KnapDP

1. for b = 0 to B set Fk+1,b = 0.

2. for i = k downto 1 do:
for b = 0 to B do:
Fi,b = max`=0,1,...,n{Fi+1,b−`ai

+ ci(`)}, where Fi+1,b = −∞ if b < 0.

Given the values of Fi,b for all i and b, we compute an optimal solution by back-tracking
the optimal path that leads us to the value of F1,B.

We next follow the method of trimming the state-space (see [26]) in order to transform
KnapDP into a dual fully-polynomial time approximation scheme. To do so, we define a set
of budget sizes B =

{
−1, 0, 1, (1 + ε

2k), (1 + ε
2k)2, . . . , (1 + ε

2k)blog1+ ε
2k

Bc
, B
}

. We next note
that for a fixed value of i the sequence Fi,−1 = −∞, Fi,0, Fi,1, . . . , Fi,B is monotonically non-
decreasing.

In our approximated scheme we will follow KnapDP and compute Fi,b for all i and for all
b ∈ B, and when referring to values of Fi+1,b such that b /∈ B we use the smallest value of B
that is larger than b instead. For an integer number b ≤ B we denote next(b) the minimum
element of B that is at least b, i.e., next(b) = min{b′ ≥ b : b′ ∈ B}. Our algorithm is stated as
follows.

KnapDualFPTAS

1. for all b ∈ B \ {−1}, set F̃k+1,b = 0 and set F̃k+1,−1 = −∞.

2. for i = k downto 1 do:
for all b ∈ B do:
F̃i,b = max`=0,1,...,n {F̃i+1,next(b−`ai) + ci(`)}.

We can extend the definition of Fi,b to non-integer values of b to denote the maximum profit
of items i, . . . , k using a total size of at most b. Clearly Fi,b = Fi,bbc.

Lemma 13 Fi,b ≤ F̃i,b, for any i = k + 1, k, . . . , 1 and any b ∈ B.

Proof. The proof is by induction on i. The base case of i = k + 1 trivially holds as Fk+1,b =
F̃k+1,b for any b ∈ B. We assume that the claim holds for i + 1 and show the claim for i.

F̃i,b = max
`=0,1,...,n

{F̃i+1,next(b−`ai) + ci(`)} ≥ max
`=0,1,...,n

{Fi+1,next(b−`ai) + ci(`)}

≥ max
`=0,1,...,n

{Fi+1,b−`ai
+ ci(`)} = Fi,b ,

where the first inequality holds by the assumption, and the second inequality holds by the
monotonicity of Fi+1,b.

Therefore, we conclude that the solution that KnapDualFPTAS returns (via backtracking
the path of F̃1,B) has a total profit that is at least F1,B and therefore at least the profit of the
optimal solution (that packs items with total size at most B). It remains to show that the
total size of the packed items is at most (1 + ε)B.

14

Lemma 14 The total size of the packed items in our solution is at most (1 + ε)B.

Proof. The total size in each iteration of the outer loop of Step 2 increases at most by a
multiplicative factor of 1 + ε

2k . Therefore, the total size of the packed items is at most B ·(
1 + ε

2k

)k ≤ B · e
ε
2 ≤ B ·

(
1 + ε

2 + ε2

4

)
≤ B · (1 + ε), where the inequalities hold since ε < 1

and ex ≤ 1 + x + x2 for x < 1.79.

By lemmas 13 and 14 we conclude that KnapDualFPTAS is an implementation of Algo-
rithm A. Therefore, we establish the following proposition.

Proposition 15 There is a polynomial time implementation of Algorithm A.

Proof. To prove this, we only need to show that |B| is of polynomial size, which is equivalent
to showing that log1+ ε

2k
B is polynomially bounded. Using x

1+x ≤ ln(1+x), which holds for all

positive values of x, we get log1+ ε
2k

B = ln B
ln 1+ ε

2k
≤ 2k(1+ ε

2k
) ln B

ε . Using ε < 1, we get an upper

bound of 4k ln B
ε , which is polynomial in the binary representation of B and in the size of the

input.

3.5 A 4
ρ
-approximation algorithm

In this section we analyze the greedy algorithm from Section 2, to approximate the sum coloring
instance defined as the set of jobs from Ji. I.e., we first apply the preprocessing step and then
each class is approximated separately. Then, we order the resulting batches according to our
final step using Smith’s rule.

Theorem 16 There is a 4e
ρ -approximation algorithm for problem MSJCT .

