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t. We 
onsider the problem of topology 
ontrol of a wirelessad-ho
 network on a given set of points in the plane, where we aim tominimize the maximum interferen
e by assigning a suitable transmissionradius to ea
h point. By using 
omputational geometri
 ideas and �-nettheory, we attain an O(p�) bound for the maximum interferen
e where� is the interferen
e of a uniform-radius ad-ho
 network. This gener-alizes a result given in [7℄ for the spe
ial 
ase of highway model (i.e.,one-dimensional problem) to the two-dimensional 
ase. We also give amethod based on quad-tree de
omposition and bu
keting that has an-other provable interferen
e bound in terms of the ratio of the minimumdistan
e to the radius of a uniform-radius ad-ho
 network.1 Introdu
tionMobile wireless ad-ho
 networks are an important subje
t in re
ent studies on
ommuni
ation networks. In a popular model, ea
h mobile devi
e is 
onsideredas a point (
alled node) in the Eu
lidean plane, and ea
h node has a disk of agiven transmission radius. Two nodes 
an 
ommuni
ate with ea
h other if theyare lo
ated within ea
h other's disks.The transmission radius is a monotone fun
tion of the ele
tri
 power given tothe node, whi
h we assume to be a 
ontrollable parameter. Topology 
ontrol in-volves assigning a suitable transmission radius to ea
h node to form a 
onne
tednetwork while minimizing some non-de
reasing obje
tive fun
tion of the radii.The most frequently studied obje
tive is to minimize the power 
onsumption, orthe sum of the ele
tri
 power given to the nodes. Making disks small has alsoanother bene�t, that is, to redu
e the interferen
e. Interferen
e at a node is thenumber of disks 
ontaining it, and high interferen
e in
reases the probability ofpa
ket 
ollision of pa
kets. Therefore, it is desirable to keep a low interferen
eat every node.Topology 
ontrol for minimizing interferen
e is bound to be a di�erent taskfrom that of minimizing energy. Traditionally, this has been addressed impli
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by redu
ing the density of the 
ommuni
ation graph. Burkhart et al. [2℄, however,showed that low interferen
e is not implied by sparseness. Also, that networks
onstru
ted from nearest-neighbor 
onne
tions 
an fail dismally to bound theinterferen
e. On the other hand, they gave experimental results that indi
atethat graph spanners help redu
e interferen
e in pra
ti
e. Their work promptedthe expli
it study of interferen
e minimization. Mos
ibroda and Wattenhofer [?℄gave nearly tight approximation algorithms that bound the average interferen
eof nodes.The re
ent work of Ri
kenba
h et al. [7℄ is the starting point of our study.They introdu
ed the problem of bounding the maximum interferen
e at a node,and gave algorithms for the spe
ial 
ase where all the points are lo
ated on aline, 
alled the highway model. Their algorithm 
onstru
ts a network with anO(p�) interferen
e, where � is the interferen
e of a uniform radius network,while it is shown that there exists an instan
e that requires 
(pn) interferen
e.They also showed that the better one of a naive network and the above O(p�)interferen
e network attains a O(�1=4) approximation ratio.For the two-dimensional problem, analogous results have not been reportedyet (to the authors' knowledge). In this paper, we show that we 
an 
onstru
t anetwork with an O(p�) interferen
e for any point set in the plane, extending thetheory of [7℄ to the planar 
ase (and even for any 
onstant-dimensional spa
e).We also give a network with an O(log(R=d)) interferen
e, where d is the mini-mum distan
e between points and R is the minimum radius of a uniform-radiusnetwork to attain 
onne
tivity. Our results rely on 
omputational geometri
 toolssu
h as lo
al neighbor graphs, �-nets, and quad-tree de
ompositions.2 Mathemati
al formulation and terminologyWe are given a set V = fv1;v2; : : : ;vng of points in a plane. For ea
h vi, weassign a positive real number r(vi) 
alled the transmission radius. This 
an be
onsidered as a radius assignment fun
tionr : V ! R>0 :Consider the set D = fD1; D2; : : : ; Dng of disks, where Di has radius r(vi) andits 
enter at vi.We de�ne a wireless network on V , that is the graph G(D) = (V;E), wherewe have an undire
ted edge (vi;vj) if and only if vi 2 Dj and vj 2 Di. In otherwords, vi and vj 
an dire
tly 
ommuni
ate sin
e they are within the transmissionradius of ea
h other. We say that the wireless network G(D) is feasible i� it is
onne
ted.The interferen
e of D at a point p is the number of disks in D 
overing p.That is, I(D;p) = jfi : p 2 Digj:



