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Abstract

The approximability of the unweighted independent set problem has been analyzed

in terms of sparseness parameters such as the average degree and inductiveness. In

the weighted case, no corresponding results are possible for average degree, since

adding vertices of small weight can decrease the average degree arbitrarily without

significantly changing the approximation ratio. In this paper, we introduce two

weighted measures, namely weighted average degree and weighted inductiveness, and

analyze algorithms for the weighted independent set problem in terms of these

parameters.
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1 Introduction1

An independent set in a graph is a set of vertices in which no two vertices are2

adjacent. The (weighted) independent set problem is that of finding a max-3

imum (weight) independent set. Numerous approximation algorithms have4

been proposed and analyzed for this problem. In the unweighted case, an algo-5

rithm with approximation ratio (∆+3)/5 was given by Berman and Fujito [2]6

for graphs of maximum degree ∆. Vishwanathan proposed an SDP-based algo-7

rithm with approximation ratio O(∆ log log ∆/ log ∆), which first appeared in8

[5]. For graphs of average degree d̄, Hochbaum [10] proved that an LP-based al-9

gorithm has approximation ratio (d̄+1)/2. Halldórsson and Radhakrishnan [9]10

improved this approximation ratio to (2d̄+3)/5. Moreover, an algorithm with11

approximation ratio O(d̄ log log d̄/ log d̄) was proposed by Halldórsson [6]. In12

the weighted case, Halldórsson and Lau [7] gave an algorithm with approxi-13

mation ratio (∆ + 2)/3. For δ-inductive graphs approximation ratio (δ + 1)/214

is known due to Hochbaum [10], and Halldórsson [6] proposed an algorithm15

with approximation ratio O(δ log log δ/ log δ). Note that δ ≤ ∆ for any graph.16

In this paper, we extend the approximation algorithms of [6,10] to the weighted17

case. In the weighted independent set problem, by inserting vertices of small18

weight we can arbitrarily reduce the average degree d̄ of the input graph19

? A preliminary version appeared in the Proceedings of the 31st Workshop on

Graph-Theoretic Concepts in Computer Science, WG2005, LNCS 3787.
∗ Corresponding author.
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without significantly changing the approximation ratio. Under the assump-20

tion P 6= NP, we will show that no approximation algorithms for this problem21

can have an approximation ratio depending only on d̄. Thus we introduce the22

weighted average degree measure d̄w and analyze the approximation of several23

algorithms in terms of it. For weighted graphs, there exist approximation al-24

gorithms whose approximation ratio is analyzed in terms of inductiveness. We25

extend inductiveness to weighted version and introduce the weighted induc-26

tiveness δw.27

We note that the definition of the weighted average degree and Theorem 6 of28

this paper have already appeared in the paper of Demange and Paschos [3]. We29

will give the proof of the theorem in order to make this paper self-contained.30

We also note that some arguments in this paper follows ones in [3,5].31

The rest of this paper is organized as follows. In Section 2 we define the32

weighted average degree and the weighted inductiveness. We also show the33

relationship between the various parameters. In Section 3 we propose a greedy34

algorithm for finding an independent set with weight at least max(W/(d̄w +35

1),W/(δw + 1)), where W is the total weight of the graph. We also prove that36

this algorithm has approximation ratio max(δw, 1). In Section 4 we prove that37

the approximation ratio of min((d̄w + 1)/2, (δw + 1)/2) can be achieved by38

an LP-based algorithm. Finally we will prove that the approximation ratios39

of O(d̄w log log d̄w/ log d̄w) and O(δw log log δw/ log δw) can be achieved by an40

SDP-based algorithm in Section 5.41
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2 Preliminaries42

2.1 Definitions43

Let G be an undirected graph where each vertex v has positive weight wv.44

Let V (G) and E(G) denote the vertex set and the edge set of G, respectively,45

as usual. Without loss of generality, we will assume that G is connected. Let46

W (G) be the sum of the weights of all vertices. The number of vertices in G is47

denoted by n(G). Let ∆(G) and d̄(G) denote the maximum and the average48

degree of G, respectively. Let d(v,G) be the degree of vertex v in G. The49

inductiveness δ(G) of a graph G is given by50

δ(G) = max
H⊆G

min
v∈V (H)

d(v,H), (1)

where H ⊆ G denotes that H is a subgraph of G. Let π be an ordering of51

the vertices in V , that is, a one to one map V → {1, 2, . . . , n} (n = |V |). We52

define the right degree of a vertex v in G with respect to π by:53

dπ(v,G) = |{u ∈ V |(u, v) ∈ E, π(u) > π(v)}|. (2)

