
Powers of Geometri
 Interse
tion Graphs and DispersionAlgorithmsGeir Agnarsson� Peter Damas
hkey Magn�us M. Halld�orssonzAbstra
tWe study powers of 
ertain geometri
 interse
tion graphs: interval graphs, m-trapezoid graphsand 
ir
ular-ar
 graphs. We de�ne the pseudo produ
t, (G;G0)! G�G0, of two graphs G and G0on the same set of verti
es, and show that G�G0 is 
ontained in one of the three 
lasses of graphsmentioned here above, if both G and G0 are also in that 
lass and ful�ll 
ertain 
onditions. Thisgives a new proof of the fa
t that these 
lasses are 
losed under taking power; more importantly,we get eÆ
ient methods for 
omputing the representation for Gk if k � 1 is an integer andG belongs to one of these 
lasses, with a given representation sorted by endpoints. We thenuse these results to give eÆ
ient algorithms for the k-independent set, dispersion and weighteddispersion problem on these 
lasses of graphs, provided that their geometri
 representations aregiven.2000 MSC: 05C12, 05C62, 05C69, 05C85Keywords: Powers of graphs, interse
tion graphs, interval graphs, 
ir
ular-ar
 graphs, trape-zoid graphs, dispersion.1 Introdu
tionThe subje
t of this paper is dispersion problems in 
ertain geometri
 interse
tion graphs. Thedispersion problem is to sele
t a given number of verti
es in a graph so as to maximize the minimumdistan
e between them. The problem is dual to the maximum k-independent set problem, whi
his that of �nding a maximum 
olle
tion of verti
es whose inter-vertex distan
e is greater than agiven bound k. That problem in turn is equivalent to the well-studied maximum independent setproblem on the power graph Gk of the original graph. Thus, in order to give eÆ
ient dispersionalgorithms, we are led to study eÆ
ient methods for 
omputing k-independent set and methods for
onstru
ting power graphs, as well as to study stru
tural properties of these powers.In this arti
le we present eÆ
ient methods to 
ompute the powers of some geometri
 interse
tiongraphs, in
luding interval graphs, 
ir
ular-ar
 graphs, and m-trapezoid graphs. The 
ontainmentof graph 
lasses under study is as follows. Proper interval graphs, interval graphs, trapezoidgraphs, m-trapezoid graphs, 
o
omparability graphs, all form one proper 
ontainment 
hain. Morepre
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and 
o
omparability graphs for any m. Similarly, proper 
ir
ular-ar
 graphs, 
ir
ular-ar
 graphs,
ir
ular m-trapezoid graphs form another 
hain, and they also properly 
ontain the respe
tivenon-
ir
ular 
lass.These and various other 
lasses of graphs have been shown to be 
losed under taking power.This in
ludes 
o
omparability graphs [6℄, strongly 
hordal graphs [17, 5℄, interval graphs [16℄, m-trapezoid and trapezoid graphs [8℄, 
ir
ular-ar
 graphs [9℄. For all of these 
lasses, ex
ept 
ir
ular-ar
 graphs, the following stronger fa
t is known that whenever Gk is in the 
lass, then so is Gk+1.Generally, these proofs of 
ontainment do not immediately yield eÆ
ient algorithms. This ledus to derive an eÆ
ient method for 
omputing the power graph Gk of an interval graph G in timeO(n log k) [2℄. We both improve and generalize this result in the present arti
le.To this end we de�ne the pseudo produ
t (G;G0)! G �G0 for two general graphs on the sameset of verti
es. This 
omposition turns out to be 
ommutative, but not asso
iative in general.However, when we restri
t to the 
lass of various powers of a �xed graph, then the pseudo produ
tis also asso
iative, in fa
t if s and t are positive integers then Gs �Gt = Gs+t.Our fast power 
omputations lead to eÆ
ient algorithms for the dispersion problem in m-trapezoid, trapezoid, interval, and 
ir
ular-ar
 graphs. The problem is de�ned as follows:DispersionGiven: Graph G and integer q.Find: A set of at least q verti
es, su
h that the minimum distan
e between the 
hosenverti
es is maximized.The generalized version is:Weighted DispersionGiven: Graph G with vertex weights w : V (G)! R, and real number q.Find: A set of verti
es with total weight at least q, with the minimum distan
e betweenthe 
hosen verti
es at maximum.Dispersion is NP-hard for general graphs, sin
e Maximum Independent Set is redu
ible to it, whileit 
an be approximated in polynomial time within fa
tor 2, see e.g. [18℄. Dispersion restri
ted toq = 2 is nothing else than the problem of 
omputing the diameter of G.There is an obvious relationship between dispersion, k-independent sets and k-th powers ofgraphs: Let G be some graph 
lass. If maximum independent sets 
an be found in polynomial timein the 
lass of powers of graphs from G then dispersion in G 
an be solved in polynomial time, too.If G is 
losed under taking power, we merely have to 
ompute maximum independent sets in thek-th power for several k. However the straightforward use of this observation yields 
(n2) timedispersion algorithms in su
h 
lasses G. For faster algorithms we have to avoid expli
it insertion ofedges when 
onsidering the k-th powers of G, su
h that fast power 
omputations is exa