The interferen
e of a wireless network G(D) is 1maxfI(D;p)jp 2 R2g:The interferen
e minimization problem is to �nd a radius assignment r to givea feasible network with the minimum interferen
e.One natural approa
h is to in
rease all radii uniformly until the the graphbe
omes 
onne
ted. Let Rmin be the in�mum of the radius su
h that the networkbe
omes 
onne
ted, and refer to the network with all radii set to Rmin as theuniform-radius network. Let � denote the interferen
e of the uniform-radiusnetwork.Although the problem is 
learly an NP -optimization problem, it seems tobe very diÆ
ult to �nd the optimal wireless network. Indeed, even the spe
ial
ase where all points V are lo
ated on a line (highway model) is 
onsideredto be diÆ
ult (although NP-hardness result is not known). Thus, we seek for apra
ti
al solution with some theoreti
al quality guarantee, in parti
ular an upperbound of the interferen
e or an approximation ratio to the optimal solution.2.1 Review for the highway modelWe brie
y review some results for the highway model given by Ri
kenba
h etal. [7℄. Suppose that points of V are lo
ated on the x-axis in the sorted orderwith respe
t to their x-values.Then, a naive method is to set r(i) = max(d(vi;vi�1); d(vi;vi+1)) for i =1; 2; : : : ; n, where we set v0 = v1 and vn+1 = vn. It is easy to observe that G(D)asso
iated with this radius fun
tion is feasible: the network is 
alled the linearnetwork. Unfortunately, there is an example named exponential 
hain instan
efor whi
h the linear network poorly performs. In the exponential 
hain, thepoints satis�es that d(vi;vi+1) = 2i for i = 1; 2; : : : n� 1, and it is easy that theinterferen
e of the point v1 is n� 1 in the linear network.We 
an use a hub-
onne
ted network to redu
e the worst-
ase interferen
e.The general idea is as follows: We �nd a subset W � V of points 
alled hubs and�rst 
onstru
t the linear network of hubs. Then, for ea
h v 2 V nW , we setr(v) = minw2W d(v;w);namely, v 
onne
ts to its nearest hub. If we sele
t every pn-th points in V asa hub, we have a set W of 
ardinality pn, and it is shown that I(G(D)) =O(pn) for this network. It has been shown that the interferen
e is 
(pn) forthe exponential 
hain, thus the hub-
onne
ted network is worst-
ase optimal.However, for ea
h given instan
e, we 
an often design a network with a betterinterferen
e. Indeed, there is a 
onstru
tion that I(G(D)) = p�.1 We 
an also 
onsider the version where we only 
onsider interferen
e at points of V ,not all points in the plane. The results of this paper 
arry immediately over to thatmodel.



