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a b s t r a c t

This paper deals with approximations of maximum independent sets in non-uniform
hypergraphs of low degree. We obtain the first performance ratio that is sublinear in terms
of the maximum or average degree of the hypergraph. We extend this to the weighted
case and give a O(D̄ log log D̄/ log D̄) bound, where D̄ is the average weighted degree
in a hypergraph, matching the best bounds known for the special case of graphs. Our
approach is to use an semi-definite technique to sparsify a given hypergraph and then apply
combinatorial algorithms to find a large independent set in the resulting sparser instance.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with approximations of maximum independent sets in hypergraphs of low degree. Recall that a
hypergraph (set system) H = (V , E) has a vertex set V and a collection E of (hyper)edges that are arbitrary subsets of V .
A hypergraph is weighted if vertices in V are assigned weights. It has rank r if all edges are of size at most r , and is r-uniform
if all are of size exactly r . A set of vertices is independent if it does not properly contain any edge in E. The degree of a vertex
is its number of incident edges. We consider approximation algorithms for the maximum independent set (MIS) problem in
sparse non-uniform hypergraphs.

The MIS problem is of fundamental interest, capturing conflict-free sets in a very general way. It generalizes the classic
independent set problem in graphs, and thus inherits all its hardness properties. The vertices not in an independent set form
a hitting set of the hypergraph. Algorithms for MIS can therefore be viewed as set covering algorithms with a differential
measure, which lends it an additional interest.

Hypergraph problems tend to bemore difficult to resolve than the corresponding graph problems, with theMIS problem
a typical case. The best performance ratio known forMIS in general hypergraphs, in terms of the number n of vertices, is only
O(n/ log n), which has a rather trivial argument [9]. For the graph case, for comparison, the ratio is O(n(log log n)2/ log3 n)
[6]. In terms of the maximum degree ∆, a ratio of ∆ is trivial, while previous work on MIS in hypergraphs has improved
only the constant term [3,10]. More specifically, a ∆/1.365-upper bound was obtained for a greedy algorithm and a tight
(∆ + 1)/2-ratio for a local search method, while in [10] a tight bound of (∆ + 1)/2 was obtained for the greedy algorithm
as well as the best previously known bound of (∆ + 3)/5. The main sign of success has been on sparse hypergraphs, where
Turan-like bounds have been proven [5,18,17]. Unlike graphs, however, the exact constant in the bounds is not known.
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supported by Iceland Research Fund grant 70009022.
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The most powerful approach for the approximation of challenging optimization problems has involved the use of semi-
definite programming (SDP). It is responsible for the best ratio known for MIS in graphs of O(∆ log log∆/ log∆) [8]. It is
also involved in the best approximations for the complementary problem of minimum vertex cover [11], both in graphs
and in hypergraphs. Yet, it has failed to yield much success for MIS in hypergraphs, except for some special cases. One
intuition may be that hyperedges yield significantly weaker constraints in the semi-definite relaxation than graph edges.
The special cases where it has been successful — 2-colorable k-uniform hypergraphs [8] and 3-uniform hypergraphs with a
huge independence number [13] — have properties that result in strengthened constraints. The usefulness of SDP for general
MIS has remained open.

It has recently been shown that it is NP-hardness of finding an independent set of size larger than O(n( log∆

∆
)

1
r−1 ) in a

2-colorable r-uniform hypergraph for each fixed r > 4 [4]. In comparison, a simple greedy algorithm is known to find
independent sets of size Ω(n( 1

∆
)

1
r−1 ) in any r-uniform hypergraph of maximum degree ∆ [5]. It was also shown to be

computationally hard to find an independent set of size more than O(n∆−
1

r−1 log
r

r−1 ∆) in r-uniform hypergraphs that
contain an independent set of size n(1 − O(log r/r)), assuming the Unique games conjecture [4]. Finally, the MIS problem
on graphs is hard to approximate within Ω(∆/ log2 ∆) assuming the unique games conjecture [2].