tly whatwe need here.We want to make 
lear that we always assume that our geometri
 interse
tion graphs are givenby their geometri
 representations, rather than by their edge lists. Thus they are des
ribed inO(n) spa
e, by the extreme points of geometri
 sets representing the verti
es. Without su
h arepresentation, it is impossible to a
hieve equally fast algorithms for the problems we study. (Form-trapezoid graphs, already the re
ognition problem is NP-hard [8, 20℄.)We further assume everywhere in this paper that the endpoints of the intervals/ar
s/trapezoidsare given in a sorted list. This is 
ommon in the literature on algorithms in these 
lasses and allows2



us to derive O(n logn) algorithms for many of these problems. Solving dispersion on interval graphsis at least as hard as sorting, thus requiring 
(n logn) time. We note that there are natural 
aseswhere faster sorting is possible. For example, if all endpoints are integers within a range of s, thenintervals 
an be bu
ket-sorted in O(n+ s) time, whi
h is O(n) if s = O(n).Only a few subquadrati
 dispersion algorithms have been provided before: Dispersion is solvablein O(n) time for trees [3℄, while weighted dispersion in O(n logn) time for paths [18℄, and inO(n log4 n) time for trees [4℄.1.1 Outline of paperIn Se
tion 2 we de�ne the pseudo produ
t and apply it to obtain a fast way to 
ompute arbitrarypowers of m-trapezoid graphs. The purpose here is to present the key elements of the pseudoprodu
t. We show that the pseudo produ
t of twom-trapezoid graphs, that ful�ll 
ertain 
onditions,whi
h are automati
ally satis�ed for interval graphs, is also an m-trapezoid graph.In Se
tion 3 we use the pseudo produ
t to obtain an O(n log k) algorithm to 
ompute the k-thpower of an m-trapezoid graph on n verti
es. Here we view m as a �xed integer that merely de�nesour 
lass of m-trapezoid graphs.In Se
tion 4 we present an O(n) algorithm to 
ompute the k-th power of interval (the 
asem = 0) and 
ir
ular-ar
 graphs.Finally, in Se
tion 5 we use the results in previous se
tions to solve eÆ
iently the k-IndependentSet, or k-IS problem, and the dispersion and weighted dispersion problems for interval graphs,
ir
ular-ar
 graphs and m-trapezoid graphs.We use the 
hara
terization of dispersion in terms of power graphs: The maximum dispersionis the largest k su
h that �(Gk; w) � q, where � denotes the (weighted) independen
e number ofG. The following table summarizes the asymptoti
 
omplexity of the three problems that we 
on-sider on the three geometri
 
lasses of graphs, provided that a representation as stated above isgiven. In the table, n denotes the number of verti
es in G, and lg refers to the usual base-2logarithm. We assume m is a 
onstant.Class Power k-IS Dispersion W -DispersionInterval n n n n lg kCir
ular-ar
 n n nTrapezoid n lg k n(lg k + lg lg n) n(lg k + lg lgn) n lg k lg lgnm-Trapezoid n lg k n(lg k + (lg lgn)m) n(lg k + (lg lgn)m) n lg k(lg lgn)mIn summary, we obtain linear time algorithms for 
omputing arbitrary k-power of interval and
ir
ular-ar
 graphs, and O(n log k) algorithm for m-trapezoid graphs (m �xed). The 
omputationof k-IS is equivalent to the power 
omputation, plus the 
ost of an independent set 
omputation.Dispersion is obtained by a 
onstant number of k-IS 
omputation in all these graph 
lasses, whi
hweighted dispersion requires lg k 
omputations of weighted independent sets.1.2 NotationWe will denote the positive integers f1; 2; 3; : : :g by N, the nonnegative integers f0; 1; 2; : : :g by N0,the set of real numbers by R, the Cartesian produ
t R�R by R2, and the set of the 
losed intervalfx : a � x � bg by [a; b℄. All graphs we 
onsider are simple unless otherwise stated. For a graphG the set of its verti
es will be denoted by V (G), and the set of its edges by E(G). The open3



neighborhood of a vertex v in G, that is, the set of neighbors of v not in
luding v, will be denotedby NG(v). The 
losed neighborhood of a vertex v in G, that is, the set of neighbors of v, in
ludingv itself, will be denoted by NG[v℄. For two verti
es u and v in G, the distan
e between them will bedenoted by dG(u; v) or simply by d(u; v) when unambiguous. We use notation 
ompatible with [19℄.Re
all for a graph G and an integer k, the k-th power of G is the graph Gk on the same setof verti
es as G, and where every pair of verti
es of distan
e k or less in G are 
onne
ted byan edge. Also, a graph G is 
alled the interse
tion graph of a 
olle
tion of sets fS1; : : : ; Sng ifV (G) = fv1; : : : ; vng and fvi; vjg 2 E(G), Si \Sj 6= ;, for all distin
t i; j 2 f1; : : : ; ng. Note thatwhen G is represented by fS1; : : : ; Sng, then d(Si; Sj) is just the distan
e dG(vi; vj) between vi andvj in the interse
tion graph G.2 Powers of m-Trapezoid GraphsIn this se
tion we dis
uss a way to 
al
ulate the k-th power of an m-trapezoid graphs eÆ
iently,and, as a spe
ial 
ase, an interval or a 
ir
ular-ar
 graph by means of the pseudo produ
t whi
hwe de�ne here below. Re
all that any power of an interval graph (resp. 