2.2 Two-dimensional analogue of the linear networkAlthough the linear network performs poorly in the worst 
ase, it is a basi
stru
ture that 
an also be 
onstru
ted in a distributed fashion. That is, ea
hpoint 
an 
onne
t to its right and left neighbors without the need of globalinformation.The �rst task is to extend this notion to the two-dimensional 
ase, where wedo not have 
lear de�nitions of the left and right neighbors. If we sort the pointswith respe
t to x-
oordinate, and ea
h point 
onne
ts to the nearest neighborwith respe
t to the x-
oordinate, we 
an obtain a feasible network. However,this ignores the y-
oordinate, and usually gives a very bad network. Instead, wewould like to use the Eu
lidean distan
e to measure the proximity of points.Indeed, a network in whi
h ea
h node establishes (two-way) 
onne
tion withits nearest neighbor is 
alled a nearest-neighbor forest. The nearest-neighbor for-est need not be 
onne
ted, however, and we want give a 
onne
ted network basedon it. The minimum spanning tree MST(S) might be a dire
t two-dimensionalanalogue of the linear network. The wireless version is WMST(S) in whi
hea
h node pi has the radius maxq:(pi;q)2MST(S) d(pi; q). Constru
ting a mini-mum spanning tree expli
itly requires some global information; hen
e, we prefergraphs of a more lo
al nature.We brie
y explain the lo
al neighborhood graph (LNG) [8℄, sin
e it inspiresthe 
onstru
tion of our hub-stru
ture network given later.For ea
h point p 2 R2 , we divide the plane into six 
onesR1(p); R2(p); : : : ; R6(p),where Rk(p) is the region su
h that the argument angle about p is in the range[ (k�1)�3 ; k�3 ).Let nbk(p; V ) be the nearest point to p in V \ Rk(p). See Figure 1. Thelo
al neighbor graph LNG(V ) is the graph 
onne
ting ea
h v 2 V to its six lo
alneighbors.The following elementary fa
t is important and will be used to show aninterferen
e bound for our network given later.Lemma 1. Suppose that u and v are in Rk(p) and d(p;u) � d(p;v). Then,d(u;v) < d(p;v).Proof. Straightforward from the fa
t that the diameter (distan
e between far-thest pair of points) of a fan with the angle �=3 equals the radius of the 
ir
le.The above lemma leads to the following fa
t [8℄, although we do not give aproof sin
e we do not use this fa
t expli
itly in the rest of the paper.Lemma 2. LNG(V ) 
ontains MST(V ). Consequently, it is 
onne
ted.Let N1(vi) = fnbk(vi; V )j1 � k � 6g and N2(vi) = fw 2 V jvi 2 N1(w)g. Ifwe set ri = maxfd(vi;q)jq 2 N1(vi)[N2(vi)g for ea
h i = 1; 2; : : : n, we have awireless network WLNG(V ) that has LNG(V ) as a subgraph.We remark that WLNG(V ) 
an be 
onstru
ted lo
ally: Ea
h node in
reasesits radius (up to a given limit) and sends a message until it re
eives a
knowl-edgement from the lo
al neighbor in ea
h of six 
ones, and sends a 
onne
tion



Fig. 1. Lo
al neighbors of a point and a disk 
onne
ting themrequest to ea
h lo
al neighbor. Then, ea
h node that re
eives 
onne
tion requestin
reases the radius su
h that it 
an rea
h the sender. We remark that thismethod has the defe
t that we need to set the limit radius, sin
e if there is anempty 
one, we have to dete
t and ignore it to avoid in
reasing the radius toin�nity.2.3 Hub-
onne
ted network with O(n1=2) interferen
eIt is known that we 
an make a bad instan
e for whi
h any network 
ontainingthe nearest-neighbor forest has an 
(n) interferen
e while there exists a networkwith a 
onstant interferen
e for the instan
e [7℄. Thus, if every node 
onne
ts toits nearest neighbor, we 
an obtain neither a (nontrivial) absolute interferen
ebound nor a rational bound to the optimal interferen
e for ea
h instan
e.In order to attain a better interferen
e bound, we 
onsider a hub-
onne
tednetwork, where we sele
t a subset W of V as the set of hubs. We 
onstru
tWMST(W ) as the 
ore of the network, and propagate the 
onne
tion aroundthe 
ore su
h that every vertex v 2 V nW is 
onne
ted to the nearest hub to it.Note that we may use any 
onne
ted network on W (e.g., WLNG(W )) as the
ore instead of WMST(W ) in order to attain our main theoreti
al result: whatis important is the 
hoi
e of W .Hub sele
tion using an �-net We apply �-net theory to de�ne the set W ofhubs. Consider a family R of regions in the plane. Given a set V of n points, thepair (V;R) is 
alled a range spa
e. An �-net of the range spa
e (V;R) is a subsetS � V su
h that any region R 2 R that 
ontains at least �n points of V must
ontain at least one point of S. Intuitively, an �-net is a uniformly distributedsample of V where the uniformity is measured by using the family R of regions.The following theory (although readers need not be familiar with it) hasmany appli
ations su
h as 
omputational geometry [1℄ and learning theory: TheVapnik-Chervonenkis-dimension (VC dimension) of a range spa
e is the largestsize of a subset A 2 V su
h that all subsets of A are attained as an interse
tionof A and a region in R. If V C dimension is low (say, a 
onstant), we 
an alwayshave a small �-net (see [4℄ for example).



