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Abstract. We consider the problem of topology control of a wireless
ad-hoc network on a given set of points in the plane, where we aim to
minimize the maximum interference by assigning a suitable transmission
radius to each point. By using computational geometric ideas and e-net
theory, we attain an O(v/A) bound for the maximum interference where
A is the interference of a uniform-radius ad-hoc network. This gener-
alizes a result given in [7] for the special case of highway model (i.e.,
one-dimensional problem) to the two-dimensional case. We also give a
method based on quad-tree decomposition and bucketing that has an-
other provable interference bound in terms of the ratio of the minimum
distance to the radius of a uniform-radius ad-hoc network.

1 Introduction

Mobile wireless ad-hoc networks are an important subject in recent studies on
communication networks. In a popular model, each mobile device is considered
as a point (called node) in the Euclidean plane, and each node has a disk of a
given transmission radius. Two nodes can communicate with each other if they
are located within each other’s disks.

The transmission radius is a monotone function of the electric power given to
the node, which we assume to be a controllable parameter. Topology control in-
volves assigning a suitable transmission radius to each node to form a connected
network while minimizing some non-decreasing objective function of the radii.
The most frequently studied objective is to minimize the power consumption, or
the sum of the electric power given to the nodes. Making disks small has also
another benefit, that is, to reduce the interference. Interference at a node is the
number of disks containing it, and high interference increases the probability of
packet collision of packets. Therefore, it is desirable to keep a low interference
at every node.

Topology control for minimizing interference is bound to be a different task
from that of minimizing energy. Traditionally, this has been addressed implicitly
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by reducing the density of the communication graph. Burkhart et al. [2], however,
showed that low interference is not implied by sparseness. Also, that networks
constructed from nearest-neighbor connections can fail dismally to bound the
interference. On the other hand, they gave experimental results that indicate
that graph spanners help reduce interference in practice. Their work prompted
the explicit study of interference minimization. Moscibroda and Wattenhofer [?]
gave nearly tight approximation algorithms that bound the average interference
of nodes.

The recent work of Rickenbach et al. [7] is the starting point of our study.
They introduced the problem of bounding the maximum interference at a node,
and gave algorithms for the special case where all the points are located on a
line, called the highway model. Their algorithm constructs a network with an
O(v/A) interference, where A is the interference of a uniform radius network,
while it is shown that there exists an instance that requires 2(y/n) interference.
They also showed that the better one of a naive network and the above O(v/A)
interference network attains a O(A'/*) approximation ratio.

For the two-dimensional problem, analogous results have not been reported
yet (to the authors’ knowledge). In this paper, we show that we can construct a
network with an O(v/A) interference for any point set in the plane, extending the
theory of [7] to the planar case (and even for any constant-dimensional space).
We also give a network with an O(log(R/d)) interference, where d is the mini-
mum distance between points and R is the minimum radius of a uniform-radius
network to attain connectivity. Our results rely on computational geometric tools
such as local neighbor graphs, e-nets, and quad-tree decompositions.

2 Mathematical formulation and terminology

We are given a set V = {vy,vs,...,v,} of points in a plane. For each v;, we
assign a positive real number r(v;) called the transmission radius. This can be
considered as a radius assignment function

T:V—>]R>0.

Consider the set D = {Dy, Ds, ..., Dy} of disks, where D; has radius r(v;) and
its center at v;.

We define a wireless network on V, that is the graph G(D) = (V, E), where
we have an undirected edge (v;,v;) if and only if v; € D; and v; € D;. In other
words, v; and v; can directly communicate since they are within the transmission
radius of each other. We say that the wireless network G(D) is feasible iff it is
connected.

The interference of D at a point p is the number of disks in D covering p.
That is,

I(D,p) = |{i:p € Di}|.



The interference of a wireless network G(D) is *

max{I(D,p)|p € K*}.

The interference minimization problem is to find a radius assignment r to give
a feasible network with the minimum interference.

One natural approach is to increase all radii uniformly until the the graph
becomes connected. Let R,,;, be the infimum of the radius such that the network
becomes connected, and refer to the network with all radii set to R,,;, as the
uniform-radius network. Let A denote the interference of the uniform-radius
network.

Although the problem is clearly an N P-optimization problem, it seems to
be very difficult to find the optimal wireless network. Indeed, even the special
case where all points V are located on a line (highway model) is considered
to be difficult (although NP-hardness result is not known). Thus, we seek for a
practical solution with some theoretical quality guarantee, in particular an upper
bound of the interference or an approximation ratio to the optimal solution.