ir
ular-ar
 graph) is againan interval graph (resp. 
ir
ular-ar
 graph) [16, 17, 2℄.We start with the de�nition of the pseudo produ
t for general graphs, a 
omposition that
aptivates the essen
e of powers of graphs, as we will see in Observation 2.2.De�nition 2.1 Let G and G0 be simple graphs on the same set of verti
es V (G) = V (G0) = V ,where jV j = n � 1. De�ne the pseudo produ
t of G and G0 to be the simple graph G � G0 on thevertex set V with edge set E(G �G0) = E(G) [E(G0) [E� whereE� = ffu; vg : 9w 2 V : fu;wg 2 E(G); fw; vg 2 E(G0);and 9w0 2 V : fu;w0g 2 E(G0); fw0; vg 2 E(G)g:The word \pseudo" in our de�nition of the pseudo produ
t of G and G0, is �tting, sin
e if we view �as a group-like operation among all the simple graphs on V , then it is not an asso
iative operation.In other words, the formula (G�G0)�G00 = G� (G0 �G00) does not hold in general. We have howeverthe following, whi
h is a dire
t 
onsequen
e of De�nition 2.1.Observation 2.2 For a simple graph G and nonnegative integers s and t, we have Gs �Gt = Gs+t.In parti
ular, the pseudo produ
t is an asso
iative operation on the set fGk : k 2 f0; 1; 2; : : :gg forany �xed simple graph G.Assume that for ea
h l 2 f0; 1; : : : ;mg we have two real numbers, al and bl where al < bl. Asde�ned in [8℄, an m-trapezoid T is simply the 
losed interior of the polygon formed by the pointsS = f(al; l); (bl; l) : l 2 f0; 1; : : : ;mgg � R2. This means, the left side of the polygon is the 
hainof straight-line segments 
onne
ting (al; l) and (al+1; l + 1), where l ranges from 0 to m � 1, andsimilarly for the right side and numbers bl. The lower and upper boundary of T is the horizontalline with ordinate 0 and m, respe
tively. This we denote by T = inter(S). The horizontal lineswith ordinates l 2 f0; 1; : : : ;mg will be 
alled lanes.An m-trapezoid graph is a graph G on n verti
es fv1; : : : ; vng whi
h is an interse
tion graph of aset fT1; : : : ; Tng of m-trapezoids, that is, fvi; vjg 2 E(G), Ti \ Tj 6= ;. Let G be an m-trapezoidgraph represented by fT1; : : : ; Tng where ea
hTi = inter(f(ali; l); (bli; l) : l 2 f0; 1; : : : ;mgg): (1)4



We will write ~ali (resp. ~bli) for the point (ali; l) (resp. (bli; l)) in R2. We say that the left sides ofTi and Tj 
ross (or synonymously, interse
t) if there are distin
t indi
es p; q 2 f0; 1; : : : ;mg su
hthat api < apj and aqi > aqj .If G and G0 are two m-trapezoid graphs, both on n verti
es, represented by sets of m-trapezoidsT = fT1; : : : ; Tng and T 0 = fT 01; : : : ; T 0ng respe
tively, where the left side of Ti and the left side of T 0i
oin
ide, that is Ti = inter(f~ali;~bli : l 2 f0; 1; : : : ;mgg) and T 0i = inter(f~ali;~b0li : l 2 f0; 1; : : : ;mgg),for all i 2 f1; : : : ; ng, then we will say that T and T 0 are left-
oin
idal.Re
all that d(Ti; T�) and d(T 0i ; T 0�) denote the distan
es between 
orresponding verti
es in Gand G0 respe
tively. We now put b�li = maxd(T 0i ;T 0�)�1fbl�g and b�li0 = maxd(Ti;T�)�1fb0l�g for ea
hi 2 f1; : : : ; ng and l 2 f0; 1; : : : ;mg. With this setup we have the following theorem.Theorem 2.3 For an integer m � 0 let G and G0 be two m-trapezoid graphs on the same numberof verti
es, with left-
oin
idal representations fT1; : : : ; Tng and fT 01; : : : ; T 0ng respe
tively. Assumefurther that for ea
h i we have either b�li � b�li0 for all l 2 f0; 1; : : : ;mg, or b�li � b�li0 for alll 2 f0; 1; : : : ;mg. In this 
ase, the pseudo produ
t G � G0 is also an m-trapezoid graph with anm-trapezoid representation T � = fT �1 ; : : : ; T �ng, whi
h is left-
oin
idal with both T and T 0, andwhere the right sides of ea
h T �i are determined by b��li where b��li = maxfbli; b0li;minfb�li; b�li0gg, forall i 2 f1; : : : ; ng and l 2 f0; 1; : : : ;mg.Remarks: (i) In the 
ase m = 0 then Theorem 2.3 redu
es pre