Proof. By Lemma 3, the expected cost of OPTα is at most e times the cost of OPT. On
the rounded-up instance, both our greedy algorithm and OPTα construct batches where each
batch has a common processing time for all its jobs. Therefore, on the rounded-up instance,
the two problems MSBCT and MSJCT are identical. Hence, by Theorem 1, the cost of the
greedy solution is at most 4

ρ times the cost of OPTα, and therefore it is a 4e
ρ -approximation

algorithm for MSJCT.

Recall that MIS can be solved in polynomial time on line graphs, and within 2/k− ε factor
on k + 1-claw free graphs for any ε > 0 [15]. Thus, we have

Corollary 17 MSJCT can be approximated within factor 4e on line graphs and 2ek + ε for
any ε > 0 on k + 1-claw free graphs.

We now show that the greedy algorithm applied directly gives the same ratio.

3.5.1 The greedy algorithm

In this section we show that the greedy algorithm of Section 2 provides the same approximation
ratio for MSJCT as the above algorithm. We denote by OPTJ the optimal cost for MSJCT,
and by OPTB the optimal cost for MSBCT on the same instance.

We know that the cost of the solution returned by the greedy algorithm when considering
the objective of MSJCT, denoted as greedyJ , is at most the cost of the same solution when
considering the objective of MSBCT, denoted as greedyB. By Theorem 1, we conclude that

15

greedyJ ≤ greedyB ≤ 4
ρ ·OPTB. We note also that OPTJ ≤ OPTB. In order to show that

the greedy algorithm yields a constant approximation for MSJCT, we prove the following
lemma.

Lemma 18 OPTB ≤ eOPTJ .

Proof. Consider OPTα which was defined in the statement of Lemma 3 to be an optimal
solution to an instance in which we use the rounded up processing times p′j . We further
required that the solution must satisfy an additional requirement that for each batch, the
jobs scheduled in the batch have a common class. Note that OPTα is the same for both
problems, since in each batch, all jobs have the exact same rounded processing time. Since
in this solution jobs are only rounded up, we have OPTB ≤ OPTα. According to Lemma 3,
choosing α randomly gives E[OPTα] ≤ e ·OPTJ . Clearly, this means that there exists a value
of α which we denote by α1 for which OPTα1 ≤ e ·OPTJ . Combining the two inequalities we
get OPTB ≤ OPTα1 ≤ eOPTJ .

We summarize in the next result.

Theorem 19 The Greedy algorithm of Section 2 yields a 4e
ρ -approximation for MSJCT .

4 Approximating MSJCT via Linear Programming

In the following we describe a general scheme based on solving a linear programming formu-
lation of our batch scheduling problems. We apply this scheme to obtain improved ratios for
MSJCT in perfect graphs and in line graphs.

4.1 A Scheme for Non-preemptive Scheduling

Our scheme builds on one presented in [10] for the problem of minimum sum multicoloring
graphs. The sum multicoloring problem is essentially the same as MSJCT, only without the
restriction that jobs be started in batches. Namely, we are to find a non-preemptive schedule
of the jobs, satisfying the non-concurrency of conflicting jobs, so as to minimize the sum of
completion times of all jobs. For the sake of completeness, we first give an overview of the
scheme of [10].

We first consider the following integer programming formulation. For each edge (u, v) ∈ E,
there is a pair of variables δuv, δvu ∈ {0, 1} such that δuv = 1 if u precedes v in the schedule,
and 0 otherwise. Let Nv denote the set of neighbors of v in G. We denote by C1, . . . , CMv the
set of maximal cliques in the subgraph induced by Nv.

(IP) minimize
∑
v∈V

fv

subject to: ∀v ∈ V, ∀r, 1 ≤ r ≤ Mv : fv ≥ pv +
∑
u∈Cr

puδuv (2)

∀uv ∈ E : δuv + δvu = 1
∀uv ∈ E : δuv ∈ {0, 1}

In the linear relaxation of IP denoted as LP we replace the binary constraint with δuv ≥ 0. Let
f∗

v denote the completion time of job Jv in the optimal solution for LP . Let OPT ∗ =
∑

v f∗
v

be the cost of an optimal solution for LP . Recall that p(V) =
∑

v∈V pv and p′(V) =
∑

v p′v.

16

After solving LP ,3 we partition the jobs to blocks of increasing f∗
v values as follows. Let

α be a value chosen uniformly at random from [0, 1), and β = 3.5911. Let L be the smallest
value such that βα+L ≥ p(V). Define V` = {v ∈ V : βα+`−1 < f∗

v ≤ βα+`}, ` = 0, . . . , L, to be
the subset of vertices whose f∗

v values fall in the interval (βα+`−1, βα+`].
We apply to each block V` an algorithm A for non-preemptive multicoloring (i.e., schedul-

ing) that minimizes the total number of colors used (i.e., the makespan of the schedule).
Finally, we concatenate the schedules obtained for the blocks, taking first the schedule for V0,
then the schedule for V1 and so on, ending with the schedule for VL.