2.1 Review for the highway model

We briefly review some results for the highway model given by Rickenbach et
al. [7]. Suppose that points of V' are located on the z-axis in the sorted order
with respect to their z-values.

Then, a naive method is to set r(i) = max(d(v;,v;—1),d(v;,vi+1)) for i =
1,2,...,n, where we set vo = vi and v, 11 = v,,. It is easy to observe that G(D)
associated with this radius function is feasible: the network is called the linear
network. Unfortunately, there is an example named ezponential chain instance
for which the linear network poorly performs. In the exponential chain, the
points satisfies that d(v;,v;11) = 2! for i = 1,2,...n— 1, and it is easy that the
interference of the point vy is n — 1 in the linear network.

We can use a hub-connected network to reduce the worst-case interference.
The general idea is as follows: We find a subset W C V of points called hubs and
first construct the linear network of hubs. Then, for each v € V' \ W, we set

r(v) = Inin, d(v,w);

namely, v connects to its nearest hub. If we select every /n-th points in V' as
a hub, we have a set W of cardinality y/n, and it is shown that I(G(D)) =
O(y/n) for this network. It has been shown that the interference is 2(y/n) for
the exponential chain, thus the hub-connected network is worst-case optimal.
However, for each given instance, we can often design a network with a better
interference. Indeed, there is a construction that I(G(D)) = V/A.

! We can also consider the version where we only consider interference at points of V,
not all points in the plane. The results of this paper carry immediately over to that
model.



2.2 Two-dimensional analogue of the linear network

Although the linear network performs poorly in the worst case, it is a basic
structure that can also be constructed in a distributed fashion. That is, each
point can connect to its right and left neighbors without the need of global
information.

The first task is to extend this notion to the two-dimensional case, where we
do not have clear definitions of the left and right neighbors. If we sort the points
with respect to x-coordinate, and each point connects to the nearest neighbor
with respect to the z-coordinate, we can obtain a feasible network. However,
this ignores the y-coordinate, and usually gives a very bad network. Instead, we
would like to use the Euclidean distance to measure the proximity of points.

Indeed, a network in which each node establishes (two-way) connection with
its nearest neighbor is called a nearest-neighbor forest. The nearest-neighbor for-
est need not be connected, however, and we want give a connected network based
on it. The minimum spanning tree MST(S) might be a direct two-dimensional
analogue of the linear network. The wireless version is WMST(S) in which
each node p; has the radius maxq:(p,; g)emst(s) d(Pi,q). Constructing a mini-
mum spanning tree explicitly requires some global information; hence, we prefer
graphs of a more local nature.

We briefly explain the local neighborhood graph (LNG) [8], since it inspires
the construction of our hub-structure network given later.

For each point p € R?, we divide the plane into six cones R, (p), R2(p), - . ., Rs(p),
where Ry (p) is the region such that the argument angle about p is in the range
(4527, ).

Let nbi(p,V’) be the nearest point to p in V N Ri(p). See Figure 1. The
local neighbor graph LNG(V) is the graph connecting each v € V to its six local
neighbors.

The following elementary fact is important and will be used to show an
interference bound for our network given later.

Lemma 1. Suppose that u and v are in Ri(p) and d(p,u) < d(p,v). Then,
d(u,v) < d(p,v).

Proof. Straightforward from the fact that the diameter (distance between far-
thest pair of points) of a fan with the angle 7/3 equals the radius of the circle.

The above lemma leads to the following fact [8], although we do not give a
proof since we do not use this fact explicitly in the rest of the paper.

Lemma 2. LNG(V) contains MST(V'). Consequently, it is connected.

Let Ni(v;) = {nbp(v;, V)|1 < k <6} and Na(v;) = {w € V|v; € Ny(w)}. If
we set r; = max{d(v;,q)|q € N1(v;) UNy(v;)} for each i = 1,2,...n, we have a
wireless network WLNG (V') that has LNG(V') as a subgraph.

We remark that WLNG(V') can be constructed locally: Each node increases
its radius (up to a given limit) and sends a message until it receives acknowl-
edgement from the local neighbor in each of six cones, and sends a connection



Fig. 1. Local neighbors of a point and a disk connecting them

request to each local neighbor. Then, each node that receives connection request
increases the radius such that it can reach the sender. We remark that this
method has the defect that we need to set the limit radius, since if there is an
empty cone, we have to detect and ignore it to avoid increasing the radius to
infinity.