isely to the statement for left-
oin
idal interval graphs, for whi
h the additional 
onditions of the above theorem are automati
allysatis�ed. That again, 
an be applied to 
ir
ular ar
 graphs in a natural fashion, where we extendthe ar
s in a 
lo
kwise dire
tion. (ii) In the 
ase where we are 
onsidering the pseudo produ
tGs � Gt of two powers of the same graph m-trapezoid graph G, then the 
ondition in the abovetheorem is satis�ed. In fa
t, we will see in Observation 2.4 here below, that b�li = b�li0 holds then forea
h l and i.Proof. To prove Theorem 2.3 we need to showfvi; vjg 2 E(G �G0), T �i \ T �j 6= ;: (2)In the 
ase where the left sides of Ti and Tj 
ross, there is nothing to prove, sin
e all the sets Ti\Tj,T 0i \ T 0j and T �i \ T �j are then nonempty. Hen
e we 
an assume throughout the proof that the leftsides of Ti and Tj do not 
ross, say ali < alj for all l 2 f0; 1; : : : ;mg. Furthermore, if fvi; vjg iseither in E(G) or in E(G0) then T �i \ T �j 6= ; by de�nition. Hen
e, we 
an further assumeali < bli < alj and ali < b0li < alj (3)to hold for all l 2 f0; 1; : : : ;mg throughout the proof.To prove the \)"-dire
tion of (2) assume that fvi; vjg 2 E(G �G0). By de�nition of E(G �G0),there are v� and v� su
h that fv�; vjg; fvi; v�g 2 E(G) and fvi; v�g; fv� ; vjg 2 E(G0). This,together with (3), means that there are indi
es p; q 2 f0; 1; : : : ;mg su
h that T 0i \T 0� 6= ;, apj < bp�,Ti \ T� 6= ; and aqj < b0q�.If b�pi � b�pi0 then we have b��pi = b�pi � bp� > apj, and hen
e T �i \ T �j 6= ;.If however b�pi � b�pi0 then by assumption in the theorem we have that b�qi � b�qi0 also holds andhen
e we have b��qi = b�qi0 � b0q� > aqj, whi
h implies that T �i \ T �j 6= ;, thereby 
ompleting the\)"-part of (2). 5



Now for the other part, assume T �i \T �j 6= ;. By (3) this means that there is an l 2 f0; 1; : : : ;mgsu
h that b��li > alj. By de�nition of b�li and b�li0 we 
an �nd � and � su
h that T 0i \T 0� 6= ;, bl� = b�li,Ti \ T� 6= ; and b0l� = b�li0.Sin
e now both bl� and b0l� are greater or equal to b��li we have T 0i \T 0� 6= ;, bl� > alj , Ti\T� 6= ;and b0l� > alj. By our assumption in (3) we have T 0i \ T 0� 6= ;, T� \ Tj 6= ;, Ti \ T� 6= ; andT 0� \ T 0j 6= ;, whi
h implies that fvi; vjg 2 E(G � G0). This proves the \("-part of (2), thereby
ompleting our proof. utLet us now 
onsider the more spe
ial 
ases of a pseudo produ
t of two powers of a �xedm-trapezoidgraph G. By Observation 2.2 we have that Gs �Gt = Gs+t, and hen
e Theorem 2.3 gives us a wayto obtain the representation of Gs+t dire
tly from the representations of Gs and Gt. In [1℄ it isshown that if G is an m-trapezoid graph represented by a set fT1; : : : ; Tng of m-trapezoids (as in(1)) and k � 1 is an integer, then Gk is represented by m-trapezoids fT1(k); : : : ; Tn(k)g whi
h aregiven by Ti(k) = inter(f~ali;~bli(k) : l 2 f0; : : : ;mgg); (4)where ~bli(k) = maxd(T�;Ti)�k�1fbl�g. Although (4) provides a formula for the representation ofGk from the representation of G, this is not 
omputationally feasible, sin
e the de�nition of ~bli(k)is 
omplex from a 
omputational point of view. We are, however, able to 
ompute pre
isely thisrepresentation mu
h more eÆ
iently, by applying the pseudo produ
t.Let s; t � 1 be integers, and G a �xed m-trapezoid graph. If Gs and Gt have fT1(s); : : : ; Tn(s)gand fT1(t); : : : ; Tn(t)g, respe
tively, as their representations, then we 
an get the representation ofthe pseudo produ
t Gs+t = Gs �Gt, given in Theorem 2.3, by 
al
ulating b�li expli
itly and getb�li = maxd(Ti(t);T�(t))�1fbl�(s)g = maxd(Ti;T�)�t� maxd(T�;T�)�s�1fbl�g� = maxd(Ti;T�)�s+t�1fbl�g = bli(s+ t):In the same way we get that b�li0 = bli(s + t), and hen
e we have in the 
ase for pseudo produ
tof Gs and Gt that b��li = maxfbli; b0li;minfb�li; b�li0gg = maxfbli(s); bli(t); bli(s + t)g = bli(s + t).Hen
