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ABSTRACT

We present randomized distributed algorithms for connec-
tivity and aggregation in multi-hop wireless networks un-
der the SINR model. The connectivity problem asks for
a set of links that strongly connect a given set of wireless
nodes, along with an efficient schedule. Aggregation asks
for a spanning in-arborescence (converge-cast tree), along
with a schedule that additionally obeys the partial order de-
fined by the tree. Here we treat the multi-hop case, where
nodes have limited power that restricts the links they can
potentially form. We show that connectivity is possible for
any set of n nodes in O(logn) slots, which matches the best
centralized bound known, and that aggregation is possible
in O(D +logn) time (D being the maximum hop-distance),
which is optimal.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Wireless communication; F.1.2
[Computation by Abstract Devices]: Modes of Com-
putation—Probabilistic computation

General Terms
Algorithms, Design, Theory

Keywords

Wireless Networks, SINR, Multihop, Connectivity, Aggre-
gation, Distributed Algorithms

1. INTRODUCTION

We deal in this paper with two fundamental and related
problems in wireless algorithmics: connectivity and aggrega-
tion. Given a set of n wireless nodes in the Euclidean plane,
the connectivity problem asks for a set of links (i.e. directed
edges) that strongly connect the nodes along with an effi-
cient schedule for those links. The aggregation problem is
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similar: find both a set of links forming a tree directed to-
ward a root and a schedule that obeys the aggregation order,
with links entering a node scheduled before the link leaving
it. The limiting factor in both cases is interference: all of
the communication goes through a single wireless channel
(divided into time slots), thus links cannot be arbitrarily
scheduled together. The algorithms and the results neces-
sarily depend crucially on the adopted model of interference.

While wireless interference is notoriously difficult to
model, the physical or SINR model has garnered reputation
as a relatively close fit to reality [19, 23], and has recently
received increased attention in the algorithms community.
Connectivity (and aggregation) actually received the first
worst-case algorithm analysis in the SINR model by Mosci-
broda and Wattenhofer [22]. Their result — that any set
of n points can be connected in O(log* n) slots — has been
improved over the years to O(logn) [7], and more recently
that bound has been obtained with a distributed algorithm
[6]. All of these results assume, however, either that power
is unlimited or that the environmental noise is negligible, so
that any pair of nodes could communicate, no matter how
far apart.

We consider here the full multi-hop picture, where noise
affects reachability and power limits restrict the way power
control can overcome interference. We find that excellent
connectivity and aggregation is possible in the power limited
setting. Assuming connectivity is possible at all (with a
little bit of slack), O(logn) slots suffice to connect any set
of points, matching the bound for unbounded power. For
aggregation we show that O(D+logn) slots suffice, where D
is the appropriately defined diameter. This is asymptotically
optimal for any input and implies therefore constant-factor
approximation. Moreover, we show that these results are
achievable using a distributed algorithm, where nodes begin
with minimal information about the network. These are
the first such results that do not depend on local density or
similar structural properties of the input.

For distributed algorithms, it is important to distinguish
between the initial running time of the algorithm on one
hand, and the quality of the final schedule (which can then
be repeatedly reused) on the other hand. The latter has al-
ready been mentioned. The initial running time of our dis-
tributed algorithm is O(D4log Alog® n) or O(D+g? log? n)
depending on one of two variations, where both A and g are
length diversity measures discussed later.

We also take one of the first steps to relax the inherent
determinism of the basic SINR model. Whereas the basic
model states that reception is successful iff the measured



SINR is above a certain threshold, experimental results gen-
erally suggest an intermediate gray area, where transmis-
sions succeed largely randomly. Motivated by these ob-
servations, we adopt a graded version of the SINR model,
and show that our results hold equally well in this extended
model.

In the process, we also obtain several more subtle tech-
nical contributions. We show that those results can be ob-
tained without making strong assumptions about the envi-
ronment. In particular, we do without location or neigh-
borhood information, which would greatly simplify the task
of distributed algorithms, and we make do with absolutely
minimal assumptions about connectivity. We also obtain
some improvements for the single-hop case, both regarding
the time complexity and a new method for power assign-
ment.

2. MODEL

Given are n wireless nodes located at points on the plane.
The nodes have synchronized clocks, and start running
the distributed algorithm simultaneously using slotted time.
Each node has a globally unique ID.