The right degree of a vertex v is the number of adjacent vertices to the right54

when we arrange vertices from left to right according to π. If there exists π55

such that m ≥ maxv dπ(v,G), we call G an m-inductive graph.56

For a vertex set X, let w(X) denote the sum of the weights of the vertices57

in X. Let NG(v) denote the set of vertices adjacent to vertex v in G. For a58

vertex v, we define the weighted degree dw(v,G) in G by:59
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dw(v,G) =
w(NG(v))

wv

. (3)

Let ∆w(G) = maxv dw(v,G) be the maximum weighted degree of G. We will60

omit G if clear from the context. We define the weighted average degree d̄w(G)61

of graph G as follows:62

d̄w(G) =

∑
v∈V wvdw(v,G)

W
. (4)

In fact, we can represent the weighted average degree in the following alter-63

native forms:64

d̄w(G) =

∑
v∈V w(N(v))

W
(5)

=

∑
v∈V wvd(v)

W
. (6)

The weighted inductiveness δw(G) of a graph G is given by65

δw(G) = max
H⊆G

min
v∈V (H)

dw(v,H). (7)

We define the right weighted degree of a vertex v for an ordering π in G by:66

dπ
w(v,G) =

w({u ∈ V |(u, v) ∈ E, π(u) > π(v)})
wv

.

If there exists π such that m ≥ maxv dπ
w(v,G), we call G a weighted m-67

inductive graph.68

We note that the weighted degree has the following “scaling property” that it69

is not affected when we uniformly multiply all the weights by a constant. This70

means that both the weighted average degree and the weighted inductiveness71
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satisfy the scaling property. We also note that the weighted degree is monotone72

in the sense that if G′ is a subgraph of G, then dw(v,G′) ≤ dw(v,G) for73

any vertex v ∈ V (G). The weighted inductiveness is also monotone, that is,74

δw(G′) ≤ δw(G) if G′ is a subgraph of G.75

We denote by αw(G) the maximum weight of an independent set in G. For an76

algorithm A, A(G) denotes the weight of the independent set obtained by A77

on G. Then the approximation ratio of A is defined by78

sup
G

αw(G)

A(G)
.

We will consider unweighted graphs as weighted ones where each vertex has79

unit weight. We use α(G) for the size of a maximum cardinality independent80

set on G.81

2.2 Properties of the degrees82

Let π be an ordering of the vertices of G and vi a vertex with π(vi) = i.83

We define V π
i = {vj|j ≥ i} as the suffix of the vertex set starting with i in84

the ordering π. Let Gπ
i be the subgraph of G induced by V π

i . Smallest-first85

ordering π is an ordering such that the weighted degree of vi is minimum86

in Gπ
i for all i (1 ≤ i ≤ n). We can find a smallest-first ordering in polyno-87

mial time by greedily choosing vertices of minimum weighted degree. We can88

prove the following theorem in the same manner as in the case of unweighted89

inductiveness [12].90

Theorem 1 For any ordering π, the inequality91
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δw(G) ≤ max
v

dπ
w(v,G)

holds. Moreover, equality holds when π is a smallest-first ordering.92

For unweighted graphs, the relationships δ ≤ ∆ and d̄ ≤ ∆ are obvious. Their93

counterpart for the weighted case, δw ≤ ∆w and d̄w ≤ ∆w are also obvious.94

We can further show that both ∆ and ∆w dominate all the measures δ, δw, d̄,95

and d̄w:96

Theorem 2 The following relationships hold for all graphs G:97

δ≤∆w (8)

δw ≤∆ (9)

d̄≤∆w (10)

d̄w ≤∆. (11)

PROOF. Let π1 be the vertex ordering such that π1(u) < π1(v) if wu < wv.98

Theorem 1 and the definition of the maximum weighted degree ∆w ensure the99

inequalities100

δ ≤ max
v∈V

dπ1(v,G), max
v∈V

dπ1
w (v,G) ≤ ∆w.

Observe that the right-neighbors of a vertex v under π1 (i.e, those neighbors101

u of v with π1(u) > π1(v)) are all of weight at least that of v. That implies102

that dπ1(v,G) ≤ dπ1
w (v,G). Thus we have the inequality (8). We can prove (9)103

in a similiar way by considering the ordering that is the reverse of π1.104

In order to prove inequality (10), observe that we can bound the sum of the105

weighted degree in the graph from below by twice the degree sum:106
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∑
v∈V

dw(v) =
∑
v∈V

∑
u:(u,v)∈E

wu

wv

=
∑

(u,v)∈E

(
wu

wv

+
wv

wu

)
≥ 2|E| = nd̄.