e, the representation of Gs+t, whi
h we obtain by repeated use of the pseudo produ
t isfT1(s+ t); : : : ; Tn(s+ t)g, whi
h is identi
al with the presentation given in (4).We see from the above that Theorem 2.3 applies when 
onsidering various powers of a �xedgraph G, as the following observation shows.Observation 2.4 If both G and G0 are powers of the same m-trapezoid graph on n verti
es, thenb�li = b�li0 holds for all l 2 f0; 1; : : : ;mg and i 2 f1; : : : ; ng.Re
all that although the pseudo produ
t is not generally an asso
iative operation, it is asso
iativeon the set of powers of a �xed graph G. This means that (Gr � Gs) � Gt = Gr � (Gs � Gt), andtherefore the notion Gr1 � � � � � Grk (k times) is perfe
tly sensible. Hen
e, we have the following
orollary.Corollary 2.5 Let k = Psi=1 2ti be the binary representation of k. For an m-trapezoid graph Grepresented by fT1; : : : ; Tng, the representation for Gk = G2t1 � � � � � G2ts from Theorem 2.3, isfT1(k); : : : ; Tn(k)g, the representation of Gk given in (4).As we will see in Se
tion 3, this yields an O(n log k) algorithm to 
al
ulate the presentation of Gk, ifk � 1 is an integer and G is a �xed m-trapezoid graph. To 
ompute the representation of ea
h G2twe need to 
al
ulate the representation repeatedly no more than t times, using G2i � G2i = G2i+1for i from 0 to t� 1. This will be dis
ussed more pre
isely in the Se
tion 3.6



3 Computing Powers of m-Trapezoid GraphsIn this se
tion we implement the theory of Se
tion 2, to obtain a fast method of 
omputing therepresentation of Gk, where k 2 N and G is an m-trapezoid graph with a given representation.Let T = fT1; : : : ; Tng and T 0 = fT 01; : : : ; T 0ng be two su
h left-
oin
idal representations for G andG0 respe
tively, as given by (1). Here we shall assume that for ea
h lane l 2 f0; 1; : : : ;mg theendpoints ali and bli, where i = 1; 2; : : : ; n, have been translated to the set f1; 2; : : : ; 2ng.We want to 
ompute the pseudo produ
t G �G0 of two powers of the same m-trapezoid graph,whose right endpoints are denoted by b��li as in Theorem 2.3. We shall 
ompute a series of m + 1by 2n matri
es Ap, where for p; l = 0; 1; : : : ;m and q = 1; : : : ; 2n, the entry Ap[l; q℄ equals therightmost 
oordinate along lane p among trapezoids T 0� in G0 with al� � q. Ea
h trapezoid T� thatinterse
ts Ti must satisfy al� < bli, for some l. Thus, given the values of Ap, we 
ompute b��pi fromTheorem 2.3 by setting b��pi = maxfb�pi0; bpig where b�pi0  maxl2f0;:::;mgAp[l; bli℄, whi
h takes m+ 1operations. To 
ompute Ap, we �rst initialize with zero and insert values for ea
h trapezoid:for ea
h � 2 f1; : : : ; ng and l 2 f0; : : : ;mg doAp[l; al�℄ b0l�This, together with the zero initialization, uses a total of 2(m + 1)n operations. We 
an then
omplete it in one pass from left to right, using the trivial observations that 
oordinates to theleft of q � 1 are also to the left of q. That is, we form a pre�x maxima of Ap by Ap[l; q℄  max(Ap[l; q℄; Ap[l; q � 1℄). This se
ond loop also uses 2(m + 1)n operations as l goes throughf0; : : : ;mg and q through f1; : : : ; 2ng, so we perform 4(m+1)n operations to 
ompute ea
h matrixAp. Thus, the 
omputation of Ap where p 2 f0; : : : ;mg takes a total of 4(m + 1)2n operations.Hen
e, by Observation 2.2 and Theorem 2.3 we have the following.Theorem 3.1 Given powers Gs and Gt of an m-trapezoid graph G, the power graph Gs+t 
an be
omputed in O(m2n) time.The given algorithm is easily parallelizable, as the se
ond step is a standard parallel pre�x operation.This gives an optimal O(log n) time O(n) work algorithm on the EREW model [12℄.This generalizes the algorithm given in [2℄ for interval graphs. The same 
onstru
tion holdsalso for 
ir
ular-ar
 and 
ir