A link is a directed edge between two nodes, indicating a
transmission from the first node (the sender) to the second
(the receiver). A link between u and v is denoted by (u, v) or
by the generic £. The Euclidean distance between two nodes
u and v is denoted by d(u,v) (which is the length of the link
(u,v)). If clear from the context £ is also used to denote
the length. We say that a link £ = (u,v) transmits to mean
that the sender u transmits with v as the intended receiver.
We will use, for two links £ = (u,v) and ¢ = (u',v’), the
asymmetric distance dgpr = d(u,v"), for the distance between
the sender of £ and the receiver of ¢'.

In the SINR (signal-to-interference-and-noise ratio)
model of interference, a link ¢ is successful if,

SINR((,L) = pe/t”

N+ Zz’eL\{e} per/dg,
where N is the ambient noise, 3 is the required SINR level,
a > 2 is the so-called path loss constant, p; is the power used
by the sender of link ¢, and L is the set of links transmitting
simultaneously. A set of links is said to be feasible if it is
possible to assign power to the senders to satisfy (1) for each
receiver simultaneously.

We enhance this model, by allowing an intermediate re-
gion: if SINR € [B1,[) (for some 1 < f3), then the trans-
mission succeeds with probability 0 < x < 1 (for lower levels
of SINR, the transmission fails with probability 1). This ver-
sion of the SINR model is similar to some previous graded
versions of the SINR model (e.g., [25]). In adopting this,
we are motivated by experimental results that demonstrate
such transitional regions where transmission is spotty, and
a smaller region (corresponding to SINR > ) where trans-
missions are reliable [3, 28].

Both of our problems (aggregation and connectivity) ask
for a set of links along with a schedule meeting the required
conditions. If a number of links transmit in the same slot,
the successes of individual links are defined by the SINR
constraints, measured at the receivers. The set L in this
case is the set of senders from all concurrent links. For a
set of links, we say that we have a schedule of cost C if
there is an algorithm that succeeds with high probability to
successfully schedule the links in C' slots. This “algorithm”

>B, (1)

could in principle be anything, but in practice will either be
an assignment of each link to a fixed slot in {1,2...C}, or a
simple probabilistic algorithm. We will say that a link set is
scheduled “in the aggregation order” to mean that links into
a node (i.e., links for which it is the receiver) are scheduled
before the link leaving it (the link for which it is the sender).

The minimum distance between nodes is 1 (which is a
matter of choosing a unit). It is assumed that nodes are
restricted in their use of power by a maximum power P. The
SINR constraint implies that the maximum distance a node

1/
NL;h > 1. For any fixed

constant € < 1, let G = G be the undirected graph on the
nodes with edges between nodes of distance at most (1—¢)A.
We assume that G is connected, for some given value €; we
then say that the set of nodes is e-connected. Let D be the
B 1/a la)
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A length class is a set of (potential) links with lengths
within a factor 2. We define g as the number of non-empty
length classes, or:

g=|{i <logA+1:3x,ysuch that d(z,y) € [2°,2° "}

can possibly transmit is A = (

diameter of G. Set the constant € = min(e,

While log A +1 is an obvious upper bound on the number of
length classes into which the links can be partitioned, g pro-
vides a tighter bound by counting only non-empty classes.

We shall use “time” to refer to the the initial number of
slots required for algorithm to form the required aggregation
or connectivity network, and “cost” to refer to the number
of slots in the final schedule. When clear from the context,
we may drop the qualification “with high probability”.

We shall use the following particular Chernoff bound (see
Chapter 4 in [20]): Let {X;} be independent Poisson trials
such that X = 3. X; and E(X) = Clnn, for some C > 0.
Then,

P(X < (1 - §E(X)) <n~ /2. (2)

Assumptions

Recall that we assumed that it suffices to use links of length
at most (1 — €)-fraction of maximum possible. This assump-
tion is unavoidable, since arbitrarily weak links can require
arbitrarily bad schedules. We assume the nodes know (a
lower bound on) e.

We assume that nodes know the signal transmission pa-
rameters N, «, B, B1. These values can be arbitrary, except
necessarily @ > 2 (as otherwise limited interference inte-
grated over the whole plane goes to infinity). Also, that
they know a polynomial approximation to n (i.e., the value
of logn, up to constant factors), without which there is a
Q(n/logn)-lower bound [11]. In the A-based algorithms,
the nodes need a polynomial approximation of A, while the
g-based algorithms do not assume prior knowledge of g.