Here, we 
onsider a range spa
e asso
iated with a family of se
tors of disks.Consider a unit disk D, and divide it into six 
one se
tors Pk (k = 1; 2; : : : ; 6)by the three diameter 
hords with argument angles 0, �=3, and 2�=3. That is,Pk = fx 2 Dj(k � 1)�=3 � arg(x) < k�=3g:The family Pk is the set of all translated/s
aled 
opies of Pk. We 
onsiderthe family P = [1�k�6Pk. Intuitively, it is the family of "1/6 pie
e of pies" insix rotated positions of any size lo
ated anywhere in the plane.First, we give a weaker bound for the size of an �-net of P . Although thiswill be slightly improved later, the following result is useful sin
e we do not needany 
ompli
ated algorithm to �nd the �-net.Theorem 1. A random sample of size 
��1 log ��1 be
omes an �-net for P withhigh probability if 
 is a suÆ
ient large 
onstant.Proof. If we 
onstru
t an �-net for ea
h of Pk, their union be
omes an �-net ofP . Thus, it suÆ
es to show the existen
e of an �-net of size O(��1 log ��1) forea
h of Pk. We have the theorem from the general theory of �-nets [3, 4℄ of rangespa
es.A family R of regions is said to be a family of pseudo-disks if for any non-
ollinear three points in the plane, there exists a unique R 2 R su
h that thosethree points are on the boundary of R. The following better bound is known fora family of pseudo-disks.Theorem 2. [5℄ For any point set V , there is an �-net of size O(1=�) for afamily of pseudo-disks.Consider the family Pk for k = 1; 2; : : : ; 6, say, k = 1. It is easy to see thatfor any non
ollinear three points in the plane, there exists at most one P 2 P1su
h that the triple of points are on the boundary of P . Thus, P1 has a propertythat is very similar to pseudo-disks, but there may be triplets of points su
h thatthere is no P 2 P1 su
h that the boundary of P goes through them. Nevertheless,we have the following theorem:Theorem 3. There exists an �-net of V of size O(1=�) for P, and we 
an 
om-pute one in polynomial time.This theorem is of independent interest in the area of 
omputational geometry.Sin
e it probably requires too mu
h geometri
 knowledge for a non-spe
ialist tofollow, we give (an outline of) the a
tual 
onstru
tion of su
h an �-net later in aseparate se
tion.The hub-
onne
ted network The 
onstru
tion is as follows: We �rst 
omputean pn�1-net W of V su
h that the size of W is O(pn), whi
h 
an be obtainedby using Theorem 3 by setting � = pn�1. Then, we form the wireless networkWMST(W ) (indeed, any 
onne
ted network is �ne for our purpose). Let r0(w)be the transmission radius of w 2 W in WMST(W ).
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Fig. 2. No disk around a point outside the fan 
an rea
h pWe 
all the elements of W hubs. Then, for ea
h v 2 V n W , we �nd itsnearest hub denoted by hub(v). We set r(v) = d(v; hub(v)). For ea
h hubw 2 W , de�ne the set N(w) = fv 2 V n W jhub(v) = wg. We set r(w) =maxfr0(w);maxv2N(w) d(v; w)g for ea
h w 2 W . We have determined r for ea
helements of v, and thus we obtain a wireless network GHUB(V ).Lemma 3. GHUB(V ) is 
onne
ted.Proof. Sin
e WMST(W ) is 
onne
ted, the indu
ed subgraph of GHUB(V ) byW is 
onne
ted. Sin
e other nodes are all 
onne
ted to nodes in W , GHUB(V )is 
onne
ted.Theorem 4. The interferen
e of GHUB(V ) is O(pn).Proof. Let 
 be a suitable 
onstant su
h that jW j < 
pn. We 
laim that anypoint p 2 R2 is 
overed by at most (
 + 6)pn disks, or, more pre
isely, by6pn disks ex
ept those around elements of W . Consider the 
usp R1(p) whoseargument angle interval is [0; �=3℄. Be
ause of symmetry, it suÆ
es to show thatat most pn points in R1(p) 
an 
ontain p in their disks. If there is no hub inR1(p), then R1(p) 
annot 
ontain more than pn points be
ause W is a pn�1-net, and we are done. Otherwise, we 
an assume there is at least one hub inR1(p) (see Figure 2). Let w be the nearest hub to p in R1(p). We draw a 
ir
leC of radius d(p;w) around p, and let P be the region (i.e., pie
e of pie) obtainedas the interse
tion of the interior of C and R1(p). Sin
e P does not 
ontain ahub in its interior, P 
an 
ontain at most pn elements of V . Consider any pointx 2 V in R1(p) n P . Then, it follows that d(x;w) < d(x;p) from Lemma 1(here, it is 
ru
ial that the angle of a fan is �=3). Sin
e r(x) is the distan
e toits nearest hub, r(x) � d(x;w) < d(x;p). Thus, p is not in the disk of x. This
ompletes the proof.Note that if we use the weaker �-net obtained by random sampling, we set� =pn�1 logn to have a network with an interferen
e O(pn logn).3 A network with O(p�) interferen
eLet us 
onsider the uniform-radius network G0 in whi
h ea
h disk has the sameradius Rmin. Re
all that � is the interferen
e of G0. Although � 
an be
ome as