For a block V`, let ω(V`) be the maximum size of a clique in the subgraph induced by V`.
We require that the coloring algorithm A gives an approximation in terms of the maximum
clique size. Namely, let ρ be such that

A(V`) ≤ ρ · ω(V`), for ` = 0, 1, . . . , L.

The following result is given in [10].

Theorem 20 Let G be a graph with processing times pv, and let A and ρ be given as above.
Then, the LP schema gives a non-preemptive schedule of G, whose sum of completion times of
the jobs is at most 3.591ρOPT ∗ + p(V)/2.

4.2 The Scheme for MSJCT

Consider the following algorithm for solving an instance of MSJCT.

Algorithm Job Batch (JB)

1. Apply Length Rounding (of Section 3.1) for partitioning J to length classes
by rounded processing times.

2. For any pair of jobs Ji, Jj that belong to different classes, add an edge (i, j)
in the intersection graph G. Denote the resulting graph G′.

3. Solve LP for the input jobs with rounded processing times and intersection
graph G′.

4. Partition the jobs in the input into blocks V0, V1, . . . , VL, by their LP comple-
tion times.

5. Schedule the blocks in sequence using for each block a coloring algorithm for
unit length jobs.

Note that in Step 5 we use for each of the blocks an ordinary coloring algorithm and not a
multi-coloring algorithm.

Theorem 21 JB approximates MSJCT within a factor of 9.761ρ + (1− e−1
2).

Proof. Observe that after adding the edges to G and rounding up the lengths, any non-
preemptive solution to G′ is a solution for MSJCT on G′ (and on G). Let OPT (G′) denote

3We refer below to graph classes for which LP is solvable in polynomial time.

17

the cost of a minimum cost solution to MSJCT on G′ with rounded processing times. Note
that OPT (G′) = OPTα. By Theorem 20, the sum of completion times in the solution output
by JB is at most 3.591ρOPT ∗ + p′(V)/2. Observe that OPT ∗ ≤ OPT (G′) and, by Lemma 3
and its derandomization, OPT (G′) ≤ e ·OPT (G). It follows that the sum of completion times
of all jobs with non-rounded processing times is at most 3.591ρeOPT (G)− p′(V)

2 +p(V). Thus,

E[JB] ≤ 3.591ρe ·OPT (G) + p(V)− E[p′(V)]
2

≤ 9.761ρ ·OPT (G) + p(V)(1− e− 1
2

) .

The second inequality follows from the fact that E[p′(V)] = (e− 1)p(V), and since OPT (G) ≥
p(V), this gives the statement of the theorem.

We note that in general LP may not be solvable in polynomial time on G′. Indeed, this
is due to the fact that the number of maximal cliques in the neighborhood of each vertex in
G′ may be exponential, leading to an exponential size LP. In the following we give a condition
that will be used for applying JB to certain graph classes.

Lemma 22 If the maximum weight clique problem is polynomial-time solvable on G, then LP
can be solved in polynomial time for G′.

Proof. We give a polynomial-time separation oracle which, given a solution to LP , tests
whether all constraints are satisfied (with arbitrary precision). This leads to a polynomial
time algorithm for solving LP .

Given a solution for LP and a vertex v ∈ V , we set for each vertex u ∈ Nv, p′u = puδuv.
Compute the maximum weight clique in each length class in Nv (in G) with respect to p′ using
the assumed clique algorithm for G, and take the union of these cliques. Given the way G′ is
constructed, this gives a maximum weight clique in Nv. We can then simply test whether fv

satisfies the constraint (2) by checking whether the inequality holds for this maximum weight
clique. Testing the other constraints is trivial.

In particular, the weighted clique problem and the coloring problem are polynomial-time
solvable on perfect graphs [13].

Corollary 23 JB is a 9.9-approximation algorithm for MSJCT on perfect graphs.

The number of maximal cliques of a line graph is at most n, thus LP is solvable in poly-
nomial time. Each block can be colored by Vizing’s theorem (see e.g., in [17]) using at most
ω(V`) + 1 colors. Therefore, we have that ρ = 1 + o(1). We conclude the following theorem.

Theorem 24 JB is a 9.9 + o(1)-approximation algorithm for MSJCT on line graphs.