2.3 Hub-connected network with O(nl/z) interference

It is known that we can make a bad instance for which any network containing
the nearest-neighbor forest has an {2(n) interference while there exists a network
with a constant interference for the instance [7]. Thus, if every node connects to
its nearest neighbor, we can obtain neither a (nontrivial) absolute interference
bound nor a rational bound to the optimal interference for each instance.

In order to attain a better interference bound, we consider a hub-connected
network, where we select a subset W of V' as the set of hubs. We construct
WMST (W) as the core of the network, and propagate the connection around
the core such that every vertex v.€ V' \ W is connected to the nearest hub to it.
Note that we may use any connected network on W (e.g., WLNG(W)) as the
core instead of WMST (W) in order to attain our main theoretical result: what
is important is the choice of W.

Hub selection using an e-net We apply e-net theory to define the set W of
hubs. Consider a family R of regions in the plane. Given a set V' of n points, the
pair (V,R) is called a range space. An e-net of the range space (V,R) is a subset
S C V such that any region R € R that contains at least en points of V must
contain at least one point of S. Intuitively, an e-net is a uniformly distributed
sample of V' where the uniformity is measured by using the family R of regions.

The following theory (although readers need not be familiar with it) has
many applications such as computational geometry [1] and learning theory: The
Vapnik-Chervonenkis-dimension (VC dimension) of a range space is the largest
size of a subset A € V' such that all subsets of A are attained as an intersection
of A and a region in R. If VC dimension is low (say, a constant), we can always
have a small e-net (see [4] for example).



Here, we consider a range space associated with a family of sectors of disks.
Consider a unit disk D, and divide it into six cone sectors Py (k = 1,2,...,6)
by the three diameter chords with argument angles 0, 7/3, and 27 /3. That is,
P, ={z € D|(k—1)r/3 <arg(zr) < kr/3}.

The family Py, is the set of all translated/scaled copies of Pj.. We consider
the family P = Ui<p<6Pr. Intuitively, it is the family of ”1/6 piece of pies” in
six rotated positions of any size located anywhere in the plane.

First, we give a weaker bound for the size of an e-net of P. Although this
will be slightly improved later, the following result is useful since we do not need
any complicated algorithm to find the e-net.

Theorem 1. A random sample of size ce ' loge™! becomes an e-net for P with
high probability if ¢ is a sufficient large constant.

Proof. If we construct an e-net for each of Py, their union becomes an e-net of
P. Thus, it suffices to show the existence of an e-net of size O(¢ !loge ') for
each of P;. We have the theorem from the general theory of e-nets [3, 4] of range
spaces.

A family R of regions is said to be a family of pseudo-disks if for any non-
collinear three points in the plane, there exists a unique R € R such that those
three points are on the boundary of R. The following better bound is known for
a family of pseudo-disks.

Theorem 2. [5] For any point set V, there is an e-net of size O(1/€) for a
family of pseudo-disks.

Consider the family Py, for k = 1,2,...,6, say, k = 1. It is easy to see that
for any noncollinear three points in the plane, there exists at most one P € P,
such that the triple of points are on the boundary of P. Thus, P; has a property
that is very similar to pseudo-disks, but there may be triplets of points such that
there isno P € P; such that the boundary of P goes through them. Nevertheless,
we have the following theorem:

Theorem 3. There ezists an e-net of V of size O(1/¢) for P, and we can com-
pute one in polynomial time.

This theorem is of independent interest in the area of computational geometry.
Since it probably requires too much geometric knowledge for a non-specialist to
follow, we give (an outline of) the actual construction of such an e-net later in a
separate section.

The hub-connected network The construction is as follows: We first compute
an vVn~l-net W of V such that the size of W is O(y/n), which can be obtained
by using Theorem 3 by setting ¢ = vn—1. Then, we form the wireless network
WMST (W) (indeed, any connected network is fine for our purpose). Let 7o (w)
be the transmission radius of w € W in WMST(W).



Fig. 2. No disk around a point outside the fan can reach p

We call the elements of W hubs. Then, for each v € V \ W, we find its
nearest hub denoted by hub(v). We set r(v) = d(v,hub(v)). For each hub
w € W, define the set N(w) = {v € V \ W|hub(v) = w}. We set r(w) =
max{ro(w), max,e N (w) d(v,w)} for each w € W. We have determined r for each
elements of v, and thus we obtain a wireless network GHUB(V").

Lemma 3. GHUB(V) is connected.