Thus,107

∆w = max
v∈V

dw(v) ≥ 1

n

∑
v∈V

dw(v) ≥ d̄.

Finally, inequality (11) follows immediately from Equation (6). 2108

Thus, we have the following partial order on the degree measures109

{δ, δw, d̄, d̄w} ≤ {∆, ∆w}.

There exist graphs where δw and d̄w are arbitrarily smaller than δ: Consider110

the complete bipartite graph G = Kn/2,n/2, where vertices have weight 1 on111

one side and w on the other side. Then, δ(G) = n/2, while δw(G) = (n/2)/w.112

For d̄w, we consider an n-clique of {v0, v1, . . . , vn−1} plus vn connected to only113

vn−1. The weight wi of vi is given by wi = 1 for 0 ≤ i ≤ n− 1 and wn = w. In114

the graph, δ = n − 1 and115

d̄w =
w + (n − 1)2 + n

w + n
= 1 + O

(
n2

w

)
.

2.3 Motivation for the weighted average degree116

As mentioned already, there are no approximation results with the parameter d̄117

for the weighted case, whereas ∆ and δ have such results. The main difference118

is that ∆ and δ are monotone while d̄ is not. That is, for a subgraph G′ of G,119
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it is clear that ∆(G′) ≤ ∆(G) and δ(G′) ≤ δ(G) but d̄(G′) can be larger than120

d̄(G).121

Because of this lack of monotonicity, we can construct a weighted graph of122

constant average degree by adding some vertices, without affecting much the123

size of the maximum weighted independent set. Combining with the fact that124

we cannot approximate the unweighted independent set within constant factor125

unless P = NP [1], the following theorem holds:126

Theorem 3 Let f be any real-valued function. If there exists an f(d̄)-approximation127

algorithm for the weighted independent set problem on graphs with average de-128

gree d̄, then P = NP.129

PROOF. We assume that Aw is an f(d̄)-approximation algorithm for the130

weighted maximum independent set problem. We will show that we can then131

construct a constant-ratio approximation algorithm A for the (unweighted)132

independent set problem using Aw.133

We are given a connected graph G = (V,E), where V = {v1, v2, . . . , vn} and134

E = {e1, e2, . . . , em}. We assume that n ≥ 7, because otherwise we can find a135

maximum independent set in G in polynomial time. We then construct a su-136

pergraph G′ = (V ′, E ′) of G as follows: V ′ = V +U where U = {u1, u2, . . . , um}137

is a set of dummy vertices. E ′ = E+E1+E2, where E1 consists of the m edges138

of the form (v1, ui), making G′ connected, and E2 is a set of edges connecting139

2n arbitrary pairs in U . (This construction always works because m ≥ n − 1140

and n ≥ 7.) The vertex weights of G′ are defined by:141
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w(v) =


1 v ∈ V,

1/(2f(4)m) v ∈ U.

We note that the average degree of G′ is 4, because it has (m + n) vertices142

and m + m + 2n = (2m + 2n) edges.143

Algorithm A uses Aw on the graph G′ with weights w, and removes vertices144

outside of V from the solution to return an independent set of G.145

Let A(G) be the size of the independent set found by A on G. Similary we use146

Aw(G′) for the weight of the independent set found by Aw for G′.147

Our construction of G′ ensures that any independent set of G is also an in-148

dependent set of G′. This immediately implies that α(G) ≤ αw(G′). Thus149

Aw(G′) ≥ αw(G′)/f(4) ≥ α(G)/f(4). The size of the independent set found by150

A is bounded from below by Aw(G′)−|U |/(2f(4)m) ≥ α(G)/f(4)−1/(2f(4)).151

Moreover, any singleton vertex is an independent set, or α(G) ≥ 1. This152

means that A(G) ≥ α(G)/f(4) − α(G)/(2f(4)) = α(G)/(2f(4)). Thus the153

algorithm A has approximation ratio 2f(4), which is constant. 2154

Theorem 3 states that the unweighted average degree d̄ is not a valid paratemer155

for the approximation ratio for the weighted independent set problem. It is156

natural to ask whether the unweighted inductiveness δ is valid or not. In157

fact, as we will see in Section 3.1, δ can be used as the parameter for the158

approximation ratio for the weighted independent set problem.159
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2.4 Reduction from weighted graph to unweighted one160