ular-trapezoid graphs, where the max operator is viewed in modulararithmeti
.If k 2 N and k =Psi=1 2ti is its binary representation, then Gk = G2t1 �G2t2 � � � � �G2ts . Usingfast multipli
ation Gk 
an be 
omputed in at most ts + s � 1 � 2 log k � 1 pseudo produ
ts. ByTheorem 3.1 and Corollary 2.5 we have the following.Corollary 3.2 The representation of Gk where G is an m-trapezoid graph, 
an be 
omputed inO(m2n log k) time.4 Computing Powers of Interval Graphsand Cir
ular-Ar
 GraphsLet G be an interval graph on n verti
es, represented by a set IG of n intervals. We may assumethat all the intervals have their 2n endpoints distin
t among the numbers f1; 2; : : : ; 2ng. For ea
hinterval I 2 IG there is a unique interval I 0 2 IG with the rightmost endpoint of any interval whi
h7



interse
ts I. This yields a mapping f : IG ! IG, de�ned by f(I) = I 0. This mapping is a
y
li
and thus indu
es a dire
ted forest ~FG on IG (whi
h is a dire
ted tree if G is 
onne
ted), with adire
ted edge from ea
h I 2 IG to f(I). Note that the root of any tree of ~FG will point to itself.The representation of Gk 
an now be obtained qui
kly: For ea
h interval I = [aI ; bI ℄ 2 IG weobtain an interval I(k) = [aI(k); bI(k)℄ where aI(k) = aI and bI(k) = bIk , where Ik is the k-th an
estorof I in the tree of the above forest ~FG (where the parent of the root is the root itself).This is 
omputed in a single traversal of the tree. As we traverse the tree, we keep the nodeson the path from the root to the 
urrent node on an indexable sta
k. This is a data stru
turesupporting all the sta
k operation, as well as 
onstant-time indexing of elements in the sta
k.Namely, we use an array X, and as we traverse a node I at depth dI , we store it in X[d℄. Then,the root is stored in X[0℄, and the k-th an
estor of I is stored at X[dI � k℄, for k � d. We obtainIk simply as X(maxfdI � k; 0g), and for ea
h node I, we output new interval I(k) obtained byI(k) = [aI ; bX(maxfdI�k;0g)℄.When G is a 
ir
ular-ar
 graph, mapping f is a pseudo forest (or a pseudo tree if G is 
onne
ted),i.e. ea
h 
omponent 
ontains exa
tly one 
y
le, as the number of edges equals the number of verti
es.We must now treat nodes at depth less than k di�erently. Sele
t any node R on the sole 
y
le to bea \root", and set its depth to be 0. Extend the array X to negative indi
es, and let X[�1℄ = f(R)and generally X[�i℄ = f (i)(R). We now traverse the tree rooted at R, as before, and set Ik tobe X[dI � k℄ for ea
h node I of depth dI from R. Otherwise, the pro
ess is identi
al. We havetherefore the following.Theorem 4.1 Let G be a 
ir
ular-ar
 graph with a given representation. For any k, we 
an
ompute the representation of the power graph Gk in O(n) time.5 k-Independent Set and Dispersion AlgorithmsBy 
omputing the k-th power of a graph, we redu
e the problem of �nding a k-Independent Setor a k-IS for short, (resp. k-Weighted Independent Set or k-WIS for short), to the MaximumIndependent Set or the MIS problem (resp. the Maximum Weighted Independent Set or the MWISproblem for short) on the 
orresponding 
lass of graphs, within an additive fa
tor of O(n log k).The following is known about those problems.Fa
t 5.1 MWIS 
an be 
omputed in O(n) time for interval graphs, and in O(n log log n) time fortrapezoid graphs. MIS 
an be 
omputed in O(n) time for 
ir
ular-ar
 graphs.For the MWIS result on interval graphs see [13℄. The MIS result on 
ir
ular-ar
 graphs has beenredis
overed several times [11, 14, 15, 21℄. Felsner et al. [7℄ showed that MWIS of trapezoid graphs
an be 
omputed in O(n logn) time, when the representation is given. Their algorithm uses a datastru
ture supporting Insert, Delete, Prede
essor, and Su

essor operations of endpoints, and the
omplexity is equal to the 
omplexity of n of ea