This state-of-the-art suggests several directions and research questions. A key question is to what extent approximation
ratios for MIS in graphs can be matched in hypergraphs. This can be asked in terms of different degree parameters, as well
as extensions. Given that graphs are 2-uniform hypergraphs and that k-uniform hypergraphs have certain nice properties,
the question is also how well non-uniform hypergraphs can be handled.

Our results. We derive the first o(∆)-approximation for MIS in hypergraphs, matching the O(∆ log log∆/ log∆)-
approximation for the special case of graphs. Our approach is to use an SDP formulation to sparsify the part of the instance
formed by 2-edges (edges of size 2), followed by a combinatorial algorithmon the resulting sparser instance. This is extended
to obtain an identical bound in terms of the average degree d̄ of an unweighted hypergraph. As part of the method, we also
obtain a kd̄1−1/k+o(1)-approximation for hypergraphs with independence number at least n/k.

We generalize the results to the vertex-weighted problem. In that case, no non-trivial bound is possible in terms of the
average degree alone, so we turn our attention to a weighted version. The average weighted degree D̄ is the node-weighted
average of the vertex degrees. We give a O(D̄ log log D̄/ log D̄)-approximation for MIS.

We apply two combinatorial algorithms to hypergraphswith few2-edges. One is a greedy algorithmanalyzed by Caro and
Tuza [5] for the r-uniform case and Thiele [18] for the non-uniform case. The bound obtained in [18] is in general unwieldy,
but we can show that it gives a good approximation when the number of 2-edges has been reduced. The other is a simple
randomized algorithm analyzed by Shachnai and Srinivasan [17].

Organization. The paper is organized in the following way. In Section 2 we describe how to find a large sparse hypergraph
in a given hypergraphH using a semi-definite programming (SDP) technique. In Section 3we analyze a greedy algorithm for
MIS on hypergraphs of rank 3 with small 2-degree, and then show how to apply this greedy algorithm together with SDP to
find a large hypergraph in H . In Section 4 we describe how to use a randomized algorithm together with SDP to find a good
approximation of weighted MIS in hypergraphs.

2. Definitions

Given a hypergraph H = (V , E), let n and m be the number of vertices and edges in H , respectively. We assume that
H is a simple hypergraph, i.e. no edge is a proper subset of another edge. An edge of size t is a t-edge. The rank r of a
hypergraph H is the maximum edge size in H . A hypergraph is r-uniform if all edges are r-edges. A graph is a 2-uniform
hypergraph.

Let dt(v) be t-degree of a vertex v, or the number of t-edges incident on v. We denote by ∆t and d̄t the maximum
and the average t-degree in a hypergraph, respectively. The degree d(v) of a vertex v is the total number of edges
incident on v, i.e. d(v) =

r
t=2 dt(v). We denote by ∆ and d̄ the maximum and the average degree in a hypergraph,

respectively.
Given a function w : V → R that assigns weights to the vertices of H , let w(H) = w(V ) =


v∈V w(v). We define

D(v) = w(v)d(v) and

D̄ =


v∈V

w(v)d(v)

w(V )

to be the weighted degree of a vertex v and the average weighted degree in H , respectively.
By deleting a vertex v from a hypergraph H wemean the operation of deleting v and all incident edges from H . By deleting

a vertex v from an edge ewe mean the operation of replacing e by e \ {v}.
A (weak) independent set in H is a subset of V that doesn’t properly contain any edge of H . Let α(H, w) be the weight of

a maximum independent set in H . If H is unweighted, then it is denoted as α(H). We denote k = w(H)/α(H, w), for the
hypergraph H in question.
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Algorithm SparseHypergraph
Input: Hypergraph H(V , E), and its weighted independence number α

Output: Induced hypergraph Ĥ in H of maximum degree 2kD̄
and maximum 2-degree

√

2kD̄, where k = w(H)/α(H, w) > 2

Let a =
1

1 − k/ log(kD̄)
.

Let G be the graph (on V (H)) formed by the 2-edges of H , and G0 be
the subgraph of G induced by nodes of degree at most 2kD̄ in H .

Find an induced subgraph G1 in G0 with w(G1) ≥
(a−1)w(G0)

2ak
along with a vector 2ak-coloring.