The weighted independent set problem can easily be reduced to the unweighted161

version as follows: Assume that we are given a graph G with weight w. We con-162

struct an unweighted graph G′ = (V ′, E ′) by V ′ = {(v, i)|v ∈ V , 1 ≤ i ≤ wv}163

and E ′ = {((u, i), (v, j))|(u, v) ∈ E, 1 ≤ i ≤ wu, 1 ≤ j ≤ wv}, where we as-164

sume that the weights wv are positive integers. This reduction preserves the165

independent set, that is, any independent set S of G induces the independent166

set S ′ = {(v, i)|v ∈ S, 1 ≤ i ≤ wv} of G′ of size |S ′| = w(S). Conversely, for167

any independent set S ′ of G′, the set S = {v|(v, i) ∈ S ′ for some i} is the168

independent set of G of weight w(S) ≥ |S ′|.169

We note that this translation increases the degree of the vertex: a vertex (v, i)170

of G′ has degree d((v, i), G′) = w(N(v)) = dw(v) · wv. Thus the maximum171

degree, the average degree, and the inductiveness of G′ must be at least the172

weighted counterparts of G. This means that with this translation no inter-173

esting results for approximation ratios using ∆w, d̄w, and δw can be achieved.174

Demange and Paschos [3] have introduced the notion of FA-reduction and175

proposed a general FA-reduction between the maximization problem and the176

weighted maximization problem on graphs. An FA-reduction from problem P177

to problem Q is a triple (f, g, h), where f is a polynomial function which178

converts an instance p of P to the instance f(p) of Q, h is a function taking179

an instance p of P and a feasible solution x of f(p) to produce the feasible180

solution h(x) of p in polynomial time, and g is a function such that for any181

approximation algorithm A for Q with approximation ratio ρ the sequential182

application of f , A, and h is an g(ρ)-approximation algorithm for P . They183
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have shown a generic FA-reduction from the weighted problems to unweighted184

ones transforming any approximation ratio ρ for latter into an approximation185

ratio Ω(ρ/ log n) for former. Moreover they have improved this FA-reduction186

for the maximum independent set problem. However the improved reduction187

still introduces extra log log n factor to the approximation ratio.188

3 Greedy algorithm189

3.1 Previous results190

For unweighted graphs, the greedy algorithm can be described as follows. We191

select a minimum degree vertex, add it to an independent set solution I, and192

delete this vertex and all of its neighbors from the graph. We repeat this193

process for the remaining subgraph until the subgraph becomes empty, and194

then output I. This algorithm attains the Turán bound [9,10]:195

|I| ≥ n

d̄ + 1
. (12)

For weighted graphs, the lower bound196

w(I) ≥ W

δ + 1
. (13)

can be achieved by the smallest-last coloring procedure [12], as it produces a197

vertex coloring using at most (δ + 1) colors.198

The greedy algorithm WG for weighted graph G = (V,E) is as follows:199
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(1) Let i ← 1, G1 ← G, and I ← ∅200

(2) Repeat (2)–(6) until Gi becomes empty:201

(3) Select a vertex vi of minimum weighted degree.202

(4) Add vi to I.203

(5) Remove vi and its neighbors from Gi. The remaining graph is Gi+1.204

(6) Increment i by 1.205

(7) Return I as an independent set.206

Let R = |I| be the number of iterations of the loop of WG.207

On unweighted graphs, WG is equivalent to the classical minimum-degree208

greedy algorithm, since in this case the weighted degree is identical to the209

(unweighted) degree.210

Sakai, Togasaki, and Yamazaki proposed an algorithm which is essentially the211

same as WG and proved the following theorem [14].212

Theorem 4 ([14]) WG finds an independent set satisfying:213

WG(G) ≥
∑
v∈V

w2
v

w(N(v)) + wv

.

3.2 Lower bound214

We use the following proposition.215

Proposition 5 Assume that ai > 0, bi > 0 for all 1 ≤ i ≤ n. Then the216

inequality217
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n∑
i=1

b2
i

ai

≥ (
∑n

i=1 bi)
2∑n

i=1 ai

holds.218

PROOF. The inequality is equivalent to219

n∑
i=1

ai

n∑
i=1

b2
i

ai

≥
(

n∑
i=1

bi

)2

.

This inequality comes from the Cauchy-Schwarz inequality (
∑n

i=1 x2
i ) (

∑n
i=1 y2

i ) ≥220

(
∑n

i=1 xiyi)
2, by assigning xi =

√
ai and yi = bi/

√
ai. 2221

Theorem 6 (Theorem 5 of [3]) WG produces an independent set satisfy-222

ing:223

WG(G) ≥ W

d̄w + 1
.