Proof. Since WMST (W) is connected, the induced subgraph of GHUB(V) by
W is connected. Since other nodes are all connected to nodes in W, GHUB(V)
is connected.

Theorem 4. The interference of GHUB(V) is O(y/n).

Proof. Let ¢ be a suitable constant such that |W| < ¢y/n. We claim that any
point p € R? is covered by at most (¢ + 6)y/n disks, or, more precisely, by
6+/n disks except those around elements of . Consider the cusp R;(p) whose
argument angle interval is [0, 7/3]. Because of symmetry, it suffices to show that
at most y/n points in R;(p) can contain p in their disks. If there is no hub in
R;(p), then R;(p) cannot contain more than \/n points because W is a vVn~!-
net, and we are done. Otherwise, we can assume there is at least one hub in
R, (p) (see Figure 2). Let w be the nearest hub to p in R;(p). We draw a circle
C of radius d(p, w) around p, and let P be the region (i.e., piece of pie) obtained
as the intersection of the interior of C and R;(p). Since P does not contain a
hub in its interior, P can contain at most v/n elements of V. Consider any point
x € V in Ry(p) \ P. Then, it follows that d(x,w) < d(x,p) from Lemma 1
(here, it is crucial that the angle of a fan is 7/3). Since r(x) is the distance to
its nearest hub, r(x) < d(x,w) < d(x,p). Thus, p is not in the disk of x. This
completes the proof.

Note that if we use the weaker e-net obtained by random sampling, we set
e = /n~!logn to have a network with an interference O(y/nlogn).

3 A network with O(+v A) interference

Let us consider the uniform-radius network GGy in which each disk has the same
radius R,,i,- Recall that A is the interference of Go. Although A can become as



large as £2(n), it can in practice be much smaller than n, or even y/n. We show
a construction of a network where the interference is O(v/A).

We use a standard localization method by bucketing. By scaling, we can
assume that R,,;, = 1 to eliminate one parameter. We partition the plane into
unit square buckets by an orthogonal grid. For simplicity of argument, we assume
that there are no points on boundaries of buckets; this assumption is easy to
remove. (Gy can connect a point v € B to points in bucket B or its eight neighbors.
We say that two buckets B and B’ are adjacent if there exists v € B and v’ € B’
such that the edge (v,v’) is in Go.

Lemma 4. 1. For each B, an adjacent bucket must be one of its eight neighbors
in the grid.
2. Each bucket contains O(A) points.

Proof. (i) is obvious, since the distance from any point in B to any bucket
other than the eight neighbors is more than 1. For (ii), suppose that a bucket
contains more than 4A points. We refine the buckets into four sub-buckets of
size 0.5 x 0.5. One of the sub-bucket contains more than A points, and the center
of the sub-bucket is covered by the unit disk about each point in its sub-bucket.
This contradicts that the interference of Gy is A.

Our construction is as follows: First, in each bucket B, we give a network with
interference O(v/A) by using the construction given in the previous subsection,
and set the radius of each point accordingly. Note that none of the disks in the
construction has a radius larger than v/2. Second, for each adjacent pair B, B’
of buckets, select exactly one edge (v,v") € Gy connecting them. We call v and
v' connectors. We enlarge the radius of each connector to 1 (if its current radius
is less than 1) .

Now, we have defined all the radii, and accordingly we have a network
LHUB(V).

Theorem 5. The network LHUB(V) is connected, and its interference is O(v/A).

Proof. The network is connected within each bucket, and the connection between
buckets is same as Gy. Thus, it is connected. For each point p, it is interfered
by points of at most 21 buckets (the neighbor buckets of Manhattan distance
at most two), since the radius of the largest disk is V/2. Each bucket contribute
only O(\/Z), excluding connectors. Also, there are only constant number of
connectors in these buckets. Thus, we have the theorem.

4 A hierarchical construction

The GHUB network has two layers: hubs and others. LHUB network has three
layers: connectors, hubs in buckets, and others. One may feel that we may have a
better structure if we increase the number of layers. If we measure the worst-case
interference by using the input size n or A, it is not possible to improve the worst
case interference, since there is a lower bound of 2(v/A) even in the highway



(i.e., one-dimensional) model. However, this can be advantageous in practice as
we see if we measure the interference using a different parameter.
Let d be the minimum distance between two points in V. Below, we will give
a network whose interference ratio is O(log(Rpin/d)), where Ry, is the radius
to give the uniform-radius network. As before, we scale the problem such that
The same localization method works, and we can assume that all points are
located in a unit square. Our approach is based on quad-tree decomposition. We
adopt the convention that each square in the quad-tree decomposition includes
its lower edge and its right edge, together with its lower two corner vertices.
We continue the following process from k = 0, where U(S) =V if k = 0:
Quad-tree decomposition process Given a square S of size 27F x 2%
and a set U(S) C VNS do the following.