large as 
(n), it 
an in pra
ti
e be mu
h smaller than n, or even pn. We showa 
onstru
tion of a network where the interferen
e is O(p�).We use a standard lo
alization method by bu
keting. By s
aling, we 
anassume that Rmin = 1 to eliminate one parameter. We partition the plane intounit square bu
kets by an orthogonal grid. For simpli
ity of argument, we assumethat there are no points on boundaries of bu
kets; this assumption is easy toremove.G0 
an 
onne
t a point v 2 B to points in bu
ketB or its eight neighbors.We say that two bu
kets B and B0 are adja
ent if there exists v 2 B and v0 2 B0su
h that the edge (v; v0) is in G0.Lemma 4. 1. For ea
h B, an adja
ent bu
ket must be one of its eight neighborsin the grid.2. Ea
h bu
ket 
ontains O(�) points.Proof. (i) is obvious, sin
e the distan
e from any point in B to any bu
ketother than the eight neighbors is more than 1. For (ii), suppose that a bu
ket
ontains more than 4� points. We re�ne the bu
kets into four sub-bu
kets ofsize 0:5�0:5. One of the sub-bu
ket 
ontains more than � points, and the 
enterof the sub-bu
ket is 
overed by the unit disk about ea
h point in its sub-bu
ket.This 
ontradi
ts that the interferen
e of G0 is �.Our 
onstru
tion is as follows: First, in ea
h bu
ket B, we give a network withinterferen
e O(p�) by using the 
onstru
tion given in the previous subse
tion,and set the radius of ea
h point a

ordingly. Note that none of the disks in the
onstru
tion has a radius larger than p2. Se
ond, for ea
h adja
ent pair B, B0of bu
kets, sele
t exa
tly one edge (v; v0) 2 G0 
onne
ting them. We 
all v andv0 
onne
tors. We enlarge the radius of ea
h 
onne
tor to 1 (if its 
urrent radiusis less than 1) .Now, we have de�ned all the radii, and a