PROOF. We obtain a lower bound of d̄wW :224

d̄wW =
∑

v∈V (G)

wvdw(v,G) (from (5))

≥
R∑

i=1

∑
v∈NGi

(vi)∪{vi}
wvdw(v,Gi) (by monotonicity, as Gi ⊆ G)

≥
R∑

i=1

∑
v∈NGi

(vi)∪{vi}
wvdw(vi, Gi) (vi has the least weighted degree)

=
R∑

i=1

[w(NGi
(vi)) + wvi

] dw(vi, Gi). (dw(vi, Gi) is fixed in the inner sum)

Adding W =
∑R

i=1 [w(NGi
(vi)) + wvi

], we can deduce, using (3), the inequality225
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(
d̄w + 1

)
W ≥

R∑
i=1

[w(NGi
(vi)) + wvi

]2

wvi

.

Finally we apply Proposition 5 with ai = wvi
, bi = w(NGi

(vi)) + wvi
, giving226

(
d̄w + 1

)
W ≥ W 2

WG(G)
.

This implies the theorem. 2227

One may observe that Theorem 4 also leads to Theorem 6.228

We note that this analysis depends on our definition of the weighted degree.229

In fact, our definition is a natural extension of the (unweighted) degree in230

the following sense. (1) the weighted degree satisfies the scaling property, and231

(2) our definition captures the relation between the gain and the possible loss232

when adding a vertex v to be in an independent set: we gain its weight w(v)233

while possibly losing the weights of its neighbors w(N(v)) = w(v)dw(v), just234

as we gain one vertex while losing d(v) vertices in the unweighted case.235

Theorem 6 is a natural extension of (12) to the weighted independent set236

problem. Similarly, for the weighted inductiveness δw we can prove the theorem237

corresponding to (13) for the unweighted inductiveness δ.238

Theorem 7 WG produces an independent set satisfying:239

WG(G) ≥ W

δw + 1
.

PROOF. Because W =
∑R

i=1 [w(NGi
(vi)) + wvi

] and δw ≥ dw(vi, Gi) for i =240

1, . . . , R, the inequality241
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δwW ≥
R∑

i=1

[w(NGi
(vi)) + wvi

] dw(vi, Gi)

holds. With this inequality, we can prove this theorem in the same way as242

Theorem 6. 2243

The following example shows that the lower bounds given by Theorems 6 and244

7 are both tight. Let G be a star with n vertices. We assign weight 1 to the245

center vertex and 1/
√

n − 1 to the other vertices. In this graph, all vertices246

have the same weighted degree of
√

n − 1, so WG may output the center vertex247

alone for WG(G) = 1. We have d̄w = δw =
√

n − 1, and W =
√

n − 1 + 1.248

Therefore, the inequalities in Theorems 6 and 7 hold here with equality.249

It is clear that the maximum weighted independent set consists of the non-250

center vertices, giving αw(G) =
√

n − 1. Thus the approximation ratios of WG251

on this instance are d̄w and δw. This gives lower bounds on the approximation252

ratios of WG.253

3.3 Approximation ratio254

From Theorems 6 and 7, the approximation ratios d̄w + 1 and δw + 1 are255

immediate. The latter ratio can be slightly improved.256

Theorem 8 WG attains approximation ratio max(δw, 1).257

PROOF. Let Vi = NGi
(vi)∪{vi}, and Hi be the subgraph of G induced by Vi.258

If δw ≤ 1, it is easy to see that αw(Hi) = wvi
and thus αw(G) ≤ ∑R

i=1 αw(Hi) =259 ∑R
i=1 wvi

= WG(G). Otherwise, by the property of WG and the definition of260
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inductiveness, αw(Hi) ≤ max(wvi
, w(NHi

(vi))) = wvi
· max(1, dw(vi, Hi)) ≤261

wvi
· max(1, δw(G)) = wvi

· δw(G). The inequalities262

αw(G) ≤
R∑

i=1

αw(Hi) ≤
R∑

i=1

wvi
· δw(G) = WG(G) · δw(G)

are immediate. 2263

This theorem immediately implies that this problem is polynomial time solv-264

able for the graphs with δw ≤ 1; we will ignore this case hereafter.265

4 LP-based algorithms266

We will consider the combination of linear programming and the greedy algo-267

rithm. With the lower bound (12), Hochbaum [10] proved that this combina-268

tion achieves the approximation ratio (d̄ + 1)/2. Similarly the approximation269

ratio (δ + 1)/2 can be shown. In this section we extend Hochbaum’s analysis270

to the weighted case and prove that the proposed algorithm has corresponding271

approximation ratios (d̄w + 1)/2 and (δw + 1)/2.272

4.1 LP relaxation for the weighted independent set problem273

The weighted independent set problem has the following integer programming274

formulation:275

maximize
∑
i∈V

wixi, (14)

subject to xi + xj ≤ 1 for all (i, j) ∈ E,

xi ∈ {0, 1} for all i ∈ V.
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Relaxing the integral constraint, we deduce the following linear program:276

maximize
∑
i∈V

wixi, (15)

subject to xi + xj ≤ 1 for all (i, j) ∈ E,

0 ≤ xi ≤ 1 for all i ∈ V.