We assume that nodes can measure the SINR (in case
of a successful reception), or total received power (in other
cases). This power reception feature is comparable to the
RSSI function of real wireless motes. Nodes can use this
feature to measure distances from the sender of a received
message. In some parts of our algorithm, only measuring
whether or not the SINR crosses a threshold is needed. We
clarify this usage in the respective sections.

We do not assume nodes have knowledge of their loca-
tions in space, the diameter D, nor anything about their
neighborhood.



Implications of the graded model

Note that the graph G is defined in terms of 1, not 5. Thus
the algorithm is forced, at least on occasion, to use links that
succeed only probabilistically. Note that by repeating the
same transmission & logn times, links with SINR € [31, 3)
can be converted to a link succeeding with high probability.
We are interested in bounds better than those that incur this
obvious multiplicative O(logn) factor. Indeed, the bounds
we derive are optimal even if links succeeded with probabil-
ity 1 in the [B1, 8) range.

3. RESULT AND RELATED WORK

THEOREM 1. There is a distributed algorithm that runs
in time O(D +log Alog?®n) (alternatively, O(D 4+ ¢g*log®n)
that produces an aggregation network of cost O(D + logn)
and connectivity network of cost O(logn) on any given e-
connected set of n nodes, for any fized €.

The SINR model was first proposed in an influential paper
of Gupta and Kumar [5], who showed that O(logn)-slots
suffice to connect a set of n uniformly distributed nodes.
Moscibroda and Wattenhofer were the first to formalize the
connectivity problem from a worst case perspective in the
SINR model in [22]. They proposed a centralized algorithm
that connects an arbitrary set of n nodes in O(log* n) slots.
This was improved to O(log®n) [24], O(log®n) [21], and
O(logn) [7].

Distributed algorithms for aggregation in the SINR model
include [18], [9] and [1]. These works have network costs that
are polynomials in O(log A) or O(d) (where d is the max-
degree, i.e., the number of nodes within a radius of ~ A).
Dependence on degrees or log A make these works closer to
disk graph models, and the power of the SINR model in
handling density (as seen by the works cited in the previous
paragraph) is not fully utilized.

In [6] a distributed algorithm for finding a tree that con-
nects an arbitrary set of n nodes in O(logn) slots was given,
matching the best centralized result known [7]. Our work
builds upon this work, and we extensively use, modify or im-
prove techniques from this paper. It was also shown there
that such results require the use of arbitrary power control;
namely, algorithms using power assignments that are func-
tions of link length alone are forced to use Q(n) slots in worst
case.

Another set of related results involves finding dominating
sets and/or a broadcast network in a multi-hop scenario.
The work we directly use is that of [26], where an algorithm
is provided to find dominating sets in the SINR model in
O(logn) time. Also relevant is [17], where a dominating
set is constructed using a distributed algorithm in a quasi
unit disk model, which can be converted to the SINR model
(see [27]). These works do not attempt to construct a net-
work among dominators. Broadcast or aggregation networks
among dominators are formed in some works [27, 10] (as well
as the works in the previous paragraph), but none give quite
what we need. They either need a large € (at least 2/3) to
work [27, 9], use precise location information [10], and/or do
not form an aggregation network [10, 27].

4. ALGORITHM OUTLINE

Our algorithm has two major parts. In the first part, we
select a small set of dominators such that all (other) nodes

are within a small distance of a dominator. We then con-
struct a low-cost aggregation or connectivity network be-
tween the dominators. This network can be thought of as
the backbone of the combined network. To achieve this, we
use existing work to find a dominating set, and then show to
how form the network among them. For this part, the ini-
tial running time (as well as the cost of the final schedule) is
O(D + logn) for aggregation and O(logn) for connectivity.
This is detailed in Section 5.

The second part deals with clusters (i.e. a dominator and
nodes dominated by it). Each cluster is a single-hop en-
vironment, so we can apply ideas from [6], with technical
changes needed to take care of power limits and the fact we
are computing networks for different clusters simultaneously.
We also improve the running time. After these conversions,
we compute an aggregation (or connectivity) network. The
initial running time is either O(log Alog® n) or O(g? log® n),
depending on which algorithm is used, and the final schedule
cost is O(logn). These bounds apply both for connectivity
and aggregation. This is detailed in Section 6.

Each part is divided into multiple sub-parts, which are
described in the appropriate subsections.

S. DOMINATING NETWORK

5.1 Finding a dominating set

An R-dominating set is a subset of nodes such that each
input node is within a distance R from a dominator (possibly
itself). A clustering is a function f assigning each node a
valid dominator (i.e., within distance R).