ordingly we have a networkLHUB(V ).Theorem 5. The network LHUB(V ) is 
onne
ted, and its interferen
e is O(p�).Proof. The network is 
onne
ted within ea
h bu
ket, and the 
onne
tion betweenbu
kets is same as G0. Thus, it is 
onne
ted. For ea
h point p, it is interferedby points of at most 21 bu
kets (the neighbor bu
kets of Manhattan distan
eat most two), sin
e the radius of the largest disk is p2. Ea
h bu
ket 
ontributeonly O(p�), ex
luding 
onne
tors. Also, there are only 
onstant number of
onne
tors in these bu
kets. Thus, we have the theorem.4 A hierar
hi
al 
onstru
tionThe GHUB network has two layers: hubs and others. LHUB network has threelayers: 
onne
tors, hubs in bu
kets, and others. One may feel that we may have abetter stru
ture if we in
rease the number of layers. If we measure the worst-
aseinterferen
e by using the input size n or�, it is not possible to improve the worst
ase interferen
e, sin
e there is a lower bound of 
(p�) even in the highway



(i.e., one-dimensional) model. However, this 
an be advantageous in pra
ti
e aswe see if we measure the interferen
e using a di�erent parameter.Let d be the minimum distan
e between two points in V . Below, we will givea network whose interferen
e ratio is O(log(Rmin=d)), where Rmin is the radiusto give the uniform-radius network. As before, we s
ale the problem su
h thatRmin = 1.The same lo
alization method works, and we 
an assume that all points arelo
ated in a unit square. Our approa
h is based on quad-tree de
omposition. Weadopt the 
onvention that ea
h square in the quad-tree de
omposition in
ludesits lower edge and its right edge, together with its lower two 
orner verti
es.We 
ontinue the following pro
ess from k = 0, where U(S) = V if k = 0:Quad-tree de
omposition pro
ess Given a square S of size 2�k � 2�kand a set U(S) � V \ S do the following.1. If U(S) = ;, terminate the pro
ess.2. Otherwise, sele
t a representative point p(S) 2 V (S) arbitrarily, and removep(S) from U(S).3. Partition S into four quadrants of size 2�(k+1)�2�(k+1). The point set U(S)is partitioned a

ordingly. The at most four non-empty quadrants obtainedare 
alled 
hildren of S.4. Apply the pro
ess iteratively to ea
h 
hild.We 
all S0 the parent of S if S is one of the 
hildren of S0, and denoteS0 = parent(S). We also say that p(S) is a 
hild (resp. parent) of p(S0) if Sis a 
hild (resp. parent) of S0. For the representative point p(S) of S, we setr(p(S)) = maxfdiag(S); d(p(S);p(parent(S))g, where diag(S) is the length ofthe diagonal of the square S. Thus, we have assigned a radius to ea
h point ofV , and have a network QUAD(V ).Theorem 6. QUAD(V ) is 
onne
ted, and its interferen
e is O(log d�1), whered is the minimum distan
e between points of V .Proof. Sin
e r(p(S)) � diag(S), the disk of p(S) 
ontains all its 
hildren. Also,r(p(S)) � d(p(S);p(parent(S))) means that the disk also 
ontains its parent.Thus, the points are 
onne
ted via the tree stru
ture of the parent-
hild relation.Now, let us analyze the interferen
e at a point p. There are at mostO(log d�1)di�erent sizes of squares in the quad tree de
ompositions, sin
e the diagonallength of the parent square of a smallest square must be at least d (otherwise, it
an 
ontain only one point). Consider a bu
ket size 2�k, and analyze how manyrepresentative points of su
h bu
kets 
an interfere with p. The radius r(p(S))of a representative point of a square S of this size is at most 2�k+1p2, sin
ethe distan
e from the representative point to any point in the parent square isat most diag(parent(S)) = 2�k+1p2. Thus, S 
an interfere with p only if Sinterse
ts with the 
ir
le of radius 2�k+1p2 about p. It is easy to see that thereare only a 
onstant number of su
h squares of this size. Thus, the interferen
eat p is O(log d�1).