We can obtain an optimal solution to this LP each of whose elements is 0,277

1/2, or 1 [16]. Note that this LP can be solved with a combinatorial al-278

gorithm [13,15]. We classify the vertices into three sets according to the279

value of xi, that is, S1 = {i ∈ V |xi = 1}, S1/2 = {i ∈ V |xi = 1/2},280

S0 = {i ∈ V |xi = 0}. Note that S1 is an independent set of G and no vertex281

in S1/2 has a neighbor in S1. We also note that S1/2 induces a subgraph with282

no isolated vertices.283

4.2 Algorithm284

We first solve the LP relaxation to divide the vertex set V into three subsets285

S1, S1/2, and S0 as above. We then apply WG to the subgraph H induced by286

S1/2 to obtain an independent set IH of H. Finally, we output the independent287

set I = S1 ∪ IH . We call this algorithm WGL.288

4.3 Approximation ratio289

From Theorem 6, we can prove the following theorem in the same manner as290

the proof of Hochbaum [10] of the approximation ratio (d̄+1)/2 for unweighted291

graphs.292

Theorem 9 Approximation ratio of WGL is (d̄w + 1)/2.293
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PROOF. We prove the following chain of inequalities:294

αw(G)

WGL(G)
≤

w(S1) + w(S1/2)/2

w(S1) + w(S1/2)/(d̄w(H) + 1)
(16)

≤ 1

2

[
w(S1/2)d̄w(H) + w(S1) + w(S0)

w(S1/2) + w(S1) + w(S0)
+ 1

]
(17)

≤ d̄w + 1

2
. (18)

We have used the optimal solution to LP (15) to partition V into S0, S1/2, S1.295

This guarantees that w(S1) ≥ w(S0). Moreover, we mentioned that H has no296

isolated vertices. This means that d(v,H) ≥ 1 for each vertex v ∈ S1/2, which297

in combination with Equation (6) ensures that d̄w(H) ≥ 1. Thus we can show298

Inequality (17) as follows, in which we use D = d̄w(H) + 1 for readability:299

w(S1) + w(S1/2)/2

w(S1) + w(S1/2)/(d̄w(H) + 1)

=
Dw(S1) + Dw(S1/2)/2

Dw(S1) + w(S1/2)

= 1 +
(D/2 − 1)w(S1/2)

Dw(S1) + w(S1/2)

≤ 1 +
(D/2 − 1)w(S1/2)

w(S1) + w(S0) + w(S1/2)

=
Dw(S1/2)/2 + w(S1) + w(S0)

w(S1/2) + w(S1) + w(S0)

=
[d̄w(H) + 1]w(S1/2)/2 + w(S1) + w(S0)

w(S1/2) + w(S1) + w(S0)

=
1

2

[
w(S1/2)d̄w(H) + w(S1) + w(S0)

w(S1/2) + w(S1) + w(S0)
+ 1

]
.

We argue Inequality (18) as follows. Since we have assumed that the input300

graph G is connected, each vertex is of positive degree, or, d(v,G) ≥ 1 for301

19



each vertex v ∈ V . Moreover, because H is a subgraph of G induced by302

S1/2, for each vertex v ∈ S1/2 the degree in H is at most that in G, that is,303

d(v,H) ≤ d(v,G). Hence,304

∑
v∈V

d(v,G)w(v) =
∑

v∈S1/2

d(v,G)w(v) +
∑

v∈S1∪S0

d(v,G)w(v)

≥
∑

v∈S1/2

d(v,H)w(v) +
∑

v∈S0∪S1

1 · w(v)

= d̄w(H)w(S1/2) + [w(S0) + w(S1)].

Using Equation (6), this is equivalent to305

d̄w(G)W (G) ≥ d̄w(H)w(S1/2) + w(S1) + w(S0), (19)

which in turn is equivalent to Inequality (18). 2306

We also prove an approximation ratio in terms of the weighted inductiveness.307

Theorem 10 Approximation ratio of WGL is (δw + 1)/2.308

PROOF. From Theorem 7 and our assumption that δw ≥ 1,309

αw(G)

WGL(G)
≤

w(S1) + w(S1/2)/2

w(S1) + w(S1/2)/(δw(H) + 1)

≤ max

(
1,

δw(H) + 1

2

)