1. If U(S) = 0, terminate the process.

2. Otherwise, select a representative point p(S) € V(S) arbitrarily, and remove
p(S) from U(S).

3. Partition S into four quadrants of size 2~ (#+1) x 2=(k+1) The point set U (S)
is partitioned accordingly. The at most four non-empty quadrants obtained
are called children of S.

4. Apply the process iteratively to each child.

We call S’ the parent of S if S is one of the children of S’, and denote
S’ = parent(S). We also say that p(S) is a child (resp. parent) of p(S’) if S
is a child (resp. parent) of S'. For the representative point p(S) of S, we set
r(p(S)) = max{diag(S), d(p(S), p(parent(S))}, where diag(S) is the length of
the diagonal of the square S. Thus, we have assigned a radius to each point of
V', and have a network QUAD(V').

Theorem 6. QUAD(V) is connected, and its interference is O(logd™"), where
d is the minimum distance between points of V.

Proof. Since r(p(S)) > diag(S), the disk of p(S) contains all its children. Also,
r(p(S)) > d(p(S), p(parent(S))) means that the disk also contains its parent.
Thus, the points are connected via the tree structure of the parent-child relation.

Now, let us analyze the interference at a point p. There are at most O(logd~1)
different sizes of squares in the quad tree decompositions, since the diagonal
length of the parent square of a smallest square must be at least d (otherwise, it
can contain only one point). Consider a bucket size 2~%, and analyze how many
representative points of such buckets can interfere with p. The radius r(p(S5))
of a representative point of a square S of this size is at most 27%+1/2, since
the distance from the representative point to any point in the parent square is
at most diag(parent(S)) = 27%+1y/2. Thus, S can interfere with p only if S
intersects with the circle of radius 2-%t14/2 about p. It is easy to see that there
are only a constant number of such squares of this size. Thus, the interference
at p is O(logd™1).



Note that in a practical implementation, we should apply a routine to shrink
each disk as much as possible while keeping the connection to its parent and
children.

5 Construction of a small-size e-net

Here, we give an outline of a proof of Theorem 3. It suffices to show the following:
Theorem 7. There exists an e-net of V' of size O(1/€) for Py.

We follow the argument of [5] with a (minor) modification. For simplicity,
we assume that no two points of V' lie on a horizontal line, a vertical line, or a
line with the argument angle /3. We call a member of P; a fan in this section.
For a fan P, we define Int(P) and cl(P) to be its interior and closure. Let
O(P) = cl(P) \ Int(P) be the boundary of its closure.

Given a subset S C V, a pair (p,p’) of points in S is extremal in S if, for
any number N > 0, there is a fan P such that the area of P is larger than N,
Int(P)NS =0 and {p,p'} € I(P).

We add a set X of three ”extra” points qi,q2,qs3 to V. Let £; be a horizontal
line that contains V in its lower halfplane. Let ¢ be a line of argument angle
m/3 that contains V' in its upper halfplane. The points q; and q» are on the line
£y, and the z-coordinate value of q; (resp. q2) is sufficiently small (resp. large).
The point q3 is on the line £y and its y-coordinate value is sufficiently small.
We can take these three points sufficiently far from V' such that X satisfies the
following conditions:

1. The triangle spanned by X contains all points of V.

2. For any fan P, we have another fan P’ C P such that PNV = PNV, and
P'NnX =0

3. For any pair of points in X, there is a fan P containing them on the boundary
and containing no other points of V in it.

4. For any extremal pair (p,p’) of a subset S of V, we have a fan P with the
largest size such that Int(P)N(SUX) = () and {p,p'} € IP. Note that one
or more points of X lie on the boundary of P, and intutitively, X prevents
(p,p’) to be an extremal pair in SU X.

Now, we fix S € V and consider S = S U X. We say a fan P an empty fan
if it contains no point of S in its interior. A pair of points (p,p’) is called a
Voronoi pair if there exists an empty fan P containing p and p’ in its boundary.
Let DT(S) be the graph whose node set is S and edge set E is the set of all
Voronoi pairs.

Lemma 5. DT(S) is connected, and gives a triangulation with the vertez set S
in the triangle spanned by X .