Choose a random |V (G1)|-dimensional vector b⃗.
Let G2 be the subgraph of G1 induced by vertices {v ∈ V (G1) : v⃗ · b⃗ ≥ c},

where c =


ak−2
ak ln (2kD̄).

Let V̂ be the set of vertices of degree at most
√

2kD̄ in G2.
Output Ĥ = H[V̂ ], the subhypergraph in H induced by V̂ .

Fig. 1. The sparsifying algorithm.

3. Semidefinite programming

We use semidefinite programming to find large subgraphs with few 2-edges. More generally, we find subgraphs of large
weight and small weighted average degree. This is obtained by rounding the vector representation of a suitable subgraph.
Along the way, we twice eliminate vertices of high-degree to ensure degree properties.

Let us recall the definition of a vector coloring of a graph [12] (See Fig. 1).

Definition 3.1 ([12]). Given a graph G and a real number h ≥ 1, a vector h-coloring of G is an assignment of a |V (G)|-
dimensional unit vector v⃗i to each vertex vi of G so that for any pair vi, vj of adjacent vertices the inner product of their
vectors satisfies

v⃗i · v⃗j ≤ −
1

h − 1
.

The vector chromatic number χ(G) is the smallest positive number h, such that there exists a feasible vector h-coloring of G.
A vector representation given by a vector coloring is used to find a sparse subgraph by the means of vector rounding

[12]: choose a random vector b⃗, and retain all vertex vectors whose inner product with b⃗ is above a certain threshold. The
quality (i.e. sparsity) of the rounded subgraph depends on the vector chromatic number of the graph. In order to approximate
independent sets we need to use this on graphs that do not necessarily have a small vector chromatic number but have a
large independent set.

A graph with a large independent set contains a large subgraph with a small vector chromatic number, and there is a
polynomial time algorithm to find it. This comes from the following variation of a result due to Alon and Kahale [1]:

Theorem 3.2 ([9]). Let G = (V , E, w) be a weighted graph and ℓ, p be numbers such that α(G, w) ≥ w(G)/ℓ + p. Then, there
is a polynomial time algorithm that gives an induced subgraph G1 in G with w(G1) ≥ p and χ(G1) ≤ l.

Let us now present our algorithm for finding a large-weight hypergraph of low 2-degree. It assumes that it is given the
size α of the maximum weighted independent set in the graph. We can sidestep that by trying all possible values for α, up
to a sufficient precision (say, factor 2).

The algorithm SparseHypergraph can be implemented to run in polynomial time. The subgraph G1 in G0 with small
vector chromatic number and large independent set can be found in polynomial time [1]. A vector representation can be
found within an additive error of ϵ in time polynomial in log(1/ϵ) and n using the ellipsoid method [7] and Incomplete
Choleski decomposition, as indicated in [12].

Analysis

We proceed to bound the weight and the independence number of the different (hyper)graphs computed by the
algorithm, ending with the final solution Ĥ . We first show that neither of these are reduced much in the subgraph G0.

Lemma 3.3. The graphG0 found by algorithm SparseHypergraph hasweight at leastw(H)(1−1/2k) and independence number
at least α(H)/2.

Proof. Recall that the algorithm defines the constants a =
1

1−k/ log(kD̄)
, k = w(H)/α, and c =


ak−2
ak ln(2kD̄).
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The graph G has the same weight as H , or w(V ). The independence number of G is also at least that of H , since G contains
only a subset of the edges of H . Let X = V (G) − V (G0) be the high-degree vertices deleted to obtain G0. Then,

v∈X

w(v)d(v) ≥


v∈X

w(v) · 2kD̄ = 2kD̄w(X). (1)

Since

D̄ · w(V ) =


v∈V

w(v)d(v) ≥


v∈X

w(v)d(v), (2)

we get from combining (2) with (1) that the weight w(X) of the deleted vertices is at most w(V )/2k. Thus, w(G0) ≥

(1 − 1/2k)w(H). Also, G0 has a maximum independent set of weight at least

α(G0, w) ≥ α(G, w) − w(X) ≥ α(H, w) − w(X) ≥
w(H)

2k
. �

Observe that

α(G0, w) ≥
w(H)

2k
≥

w(G0)

2k
=

w(G0)

2ak
+

w(G0)(a − 1)
2ak

.