Note that in a pra
ti
al implementation, we should apply a routine to shrinkea
h disk as mu
h as possible while keeping the 
onne
tion to its parent and
hildren.5 Constru
tion of a small-size �-netHere, we give an outline of a proof of Theorem 3. It suÆ
es to show the following:Theorem 7. There exists an �-net of V of size O(1=�) for P1.We follow the argument of [5℄ with a (minor) modi�
ation. For simpli
ity,we assume that no two points of V lie on a horizontal line, a verti
al line, or aline with the argument angle �=3. We 
all a member of P1 a fan in this se
tion.For a fan P , we de�ne Int(P ) and 
l(P ) to be its interior and 
losure. Let�(P ) = 
l(P ) n Int(P ) be the boundary of its 
losure.Given a subset S � V , a pair (p;p0) of points in S is extremal in S if, forany number N > 0, there is a fan P su
h that the area of P is larger than N ,Int(P ) \ S = ; and fp;p0g 2 �(P ).We add a set X of three "extra" points q1;q2;q3 to V . Let `1 be a horizontalline that 
ontains V in its lower halfplane. Let `2 be a line of argument angle�=3 that 
ontains V in its upper halfplane. The points q1 and q2 are on the line`1, and the x-
oordinate value of q1 (resp. q2) is suÆ
iently small (resp. large).The point q3 is on the line `2 and its y-
oordinate value is suÆ
iently small.We 
an take these three points suÆ
iently far from V su
h that X satis�es thefollowing 
onditions:1. The triangle spanned by X 
ontains all points of V .2. For any fan P , we have another fan P 0 � P su
h that P 0 \ V = P \ V , andP 0 \X = ;.3. For any pair of points inX , there is a fan P 
ontaining them on the boundaryand 
ontaining no other points of V in it.4. For any extremal pair (p;p0) of a subset S of V , we have a fan P with thelargest size su
h that Int(P )\ (S [X) = ; and fp;p0g 2 �P . Note that oneor more points of X lie on the boundary of P , and intutitively, X prevents(p;p0) to be an extremal pair in S [X .Now, we �x S 2 V and 
onsider ~S = S [ X . We say a fan P an empty fanif it 
ontains no point of ~S in its interior. A pair of points (p;p0) is 
alled aVoronoi pair if there exists an empty fan P 
ontaining p and p0 in its boundary.Let DT (S) be the graph whose node set is ~S and edge set E is the set of allVoronoi pairs.Lemma 5. DT (S) is 
onne
ted, and gives a triangulation with the vertex set ~Sin the triangle spanned by X.