An R-ball is a disk in the plane of radius R. The density of
an R-dominating set is the maximum number of dominators
in an R-ball (over all balls in the plane). Let

n=¢A/4.

By running the dominating-set algorithm of Scheideler et
al. [26] with adjusted power settings, their Theorem 2.1 can
be rephrased as:

THEOREM 2. There is a distributed algorithm running
in time O(logn) that produces, with high probability, a n-
dominating set of constant density, along with the corre-
sponding clustering function.

Note that this result does not hold immediately in the

1/
graded SINR region of [81, 3), but since ¢ < (éﬁ) , by
definition, no communication uses the graded SINR region.

5.2 Network Formation

We next seek an efficient network on top of the 7-
dominating set. Note that dominators can be far enough
apart that the use of the transitional region is unavoidable.
This is the only section where we use such links.

THEOREM 3. There is a distributed algorithm that runs
in time O(D+logn) and forms an aggregation network with
cost O(D +logn) on any given n-dominating set of constant
density.

In proving this, we focus on forming an aggregation net-
work, with a connectivity network achieved along the way.

Note that we only deal with dominators in this section.
Thus when we talk about properties of the node set (like the



minimum ID, or number of neighbors) we mean the set of
dominators, not the original set.

Since we have an n-dominating set, the graph G’ formed
by connecting nodes at distance at most A(1 — € + 2%) =
Al — %e’) is connected. In this section, graph terminology
such as “neighbors” refers to G’.

We shall use the following two simple primitives:

com A CcOM consist of a slot in which each nodes transmits
with a (low enough) fixed probability q.

ncomm An NCOMM (neighborhood communication) con-
sists of O(logn) coM slots (with a sufficiently large
implicit constant).

We shall say that a node w informs a neighbor v if it
successfully transmitted to v in a given step. The follow-
ing lemma encapsulates our requirements of the interference
model. The results of this section will apply to any model
for which this lemma holds.

LEMMA 4. During COM, any given node u informs any
given neighbor v with probability at least ¢ = Lrq(1 — q).

The proof of this lemma (given in Appendix A) uses the
now standard technique of bounding interference within con-
centric circles.

A straightforward application of the Chernoff bound (2)
gives that each node successfully transmits to each of its
neighbors Q(logn) times (details provided in Appendix A).

LEMMA 5. During NCOMM, each node informs each of its
neighbors (Q(logn) times), w.h.p.

For simplicity, in what follows, we will consider communi-
cation with neighbors during an NCOMM as a deterministic
event.

Note that coM and NCOMM apply in the transitional re-
gion — and of course in the safe region of SINR > . These
lemmas abstract away this particular issue, which then needs
no further consideration.

Using these primitives as building blocks, the algorithm
can be outlined as follows: The eventual root of the network
will be the node with the minimum ID. All nodes start a
flooding process to find out the minimum node (assuming
initially that the node itself is the minimum). Eventually the
global minimum wins and the edges involved in the flooding
initiated by the root form the final tree.

An initial NcOMM informs all nodes of the IDs of their
neighbors. Node v maintains the following state:

r(u) the smallest ID currently known by u. Initially r(u) =
u.

p(u) the “parent” of u, or the node that first informed u
about r(u). Initially p(u) = u.

We use the term “child” (and children) of a node u to mean
a node v such that p(v) = u.

In each slot, a node transmits a message using COM. There
are two types of messages — M and A. Intuitively, an M-
message is a broadcast message intended to inform neigh-
bors about a node’s current state (especially r(u)), while
an A-message acts as an acknowledgment intended for the
node’s parent (and ultimately the root). They both contain

the same information (along with the message type) — the
sender u, and the current values of p(u) and r(u). The con-
ditions for sending these messages and the behavior upon
receiving them for a node u are as follows:

1. For each neighbor v, let m(v) be the last message re-
ceived by u from v. Condition SameRoot holds if the
r(v) value contained in m(v) is the same as the cur-
rent 7(u). Condition ChildAck holds true for m(v) if
the p(v) value in the message is equal to u. Node u
will decide on an A-message in slot t + 1 if u has re-
ceived at least one message from each of its neighbors
v by the end of slot ¢, and for each message: Condi-
tion SameRoot holds, and either ChildAck is false, or
ChildAck holds and the message is an A-message. If
the conditions hold but p(u) = u, the node decides to
become the root instead of sending an A-message.