Theorem 3.2 then ensures that a subgraph G1 can be found with w(G1) ≥ w(G0)(a − 1)/2ak and χ(G1) ≤ 2ak. A vector
2ak-coloring of G1 can then be found.

The main task is to bound the properties of the rounded subgraph G2. Karger et al. [12] estimated the probability that G2
contains a given vertex or an edge. Let N(x) denote the tail of the standard normal distribution: N(x) =


∞

x φ(z)dz, where

φ(z) =
1

√
2π

exp

−

z2
2


is the density function. Let τ =


2(ak−1)
ak−2 .

Lemma 3.4 ([12]). A graph G2 induced in G1(V1, E1) after vector-rounding contains a given vertex in V1 with probability N(c)
and a given edge in E1 with probability N(cτ).

The following lemma states well-known bounds on the tail of the normal distribution.

Lemma 3.5 ([16]). For every x > 0, φ(x)


1
x −

1
x3


< N(x) < φ(x) 1

x .

We can now bound the weight of the subgraph found.

Lemma 3.6. The expected weight of V̂ is bounded from below by

E[w(V̂ )] = Ω


w(G1)

D̄1/2−1/k

k log D̄


.

This can be derandomized to obtain an induced subgraph V̂ with this much weight and maximum 2-degree at most
√

2kD̄.

Proof. First, for any edge uv in G1 we define a weight function w(u, v) = w(u) + w(v). Let w(V1) =


v∈V (G1)
w(v) and

w(E1) =


vu∈E(G1)
(w(v) + w(u)) be the weight of vertices and edges in G1. Similarly, let w(V2) and w(E2) be the weight

of vertices and edges in G2. The weight of vertices in G2 with degree greater than
√

2kD̄ is at most
vi∈V2

w(vi)d(vi)

√

2kD̄
=

w(E2)
√

2kD̄
.

After deleting all such vertices from G2, the expected weight of V̂ is at least E[Z], where Z denotes w(V2) −
w(E2)√

2kD̄
. Our

objective is to bound this quantity from below.
Let Xi be an indicator random variable with Xi = 1 if V2 contains vi ∈ V1 and Xi = 0 otherwise. Then, w(V2) =
vi∈V1

w(vi)Xi. Using Lemma 3.4 and linearity of expectation we have that

E[w(V2)] = w(V1)N(c). (3)

Similarly, we bound E[w(E2)] by

E[w(E2)] = w(E1)N(cτ) ≤ 2kD̄w(V1)N(cτ), (4)

where in the last inequality we use the fact that the maximum degree of G1 is by definition at most 2kD̄. Combining (3) and
(4), we get that

E[Z] = E[w(V2)] − E


w(E2)
√

2kD̄


≥ w(V1)N(c) −


2kD̄w(V1)N(cτ). (5)
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Observe that

cτ =


2(ak − 1)

ak
ln(2kD̄) =


2

1 −

1
ak


ln(2kD̄)

and

exp(−(cτ)2/2) = (2kD̄)−1+1/ak.

Then, by Lemma 3.5,

N(cτ) < φ(cτ)
1
cτ

=
(2kD̄)−1+1/ak

√
2π ·


2(ak−1)

ak ln(2kD̄)

(6)

and

N(c) > φ(c)
1
c


1 −

1
c2


=

(2kD̄)−1/2+1/ak

√
2π ·


ak−2
ak ln(2kD̄)


1 −

ak
(ak − 2) ln(2kD̄)


. (7)

Combining (5)–(7), we deduce that

E[Z] > w(V1)
(2kD̄)−1/2+1/ak

√
2π ·


ak−2
ak ln(2kD̄)


1 −

ak
(ak − 2) ln(2kD̄)

−


ak − 2

2(ak − 1)



= Ω


w(V1)

(kD̄)1/2−1/ak

log(kD̄)


. (8)

Note that 1
ak =

1
k −

1
log(kD̄)

, so (kD̄)1/ak−1/2
=

1
2 (kD̄)1/k−1/2. Also, since the bounds we obtain are only interesting when

k = O(log D̄), we have log(kD̄) = θ(log D̄). Since k1/k = θ(1) we can simplify (8) to get

E[Z] = Ω


w(V1)

D̄1/2−1/k

k log D̄


.