h of these operations. Under our assumption thatthe list of endpoints is given sorted (whi
h 
ould be obtained by O(n log n) prepro
essing), we mayassume that all endpoints are integers from 1 to 2n. Then, the data stru
ture of van Emde Boassupports these operations in log log n steps. Hen
e, we 
an 
ompute the MWIS of trapezoid graphsin O(n log logn) time. Thus we obtain:Theorem 5.2 k-WIS 
an be found in O(n) time for interval graphs, and in O(n(log log n+log k))time for trapezoid graphs. k-IS 
an be found in O(n) time for 
ir
ular-ar
 graphs.8



Proof. By Theorem 4.1 and Corollary 3.2 we 
an 
ompute the k-th power of an interval graph andof a trapezoid graph in O(n) time and O(n log k) time, respe
tively, and MWIS on the k-th poweris equivalent to k-MWIS. This and Fa
t 5.1 gives the results for these 
lasses. The bound on k-ISfor 
ir
ular-ar
 graphs follows similarly. ut5.1 Dispersion via binary sear
h for kThe following algorithm simply looks for the largest power Gk of G that still admits an independentset of weight at least q, by repeated doubling followed by binary sear
h. This k is, of 
ourse, thesolution to the dispersion problem.WDisp(G,q)d 1, G1  Gwhile (MWIS(Gd) � q)G2d  Gd �Gdd 2dk  0H  Gd=2for (i = d=2; i � 1; i = i=2) dof Invariant: H = Gk; MWIS(H) � q >MWIS(H �G2i) gH 0  H � Giif (MWIS(H 0) � q)H  H 0k  k + ioutput H, kThe time 
omplexity is dominated by the number of 
omputations of maximum (weighted) inde-pendent sets. Here, it is at most 2 log k. Hen
e, we have the following.Theorem 5.3 Weighted Dispersion 
an be solved in O(n log k) time on interval graphs and O(n log k log log n)time on trapezoid graphs.A lower bound of Fredman [10℄ for maximum in
reasing subsequen
es yields a 
(n logn) lowerbound for �nding unweighted IS in permutation graphs, a sub
lass of trapezoid graphs. Thus, inthe 
urrent setup, the dependen
e on the RAM model is ne
essary.5.2 Unweighted dispersion of geometri
 graphsFor 
onvenien
e let k-IS(G) denote the size of a minimum k-independent set in graph G. Re
allthe notion of a lane from Se
tion 2.Lemma 5.4 Let G be an m-trapezoid graph, and d be the distan
e between trapezoids that arefurthest in ea
h dire
tion along some lane. Then bd=(k + 1)
+ 1 � k-IS(G) � bd=(k � 1)
+ 1.Proof. Let u (resp. u0) be the trapezoid furthest to the left (resp. right) along a given lane, andlet P = hu = u0; u1; u2; : : : ; ud = u0i be a shortest path between u and u0. The set fui(k+1)ji =0; 1; 2; : : : ; bd=(k + 1)
g then forms a k-IS, thus showing the �rst part of the 
laim.9



On the other hand, suppose fv1; v2; : : : ; vtg is a k-IS. For ea
h vi, the trapezoid representingvi interse
ts some trapezoid representing a node uxi in the abovementioned path P . Sin
e vi andvi+1 are of distan
e at least k + 1, we have that xi+1 � xi + k � 1. It follows by indu
tion thatd � xt � x1 + (t � 1)(k � 1) � (t� 1)(k � 1). Thus, t � bd=(k � 1)
 + 1, yielding the se
ond partof the 
laim. utTheorem 5.5 Let G be an m-trapezoid graph, d be the distan
e between verti
es respe
tively withthe leftmost and rightmost endpoint along some lane, and K be bd=(q � 1)
. Then, the optimumdispersion of G is one of the three values fK � 1;K;K + 1g.Proof. Let OPT be the optimum dispersion of G, i.e. the largest value t su
h that t-IS(G) � q.By the de�nition of K, K(q � 1) � d, and thus by Lemma 5.4, q � bd=K
 + 1 � (K � 1)-IS(G).That is, OPT � K � 1. By the de�nition of K, d=(K + 1) < q, so K is the largest number su
hthat b dK 
 � q�1. By Lemma 5.4, q � OPT -IS(G) � bd=(OPT �1)
+1. Thus, OPT � K+1. utThis 
an be extended to 
ir
ular-ar
 graphs. A greedy 
overing of the 
ir
le is de�ned as follows:Start with an arbitrary ar
 I, add f(I) and let I := f(I), until the whole 
ir
le is 
overed. (Do notput the initial I in the set.) Su
h a 
overing exists unless the graph is a