≤ δw + 1

2
. 2

20



Proposition 11 The approximation ratios of Theorems 9 and 10 are tight.310

PROOF. Let t be a number. We consider the split graph G = (V,E), where311

V = {u1, u2, . . . , ut, v1, v2, . . . , v2t−1} and E = {(ui, vj)|1 ≤ i ≤ t, 1 ≤ j ≤312

2t − 1} ∪ {(ui, uj)|1 ≤ i < j ≤ t}. The subgraph induced by {ui|1 ≤ i ≤ t} is313

a clique and the vertex set {vj|1 ≤ j ≤ 2t− 1} is an independent set. We give314

weight 1/t + 1/t3 to each ui and weight 1/(2t − 1) to each vj. The weighted315

degree of each vertex is316

dw(ui) = 2t − 1 − t

t2 + 1
, dw(vj) = 2t − 1 +

2t − 1

t2
.

The weighted average degree and weighted inductiveness of G are:317

d̄w = 2t − 1 +
t − 1

2t2 + 1
, δw = 2t − 1 − t

t2 + 1
.

In the optimal solution to LP (15), each xi has value 1/2. Thus, S1/2 = V (G).318

Because dw(ui) < dw(vj) for each i and j, WGL returns some singleton set {ui}319

as an independent set in G. Thus WGL(G) = 1/t + 1/t3 while it is clear that320

αw = 1, which is achieved by the independent set {vj|1 ≤ j ≤ 2t− 1}. So, the321

approximation ratio is322

αw(G)

WGL(G)
=

1

1/t + 1/t3
= t − t

t2 + 1
.

This ratio can be evaluated, with d̄w and δw, as follows:323
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αw(G)

WGL(G)
=

d̄w + 1

2
− t − 1

2(2t2 + 1)
− t

t2 + 1
=

d̄w + 1

2
− O

(
1

t

)
,

αw(G)

WGL(G)
=

δw + 1

2
+

t

2(t2 + 1)
− t

t2 + 1
=

δw + 1

2
− O

(
1

t

)
.

As we can set t arbitrarily large, we have that Theorems 9 and 10 are tight. 2324

5 SDP-based algorithms325

5.1 Previous result326

The following theorem was proved in [6], based on an unweighted version of327

Karger, Motwani and Sudan [11]:328

Theorem 12 ([6]) For any fixed real k such that ϑw(G) ≥ 2W/k, we can329

construct an independent set in G whose weight is Ω(W/(kδ1−1/(2k))).330

The function ϑw(G), defined in [4], is the weighted version of Lovász’s ϑ-331

function. This function can be computed using semi-definite programming332

(SDP) in polynomial time, and has the property that αw(G) ≤ ϑw(G).333

For unweighted graphs, the combination of this theorem and the greedy algo-334

rithm yields the approximation ratios O(d̄ log log d̄/ log d̄) and O(δ log log δ/ log δ).335

We show the approximation ratios using the weighted degrees, namely O(d̄w×336

log log d̄w/ log d̄w) and O(δw log log δw/ log δw), are achived by the combination337

of the greedy algorithm and SDP.338
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5.2 Approximation ratio for weighted graphs339

We will prove the following result for the weighted version of the algorithm340

with the approximation ratio O(d̄ log log d̄/ log d̄).341

Theorem 13 For any fixed real t such that t ≥ W (G)/αw(G), we can ap-342

proximate the weighted independent set problem within O(t2d̄1−1/(8t)
w ) factor.343

PROOF. Assume that t ≥ W (G)/αw(G) is fixed. Let V ′ be the subset of344

vertices with degree less than 2td̄w. Then we can estimate the value d̄wW (G)345

as follows:346

d̄wW (G) =
∑

v∈V (G)

wvd(v) ≥
∑

v∈V (G)\V ′

wvd(v) ≥ 2td̄w

∑
v∈V (G)\V ′

wv.

Thus, the inequality
∑

v∈V (G)\V ′ wv ≤ W (G)/(2t) ≤ αw(G)/2 holds. We now347

consider the subgraph G′ of G induced by V ′. It is obvious that αw(G′) ≥348

αw(G) − ∑
v∈V (G)\V ′ wv ≥ αw(G)/2 and that w(V ′) ≤ w(V (G)) = W . Thus349

the value of the weighted ϑ-function for G′ satisfies350

ϑw(G′) ≥ αw(G′) ≥ αw(G)/2 ≥ W/(2t) = 2W/(4t).