Finally, we can apply a derandomization technique from [15] to derandomize the vector rounding in polynomial time.
In our algorithm an elementary event corresponds to an edge in G2 and involves only two vectors corresponding to the
endpoints of the edge. This completes the proof. �

We can bound the weight of the resulting hypergraph Ĥ from below in terms of the original hypergraph, using
Theorem 3.2 and Lemma 3.3, by

w(G1) ≥
(a − 1)w(G0)

2ak
=

w(G0)

2 log(kD̄)
= Ω


w(H)

log D̄


.

Combined with Lemma 3.6, this gives the following result.

Theorem 3.7. Let H be a hypergraph with average weighted degree D̄. The SparseHypergraph algorithm finds an induced
hypergraph in H of weight

Ω


w(H)

D̄1/2−1/k
√
k(log D̄)3/2


,

maximum 2-degree at most
√

2kD̄, and maximum degree at most 2kD̄.

4. Greedy algorithm

Given a hypergraph H on n vertices with average degree d̄, our GreedySDP algorithm first finds a sparse induced
hypergraph H ′ in H using the SparseHypergraph algorithm and then uses the Greedy algorithm to find an independent
set in H ′.

The Greedy algorithm is a natural extension of the max-degree greedy algorithm on graphs and uniform hypergraphs
andwas analyzed by Thiele [18]. Given a hypergraphH(V , E)with rank r , for any vertex v ∈ V let d̄(v) = (d1(v), . . . , dr(v))
be the degree vector of v, where di(v) is the number of edges of size i incident on v. Then, for any vertex v ∈ V let

f (d̄(v)) =

d1(v)
i1

d2(v)
i2

· · ·

dr (v)
ir


d1
i1


d2
i2


· · ·


dr
ir


(−1)

r
j=1 ij

r
j=1

(j − 1)ij + 1
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and let F(H) =


v∈V f (d̄(v)). The Greedy algorithm iteratively chooses a vertex v ∈ V with F(H\v)≥F(H) and deletes v
with all incident edges from H until the edge set is empty. The remaining vertices form an independent set in H .

Caro and Tuza [5] showed that in r-uniform hypergraphs the Greedy algorithm always finds a weak independent set
of size at least Θ


n/∆

1
r−1


. Thiele [18] extended their result to non-uniform hypergraphs and gave a lower bound on the

independence number as a complicated function of the degree vectors of the vertices in a hypergraph. Using these two
bounds, we prove the following lemma.

Lemma 4.1. Given a hypergraph H on n vertices with maximum 2-degree
√
d and maximum degree d, the Greedy algorithm

finds an independent set of size Ω(n/
√
d).

Proof. First, we truncate edges in H to a maximum size three by arbitrarily deleting excess vertices. Namely, each edge
(v1, v2, . . . , vt) (in some ordering of the vertices), is replaced by the edge (v1, v2, v3). The resulting hypergraph H ′ still
has maximum 3-degree d and maximum 2-degree

√
d, and is now of rank 3. Moreover, an independent set in H ′ is also

independent in H . Thus, to prove the claim it is sufficient to bound from below the size of an independent set found by the
greedy algorithm in H ′.