Proof. It is easy to show that no pair of edges interse
t ea
h other using the fa
tthat two fans interse
t ea
h other su
h that boundary 
urves interse
t at mosttwi
e. Given an emtpy fan P 
ontaining a Voronoi pair (p;p0) on its boundary,we 
an grow P keeping the Voronoi pair on the boundary until we have anotherpoint p00 in ~S on its boundary. Then, we have a triangle p;p0;p00 in DT (S)
onsisting of three edges. It 
an be shown (by 
ase study ) that if the Voronoipair does not 
ontain a point in X , we have exa
tly one su
h triangle in ea
hside of the edge. Thus, we 
an show both the 
onne
tivity and triangulationproperty.DT (S) is 
alled the generalized Delauney triangulation of S. For ea
h trianglein DT (S), the unique fan P 
ontaining three verti
es of triangles on its boundaryis 
alled the Voronoi fan to the triangle. Note that a Voronoi fan 
ontains nopoint of S in its interior.The 
onstru
tion of [5℄ is as follows: Let Æ = �=4. We greedily �nd a maximalfamily of disjoint subsets fS1; S2; : : : ; Skg of V su
h that jSij = Æn and thereexists a fan Pi su
h that Pi \ V = Si.Let S = [ki=1Si, and we make DT (S). By de�nition, any fan P 
ontaining Ænor more points of V must 
ontain a point of S. Thus, for ea
h triangle in DT (S),there are at most Æn points of V in the Voronoi fan. Moreover, the subgraphof DT (S) indu
ed by Si is 
onne
ted, and ea
h Voronoi fan 
orresponding to atriangle in the indu
ed subgraph 
ontains no point of V in its interior.We use k+3 
olors to give a mutually di�erent 
olor to ea
h set Si and alsoea
h of three point of X . We give 
orresponding 
olors to verti
es of DT (S). Fortwo 
olors (
1; 
2), a triangle is 
alled (
1; 
2)-
olored if its verti
es use exa
tlythe two 
olors.For a �xed pair (
1; 
2) of 
olors, the adja
en
y graph of the set of all (
1; 
2)-
olored triangles has neither a bran
hing node (i.e., a node with degree three ormore), nor a 
y
le: This 
an be shown by using the fa
t that Si is interse
tionof a fan (a 
onvex region) and V . Thus, the set of (
1; 
2)-
olored triangles isdivided into maximal 
onne
ted 
hains of triangles 
alled 
orridors.Lemma 6 ([5℄). There are O(k) 
orridors.The 
orridors are re�ned into sub-
orridors su
h that ea
h sub-
orridors hasat most Æn points of V in its triangles. The vertex set of sub
orridors C 
onsistsof two mono
hromati
 
hains (possibly degenerated to points) in D(S), and thusthey have at most four endpoints.Let Z be the set of all endpoints of all sub
orridors in DT (S).Theorem 8. Z is an �-net of V [X, and its size is O(1=�):Proof. Consider any fan P 
ontaining more than �n points of V [X . We assumethat P 
ontains no point of Z and derive 
ontradi
tion. P [ V must be 
oloredby at least three 
olors, sin
e ea
h mono
hromati
 set (and the 
olorless set)has at most �n=4 points. P 
an 
ontain no mono
hromati
 
hain in its iteriorsin
e it does not have a point in Z. If the fan P 
uts both mono
hromati





hains of a sub
orridor, P [ V must be bi
hromati
 (by an argument given in[5℄, whi
h we omit in this paper), and 
ontradi
t to the assumption. Thus, forea
h sub
orridor, P 
an only 
ut one of its morno
hromati
 
hain. This impliesthat P [ V is mono
hromati
, and we have 
ontradi
tion.We �nally show that Z nX is an �0-net of V if � < �0 < 2�. Indeed, suppose wehave a fan P that 
ontains �0n points of V but no point in Z nX . Thus, it must
ontain one or more points of X . We 
an shrink P su
h that only the points ofX go outside of it. This new fan 
ontains �0n � 3 points of V and 
ontains nopoint in Z. Thus, this 
ontradi
ts the fa
t that Z is an �-net of V [X .6 Con
luding remarksThe theory 
an easily be generalized to any 
onstant dimensional spa
e, ex
eptthat we only know a O(��1 log�1 ��1) bound for �-nets of the higher dimensionalanalogues of "the range spa
e of pies".Pra
ti
ally, we 
an improve the method in many ways. For example, in the
onstru
tion of QUAD(V ), we 
an stop the partitioning if jU(S)j = 1, and elsepartition U(S) without sele
ting a representative point until there are at leasttwo empty bu
kets. Also, we 
an mix the two methods: In ea
h square S, we 
anrepla
e the stru
ture of QUAD(S) network within S by LHUB(S), if it gives abetter interferen
e.There are several open problems:We 
an easily observe that an
(plog(Rmin=d))lower bound is attained by the "exponential 
hain instan
e" in the highwaymodel. We 
onje
ture that this lower bound is tight, although we 
urrently onlyhave an O(log(Rmin=d) upper bound given in this paper. Moreover. for the high-way model, the better one of linear network and hub network attains O(�1=4)approximation ratio to the optimal network. For the two-dimensional 
ase, ananalogous result has not been obtained yet.Referen
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