We apply Theorem 12 with k = 4t. The result is that, there exists an algorithm351

which finds an independent set I of G′ with weight Ω(w(V ′)/(tδ(G′)1−1/(8t))).352

Our selection of V ′ ensures that δ(G′) ≤ 2td̄w. With the inequality w(V ′) ≥353

αw(G′) ≥ αw(G)/2, weight of I is estimated as follows:354

w(I) = Ω(w(V ′)/(tδ(G′)1−1/(8t))) = Ω(αw(G)/(t2d̄1−1/(8t)
w )).
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This inequality implies the following:355

αw(G)

w(I)
= O(t2d̄1−1/(8t)

w ). 2

Theorem 14 For any fixed real t such that t ≥ W (G)/αw(G), we can ap-356

proximate the weighted independent set problem within O(t2δ1−1/(8t)
w ) factor.357

PROOF. Let π be an ordering of vertices in G for which the value of maxv dπ
w(v)358

is equal to δw. Let π′ be the reverse ordering of π. Assume that t ≥ W (G)/αw(G)359

is fixed. Let V ′ be the subset of vertices with right degree less than 2tδw. Be-360

cause V ′ induces a 2tδw-inductive subgraph of G, the following inequalities361

hold:362

δwW ≥
∑

v∈V (G)

wvd
π
w(v) =

∑
v∈V (G)

wvd
π′

(v)

≥
∑

v∈V (G)\V ′

wvd
π′

(v) ≥ 2tδw

∑
v∈V (G)\V ′

wv.

The rest of the proof is nearly identical to the one of Theorem 13. 2363

5.3 Algorithm364

In this section we propose two algorithms: WGSA, whose approximation ratio365

is a function of d̄w, and WGSI, whose approximation ratio is a function of δw.366

WGSA is the following algorithm: Obtain an independent set by applying WG,367

independently apply the algorithm of Theorem 13 to obtain another set, and368

output the one with larger weight.369
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Theorem 15 WGSA achieves approximation ratio O(d̄w log log d̄w/ log d̄w) for370

the weighted independent set problem.371

PROOF. Let t be a fixed constant. If t ≥ W (G)/αw(G), then the indepen-372

dent set I in the proof of Theorem 13 satisfies the inequality373

αw(G)

w(I)
= O(t2d̄1−1/(8t)

w ). (20)

Otherwise, WG finds an independent set I ′ satisfying374

w(I ′) ≥ W

d̄w + 1
≥ tαw(G)

d̄w + 1
,

that is,375

αw(G)

w(I ′)
= O(d̄w/t). (21)

Equations (20) and (21) approximately coincide when t = log d̄w/ log log d̄w,376

giving the theorem. 2377

WGSI is identical to WGSA, except we replace the algorithm of Theorem 13378

with the one of Theorem 14. The analysis is also identical, by simply substi-379

tuting δw for d̄w.380

Theorem 16 WGSI achieves approximation ratio O(δw log log δw/ log δw) for381

the weighted independent set problem.382
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6 Conclusion383

In this paper, we defined the weighted average degree d̄w and the weighted in-384

ductiveness δw, and proved lower bounds on the weight of the independent set385

obtained by the weighted greedy algorithm. We also proved that this algorithm386

has approximation ratio δw. Combining with LP, we obtained the approxima-387

tion ratio min((d̄w+1)/2, (δw+1)/2). Also combining with SDP, we proved that388

approximation ratios of O(d̄w log log d̄w/ log d̄w) and O(δw log log δw/ log δw)389

can be attained.390

Here we briefly discuss whether our weighted parameters are applicable to the391

weighted clique problem or not. In unweighted case, [3] showed the following392

reduction from the maximum clique problem to the maximum independent393

set problem. For a vertex v, let Gv be the subgraph of G induced by the ver-394

tex v and its neighbors. It is clear to see that any maximum clique of G is a395

maximum clique of at least one subgraph Gv. This means that finding a max-396

imum clique of G is identical to finding maximum cliques of all of Gv, which397

is the same as finding maximum independent sets of Ḡv. Moreover, Gv and its398

complement Ḡv have at most ∆(G) + 1 vertices and both ∆(Gv) and ∆(Ḡv)399

are at most ∆(G). Thus, any f(∆)-approximation algorithm for the maximum400

independent set problem can be converted to f(∆)-approximation algorithm401

for the maximum clique problem. However, in weighted case, our definition of402

weighted degree does not allow similar property. Specifically, ∆w(Ḡv) can be403

larger than ∆w(G). Thus our weighted degree is not applicable to the maxi-404

mum weighted clique problem.405
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Comment on Text
I'm not sure it's worth the space to include this observation. Maybe best just to include it in a response to the referee. After all, this paper is not about other optimization problems than max IS.
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[5] M. Halldórsson, Approximations of independent sets in graphs, in: The418

First International Workshop on Approximation Algorithms for Combinatorial419

Optimization Problems (APPROX), 1998.420
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