2. If the conditions of the previous paragraph do not ap-
ply, u decides on an M-message with the current values
of r(u) and p(u).

The node transmits the message it has decided on with prob-
ability ¢, and listens for messages otherwise.

At the end of every step, node u will update its state as
follows: If u has not received a message in the slot, nothing
happens. Otherwise, suppose u received a message from v.
If r(u) > r(v) (r(v) as included in the message), then u sets
r(u) « r(v) and p(u) < v.

The following lemma claims a time bound on how quickly
nodes learn about the global minimum.

LEMMA 6. Let umin be the node with the globally mini-
mum ID. Then, for each node u, r(u) = Umin by O(D+logn)
slots, w.h.p.

PROOF. It is clear that once 7(v) = umin for a node v, it
remains that way. Let us call a node for which this is true
communicated. The message type does not matter since r(u)
is updated regardless (if it has not already been communi-
cated).

Let R; be the set of nodes communicated after ¢ slots with
the convention Ry = {tmin}. Now fix a node u and define d;
be the distance from u to the nearest node in R;. Note that
do < D. Define §; = dt—1 — d: as the progress made at time
t. Now, 4, is a Bernoulli random variable with E[d:] > ¢
for all ¢, as long as d¢ > 0; ¢ =0 after that. Let 6} be
Bernoulli random variable where §; has the distribution of
6: as long as d; > 0 (equivalently 3! §; < do), and an i.i.d.
Bernoulli random variable with expectation ¢ after that. Let
Ay =370_, 0c. Tt is clear that for any ¢, P (3°/_, 6 < do) =

P (At < do)7 thus we can focus on §; exclusively.

Define Zt = At — (t I\IOW7 E(Zt|61,52 .. .5,5_1) = At—l —
¢(t—1) —HE((S;) —( > Zi—1. Thus, Z; is a sub-martingale. If
t> 5c1% (D + logn) for a large enough constant ¢;, then the
event that A, < do implies that Z; < do— ¢t < D —5¢1 (D +
logn) < —4c1(D +logn). We can now upper bound P(Z; <
—4c1(D+logn)) using the Azuma-Hoeffding inequality (see,
e.g., [20, Thm. 12.4]). The Azuma-Hoeflding inequality for
sub-martingale Z; with |Z; — Z;—1| < ¢ looks as follows

P(|Z: — Zo| £ —x) < —— | -
=20 < =) < o0 (-5



Filling in the value for ¢, ¢; < 1, and x = 401% (D +logn)
yields

P(Z; < —4ci1(D +1logn)) < exp <—(401(D + logn))2>

9. Z[(jzci(D+log n) 1
exp(—2c¢1(D +logn)/5) .

A union-bound over all nodes u then yields the lemma. []

IA

Lemma 6 describes dissemination of root information to
other nodes, but we also need to ensure that umin realizes
this fact quickly.

LEMMA 7. Let umin be the node with the globally mini-
mum ID. Then by O(D+logn) slots, umin decides to become
the root.

PROOF. Assume that the process described in Lemma 6
has communicated everyone. The passing of messages con-
tinues, and we are now interested in tracking the progress
of the A-messages. A node starts to transmit A-messages
once it has received the same from all of its children. Our
goal will be to claim that umin will fulfill the requirements of
sending an A-message in O(D + logn) steps, and, according
to the algorithm description, decide to become the root.

Consider a modified process, where within the M-
messages that a node transmits, it forwards the A-messages
from its descendants. Thus, an A-message will not be
stopped by waiting for a child, but will travel up the tree
independent of what happens in subtrees outside that path.
This modified process completes once A-messages from all
nodes in the tree have been forwarded to the root. It should
be clear that this occurs at exactly the same time as when
the root receives the last A-message from its children in the
original process.

In the modified process, we can track the progress of
each path (uo,u1,...,Uk—1, Umin) from a leaf uo to the root.
The process will remove nodes from this path in the order
U, U1 - ... The current node u; is removed with a probabil-
ity P(u;), and this probability is set to the probability of
a message being successfully transmitted from u; to w41,
which can be lower bounded by ¢ (as described in Lemma
6). The process can be modeled as a sub-martingale essen-
tially identically the process in Lemma 6 and given a similar
concentration bound. A union bound over all leaf-to-root
paths then yields the lemma. [

We also need to make sure of the following.

LEMMA 8. No node other than the global minimum de-
cides to become the root.