More generally, if we have line multigraphs, we can apply the recent polynomial time
approximation scheme of Sanders and Steurer [22] for edge coloring multigraphs. This gives
us ρ = 1 + ε, for any ε > 0, and a ratio of 9.9 + ε for MSJCT.

5 Concluding Remarks

We have shown the usefulness of combining various forms of randomized geometric partitioning
to obtain improved approximation ratios for generalizations of weighted sum coloring, such as
batch scheduling with minsum objectives. We expect that such combined techniques would
be useful in solving other scheduling problems involving graph coloring constraints. We have

18

found that certain randomization techniques are more suitable for certain classes of graphs.
Thus, in applying these techniques, we distinguish, e.g., between interval and comparability
graphs, and the classes of line and perfect graphs.

Our results leave open the approximability (and hardness) of MSBCT and MSJCT on
several natural classes of graphs, including k-trees, trees, or even paths. On the other hand,
we are not aware of any non-trivial graph class that is polynomially solvable (beyond stars).

References

[1] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic
sums and distributed resource allocation. Inf. Comput., 140(2):183–202, 1998.

[2] A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, R. Salman, and H. Shachnai. Sum multi-
coloring of graphs. J. of Algorithms, 37(2):422–450, 2000.

[3] P. Brucker. Scheduling Algorithms, 4th ed. Springer, 2004.

[4] M. Chrobak, C. Kenyon-Mathieu. Online algorithm column 10: Competitiveness via
doubling. SIGACT News, Dec. 2006.

[5] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4:233–235, 1979.

[6] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson and A. S. LaPaugh. Scheduling file
transfers. SIAM J. Comput. 14:744–780, 1985.

[7] J. Edmonds. Paths, trees, and flowers. Canad. J. Math 17:449–467, 1965.

[8] U. Feige, L. Lovász, and P. Tetali. Approximating min sum set cover. Algorithmica,
40(4):219–234, 2004.

[9] A. Frank. On chain and antichain families of a partially ordered set. Journal of Combi-
natorial Theory Series B, 29:176–184, 1980.

[10] R. Gandhi, M. M Halldórsson, G. Kortsarz and H. Shachnai, Improved Bounds for Sum
Multicoloring and Scheduling Dependent Jobs with Minsum Criteria. 2nd Workshop on
Approximation and Online Algorithms (WAOA), Bergen, September 2004.

[11] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. W. H. Freeman & Co., New York, 1979.

[12] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[13] M. Grötschel, L. Lovász and A. Schrijver. Polynomial algorithms for perfect graphs, Topics
on Perfect Graphs, 325–356, North-Holland Math. Stud., 88, North-Holland, Amsterdam,
1984.

[14] M. M. Halldórsson, G. Kortsarz, and H. Shachnai. Sum coloring interval and k-claw free
graphs with application to scheduling dependent jobs. Algorithmica, 37(3):187–209, 2003.

[15] C. A. J. Hurkens, and A. Schrijver. On the size of systems of sets every t of which have
an SDR, with an application to the worst-case ratio of heuristics for packing problems.
SIAM J. Discrete Math., vol. 2, 1989, pp. 68–72.

19

[16] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of the ACM, 22(4):463–468, 1975.

[17] T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley-Interscience Series in Discrete
Optimization, 1995.

[18] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Sciences, 9:256–278, 1974.

[19] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13:383–390, 1975.

[20] K. Munagala, S. Babu, R. Motwani, and J. Widom. The pipelined set cover problem. In
Proc. of the 10th International Conference on Database Theory (ICDT2005), pages 83–98,
2005.

[21] S. Nicoloso, M. Sarrafzadeh, and X. Song. On the sum coloring problem on interval graphs.
Algorithmica, 23(2):109–126, 1999.

[22] P. Sanders, D. Steurer. An Asymptotic Approximation Scheme for Multigraph Edge Col-
oring. In Proc. of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
897–906, 2005.

[23] A. Schrijver. Combinatorial optimization: Polyhedra and efficiency. Algorithms and
Combinatorics Series Vol. 24. Springer, 2003.

[24] W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3:59–66, 1956.

[25] A. S. Tanenbaum. Distributed Operating Systems. Prentice-Hall, 1995.

[26] G. J. Woeginger. When does a dynamic programming formulation guarantee the exis-
tence of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on
Computing, 12(1):57–74, 2000.

[27] M. Yannakakis and F. Gavril. The maximum k-colorable subgraph problem for chordal
graphs. Information Processing Letters, 24(2):133–137, 1987.

20