As shown in [18], Greedy finds an independent set in a rank-3 hypergraph of size at least

α(H ′) ≥ n
d

j=0

√
d

i=0


d
j

√
d
i


(−1)(j+i)

i + 2j + 1
. (9)

By using the equality


k

n
k


(−1)k

x+k = x−1
x+n

n

−1 we can simplify (9) as:

α(H ′) ≥ n

√
d

i=0

(−1)i
√

d
i


1
2


d

j=0


d
j


(−1)j

j + (i + 1)/2



=
n

2(d + 1)

√
d

i=0

(−1)i
√

d
i


(i + 1)/2 + d

d + 1

−1

. (10)

If we can show that for any value of d

Fd =

√
d

i=0

(−1)i
√

d
i


(i + 1)/2 + d

d + 1

−1

(11)

is lower bounded by x
√
d for some x > 0, then, from (10) the Greedy algorithm finds an independent set of size Ω(n/

√
d).

Let fd(i) =
√d

i


(i+1)/2+d

d+1

−1
. Abusing binomial notation, we assume that

√d
i


= 0, for any i >

√
d and

√
d integral. Then,

Fd =

√
d

i=0

(−1)ifd(i). (12)

We define

qd(i) =
(i + 2)(i + 4) · · · (i + 2d + 2)
(i + 3)(i + 5) · · · (i + 2d + 1)

(13)

for any i ≥ 0. Using Stirling’s approximation for the factorial function1 we obtain

qd(0) =
22d+1(d + 1)!d!

(2d + 1)!
=

√
πd

1 + O


1
d


and

qd(1) =
(2d + 3)!

22d+1(d + 1)!(d + 1)!
= 4


d
π


1 + O


1
d


.

1 Stirling’s approximation: N! =
√
2πN

 N
e

N 
1 + O

 1
N


.
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Note that qd(i + 2) =
(i+3)(i+2d+4)
(i+2)(i+2d+3)qd(i) > qd(i), and so qd(i) >

√
d for any i ≥ 0. Then, from the definition of fd(i) and (13)

we have that fd(i+1)
fd(i)

=

√
d−i

qd(i)
< 1. From (11) and (12) it follows that Fd > fd(0) − fd(1) and fd(0) = qd(0), then

Fd > fd(0) − fd(1)

= fd(0)


1 −

√
d

qd(0)


= qd(0) −

√
d

= (
√

π − 1)
√
d

1 + O


1
d


. (14)

Thus, from (10), (11) and (14) the Greedy algorithm finds an independent set of size Ω(n/
√
d). �

The bound on the performance ratio of GreedySDP then follows from Lemma 4.1 (with d = 2kD̄ = 2kd̄), Theorem 3.7
and the fact that truncating edges in SparseHypergraph doesn’t increase the weight of a maximal independent set in a
hypergraph.

Theorem 4.2. Given a hypergraph H on n vertices with average degree d̄, the GreedySDP algorithm finds an independent set of
size Ω


n

kd̄1−1/k log3/2 d̄


.

Note thatGreedy alone finds an independent set of size at least n/(d̄+1). So, if themaximum independent set is relatively
large, or O


n log log d̄

log d̄


, then it achieves a O


d̄ log log d̄

log d̄


-approximation. On the other hand, if the maximum independent set

in H is at least 2n log log d̄
log d̄

, i.e. k ≤
log d̄

2 log log d̄
, then GreedySDP finds a solution of size Ω(n/(kd̄)), for a O(d̄)-approximation.

Therefore, we run both Greedy and GreedySDP and output the larger independent set found. We call this combined
algorithm GreedySDP-MIS.

Theorem 4.3. Given a hypergraph H with average degree d̄, the GreedySDP-MIS approximates the maximum independent set
within a factor of O


d̄ log log d̄

log d̄


.

Corollary 4.4. For k constant, the approximation factor of GreedySDP-MIS is O

d̄1−

1
k +o(1)


.

5. Randomized algorithm

The RandomIS algorithm extends the randomized version of Turán bound on graphs and was analyzed by Shachnai
and Srinivasan in [17]. Given a hypergraph H(V , E), the algorithm creates a random permutation π of V and adds a
vertex v to the independent set I , if there is no edge e containing v such that v appears last in π among the vertices of
e. Clearly, RandomIS outputs a feasible independent set I , since it never contains the last vertex in any edge under the
permutation π .