tually an interval graph.Note that a greedy 
overing is a 
hordless 
y
le in the graph and 
an be 
omputed in O(n) time.The following result holds by an argument similar to Lemma 5.4.Lemma 5.6 Let 
 be the size of a greedy 
overing of a 
ir
ular-ar
 graph G. Then b
=(k + 1)
 �k-IS(G) � b
=(k � 1)
.This 
an be further extended to 
ir
ular m-trapezoid graphs. For this, we need a 
overing ofminimum diameter. Start with an arbitrary trapezoid I, we 
ompute in linear time by dynami
programming an array d[i; j℄ 
ontaining the trapezoid that extend furthest 
lo
kwise on the 
y
lealong lane j among those of distan
e i from I. We stop when we have found one that interse
ts atrapezoid I 0 in d[1; j℄, in whi
h 
ase we tra
e the path ba
kwards to I 0 omitting I.Theorem 5.7 Let 
 be the size of a greedy 
overing of a 
ir
ular m-trapezoid graph G, and let Kbe b
=q
. Then, the optimum dispersion of G is one of the three values fK � 1;K;K + 1g.The proof follows the lines of Theorem 5.5. On 
ir
ular-ar
 graphs, we 
an 
ompute ea
h k-IS inlinear time, as mentioned earlier. Thus we �nally get the followingCorollary 5.8 Dispersion has equivalent 
omplexity as k-IS on interval, 
ir
ular-ar
, m-trapezoid,and 
ir
ular m-trapezoid graphs. In parti
ular, it 
an be 
omputed in O(n(log k+(log logn)m)) timeon m-trapezoid graphs, and in O(n) time on interval and 
ir
ular-ar
 graphs.5.3 Unweighted dispersion of interval graphs revisitedWe show here how our representation of interval and 
ir
ular-ar
 graphs yields eÆ
ient 
omputationof k-IS for several k.Lemma 5.9 Let G be an interval graph with nodes sorted by nonde
reasing right endpoints. Then,for any k, k-IS(G) 
an be found in time O(n(log k)=k), using O(n) pre
omputation.10



Proof. Re
all the dire
ted forest ~FG that G indu
ed, as explained in Se
tion 4. Mark the depthof ea
h node in its tree. For a node v of depth depth(v), let b(v) be the smallest bit in depth(v)set to 1. Now, let an
(v) be the an
estor of v of depth depth(v) � 2b(v). It 
an be 
omputed ina top down traversal of the tree, when pla
ing nodes on the tree on the indexable sta
k X, sin
ean
(v) = X(depth(v)�1) when b(v) = 0, and an
(v) = an
(X(depth(v)�2b(v)�1)) otherwise. Alsomark ea
h node with par(v), the parent of v in the tree.We additionally 
ompute for ea
h node v, the node u that extends the least to right amongthose that have a left endpoint to the right of v. Let next(v) be this interval if it exists, and nilotherwise. This 
ompletes the pre
omputation needed.Given an
, we 
an 
ompute the k-th an
estor an
(v; k) of a node v, by at most log k iterations,where in ea
h iteration we follow at most 2 log k links of an
 and one par link.The algorithm is simply:v  node with leftmost right endpointI  fvgv  next(an
(v; k))while v 6= nil doI  I [ vv  next(an
(v; k))odBy the foregoing argument, ea
h iteration of the loop runs in O(log2 k) time. There are at mostdiam(G)=k iterations. utUsing binary sear
h, we 
an use the above to obtain an alternative O(n) algorithm for dispersionon interval graphs.Theorem 5.10 Dispersion on interval graphs 
an be solved in O(n) time.Proof. We 
an sear
h for the optimal value k� of k using modi�ed binary sear
h. First, �nd bylinear sear
h the smallest j su
h that the maximum 2j-independent set of the graph is too small(i.e. less than q), while the maximum 2j�1-independent set is suÆ
iently large (i.e. at least q).Then, use binary sear
h on k within the interval [2j�1; 2j). Namely, this is the same algorithmas WDisp(G; q), ex
ept we don't 
ompute the produ
t graphs Gk, but 
ompute the k-IS insteaddire
tly. The 
omplexity for the �rst step is at most1Xi=1 O(n(log 2i)=2i) = O(n)Xi i=2i = O(n);and for the se
ond step at mostO(jn(log 2j)=2j) = O(nj2=2j) = O(n): utA
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