Proof. Tt is easy to show that no pair of edges intersect each other using the fact
that two fans intersect each other such that boundary curves intersect at most
twice. Given an emtpy fan P containing a Voronoi pair (p,p’) on its boundary,
we can grow P keeping the Voronoi pair on the boundary until we have another
point p” in S on its boundary. Then, we have a triangle p,p’,p” in DT(S)
consisting of three edges. It can be shown (by case study ) that if the Voronoi
pair does not contain a point in X, we have exactly one such triangle in each
side of the edge. Thus, we can show both the connectivity and triangulation
property.

DT(S) is called the generalized Delauney triangulation of S. For each triangle
in DT'(S), the unique fan P containing three vertices of triangles on its boundary
is called the Voronoi fan to the triangle. Note that a Voronoi fan contains no
point of S in its interior.

The construction of [5] is as follows: Let § = €/4. We greedily find a maximal
family of disjoint subsets {Si,Ss,...,Sk} of V such that |S;| = dn and there
exists a fan P; such that P, NV = S;.

Let S = U¥_| S;, and we make DT'(S). By definition, any fan P containing dn
or more points of V' must contain a point of S. Thus, for each triangle in DT'(S),
there are at most dn points of V' in the Voronoi fan. Moreover, the subgraph
of DT(S) induced by S; is connected, and each Voronoi fan corresponding to a
triangle in the induced subgraph contains no point of V' in its interior.

We use k + 3 colors to give a mutually different color to each set S; and also
each of three point of X. We give corresponding colors to vertices of DT'(S). For
two colors (c1,¢2), a triangle is called (cq, c2)-colored if its vertices use exactly
the two colors.

For a fixed pair (c1, c2) of colors, the adjacency graph of the set of all (¢y, ¢2)-
colored triangles has neither a branching node (i.e., a node with degree three or
more), nor a cycle: This can be shown by using the fact that S; is intersection
of a fan (a convex region) and V. Thus, the set of (c¢1,cs)-colored triangles is
divided into maximal connected chains of triangles called corridors.

Lemma 6 ([5]). There are O(k) corridors.

The corridors are refined into sub-corridors such that each sub-corridors has
at most dn points of V' in its triangles. The vertex set of subcorridors C' consists
of two monochromatic chains (possibly degenerated to points) in D(S), and thus
they have at most four endpoints.

Let Z be the set of all endpoints of all subcorridors in DT'(S).

Theorem 8. Z is an e-net of VU X, and its size is O(1/e).

Proof. Consider any fan P containing more than en points of VU X. We assume
that P contains no point of Z and derive contradiction. P UV must be colored
by at least three colors, since each monochromatic set (and the colorless set)
has at most en/4 points. P can contain no monochromatic chain in its iterior
since it does not have a point in Z. If the fan P cuts both monochromatic



chains of a subcorridor, P UV must be bichromatic (by an argument given in
[5], which we omit in this paper), and contradict to the assumption. Thus, for
each subcorridor, P can only cut one of its mornochromatic chain. This implies
that P UV is monochromatic, and we have contradiction.

We finally show that Z\ X is an €¢'-net of V' if € < €’ < 2¢. Indeed, suppose we
have a fan P that contains €'n points of V' but no point in Z \ X. Thus, it must
contain one or more points of X. We can shrink P such that only the points of
X go outside of it. This new fan contains €'n — 3 points of V and contains no
point in Z. Thus, this contradicts the fact that Z is an e-net of V U X.

6 Concluding remarks

The theory can easily be generalized to any constant dimensional space, except
that we only know a O(e~*log™" ¢~ !') bound for e-nets of the higher dimensional
analogues of ”the range space of pies”.

Practically, we can improve the method in many ways. For example, in the
construction of QUAD(V'), we can stop the partitioning if |U(S)| = 1, and else
partition U(S) without selecting a representative point until there are at least
two empty buckets. Also, we can mix the two methods: In each square S, we can
replace the structure of QUAD(S) network within S by LHUB(S), if it gives a
better interference.

There are several open problems: We can easily observe that an 2(y/log(R,in/d))
lower bound is attained by the ”exponential chain instance” in the highway
model. We conjecture that this lower bound is tight, although we currently only
have an O(log(R,in/d) upper bound given in this paper. Moreover. for the high-
way model, the better one of linear network and hub network attains O(AY*4)
approximation ratio to the optimal network. For the two-dimensional case, an
analogous result has not been obtained yet.
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