Shachnai and Srinivasan [17] analyzed RandomIS on weighted hypergraphs. They gave a lower bound on the probability
that a vertex v ∈ H is added by the algorithm to the independent set, using conditional probabilities and the FKG
inequality. In uniform hypergraphs the lower bound on the size of a independent set found by RandomIS follows by
summing the probabilities over the vertices and applying linearity of expectation, giving a bound identical to that of Caro and
Tuza [5].

Theorem 5.1 ([17], Theorem 2). For any r ≥ 2 and any r-uniform hypergraph H, RandomIS finds an independent set of size at
least 

v∈V


d(v) + 1/(r − 1)

d(v)

−1

= Ω


v∈V

w(v)

(d(v))
1

r−1


.

To extend the bound to non-uniform weighted hypergraphs, Shachnai and Srinivasan introduced the following potential
function on a vertex v:

f (v) = min
j=1,2,...,a(v)

(dj(v))
−

1
rj(v)−1 ,

where a vertex v lies in edges of a(v) different sizes: rj(v), for j = 1, 2, . . . , a(v), and dj(v) is the number of edges of size
rj(v). Using similar analysis as in Theorem 5.1, they proved the following bound:
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Theorem 5.2 ([17], Theorem 3). Given a weighted hypergraph H ′(V , E), the expected weight of the independent set produced by
RandomIS is

Ω


v∈V

w(v)

a(v)1/b(v)
f (v)


,

where b(v) = minj(rj(v) − 1).

Shachnai and Srinivasan also show in [17] how to derandomize RandomIS for hypergraphs with bounded maximum
degree, or logarithmic degree and sparse neighborhoods.

Our algorithm RandomSDP first uses SparseHypergraph to find an induced hypergraphH ′ inH withmaximum 2-degree
∆2(H ′) ≤

√

2kD̄ and maximum degree ∆(H ′) ≤ 2kD̄; and then uses RandomIS to find an independent set in H ′.

Theorem 5.3. Given a weighted hypergraph H with average weighted degree D̄, the RandomSDP algorithm finds an independent
set of weight

Ω


w(H)

kD̄1−1/k log3/2 D̄


.

Proof. We use that by the definitions of a(v), b(v) and f (v), the independent set output by RandomIS is of weight at least


v∈V

w(v)

a(v)1/b(v)
f (v) = Ω


v∈V

w(v)
r

i=2
d

1
i−1
i

 = Ω


w(H ′)

∆2(H ′) +
√

∆(H ′)


= Ω


w(H ′)
√

kD̄


.

The result then follows from Theorem 3.7. �

From Theorem 5.3 it follows that the RandomSDP algorithm approximates MIS within a factor of O


D̄
log D̄


if

α(H, w) = Ω


w(V ) log log D̄

log D̄


, whereas RandomIS alone finds an approximation within a factor of O


D̄ log log D̄

log D̄


if α(H, w) =

O


w(V ) log log D̄
log D̄


. Therefore, given a hypergraph H , we run both RandomIS and RandomSDP on H and output the larger of the

independent sets.

Theorem 5.4. Given a hypergraph H(V , E) with average weighted degree D̄, the RandomSDP-MIS approximates the weight of a
maximum independent set in H within a factor of O


D̄ log log D̄

log D̄


.

6. Conclusions

In this paper we propose a new approach to the Maximum Independent Set problem in weighted non-uniform
hypergraphs. Our approach is to use SDP techniques to sparsify a given hypergraph and then apply a combinatorial algorithm
to find a large independent set. Using this approach we derive o(d̄)-approximation for MIS in unweighted hypergraphs,
matching the best known ratio for MIS in graphs, both in terms of maximum and average degree. We generalize the results
to weighted hypergraphs, proving similar bounds in terms of the average weighted degree D̄.

For further work, one possible direction is to extend the result on the GreedySDP-MIS to weighted hypergraphs. Another
(and perhaps more interesting) open question is to prove similar bounds in terms of the maximum and average weighted
hyperdegree, where the hyperdegree d∗(v) of a vertex v is defined as d∗(v) =

r
t=2 dt(v)

1
t−1 . The hyperdegree is a

generalization of a vertex degree in a graph.

For further reading

[14].
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