PrROOF. By contradiction, assume v > umin did decide
to become the root. As before, consider the tree between
nodes with r(u) = v with directed links from nodes to their
parents. All nodes with p(u) = v must clearly be part of v.
Also, to become the root, v needs to receive an A-message
from its children in the tree, and this recursively is true for
all nodes in the tree. Thus the links in the tree represent
A-messages as well.

Consider any simple path from a node in the tree to Umin.
This path will not be empty since umin Will never be part
of the tree. Let x be the first node on this path and y
be a neighbor of z in the tree. If r(x) = v then z has to
be part of the tree, a contradiction. On the other hand, if
r(x) # v then y will never fulfill the requirement needed for
an A-message and will not be part of the tree. []

5.3 Stopping criterion and Schedule con-
struction

The algorithm as described does not have a stopping cri-
terion. This issue is easily dealt with. Once deciding to
become a root, umin can flood a high priority termination
message that will force out other messages and inform all
nodes in O(D + logn) rounds that a root has been found.

Since links used in this section can have SINR € [81, ),
we cannot compute a fixed schedule that is guaranteed to
work (since, links can fail even without any interference).
However, the following scheme will, with high probability,
schedule all links in O(D + logn) time in the aggregation
order. The links are simply the tree of A-messages ending up
in umin. Nodes can identify these links by one use of NCOMM.
When scheduling these links in future, a node transmits its
outgoing link in each slot with probability ¢ once it has
received messages from its children. This is essentially a
repetition of the process described in Lemma 7 and will have
the same running time.

5.4 Carrier sense assumption

For the algorithms of this section to work, we do not need
the full SINR or received power primitive assumed in Section
2. It is enough to know whether or not the received power
has exceeded a certain threshold. This applies both to the
result from [26] to form the dominating set, and the network
formation part. In the later part, nodes need to make sure
that they accept messages only from neighbors. For this, it
is enough to know if the distance from a sender has crossed a
certain threshold, equivalent to the crossing a received power
threshold, as mentioned.

6. CONNECTIVITY IN A CLUSTER

Our goal in this section is to form a network among nodes
in a cluster, for all clusters simultaneously. In this part,
links will only form between nodes in a cluster, ending up
with an aggregation tree with the dominator as the root. As
the previous section provides aggregation among the dom-
inators, these two structures, combined, provide the total
aggregation tree. Connectivity is achieved similarly. Since
links will only form between nodes in a cluster, which have
small radii, we need not worry about the transitional SINR
phase for this section: all established links in this section
will have SINR > 8 and thus will succeed with probability
1.

We use the following definition:

DEFINITION 9. A set of clusters is well-separated if nodes
in different clusters are of distance at least

R=7-¢ A,
for a sufficiently large constant Y.
Claiming the following:
CrLAamM 6.1. The clusters are well-separated.

To achieve this, we run a a simple coloring scheme using
O(1) colors, running in time O(log®n) (which is subsumed
by the overall runtime of this section). Details are provided
in Lemma 30 of Appendix B. The final aggregation schedule
contains the schedule for each color in order, followed by the
schedule for the dominators.



Since nodes can measure distances from message senders,
they can easily filter out stray communication from nodes
of different clusters via Claim 6.1.

We provide two methods to form connectivity or aggrega-
tion in a cluster. Both algorithms are based on the single-
hop algorithm from [6]. The first is identical to it except for
the power assignment part (where we improve the running
time), and the second is a modification to achieve a poten-
tially faster g-based run-time. We will address aggregation
in the following; identical results apply for connectivity in
all cases.

6.1 O(log A)-based runtime

THEOREM 10. There is a distributed algorithm running
in time O(log Alog? n) that computes, simultaneously for all
clusters, an aggregation network with the dominator as the
root, and a schedule of length O(logn).

We prove this by following closely arguments from [6],
with repeated use of an algorithm finding a large feasible
subset according to the following lemma:

LEMMA 11. There is a distributed algorithm running in
time O(log Alogn) that, given a set of m nodes divided into
b disjoint clusters, finds a feasible set L of intra-cluster links
with E(|L]) = d - (m —b), for some fixed constant §.

We call a node v a top node with respect to a link set
L if v is not a sender of a link in L. We use the following
algorithmic framework (defined for a single cluster):

Algorithm 1 ClusterTree

Set ¢ = 0 and M; = M (the original input set)

for i =0,1,2... until |M;| =1 do
Construct feasible set L on M; using alg. from Lem. 11
Let M;11 be the set of top nodes w.r.t. L

end for

Construct a link £ between {M;} and the cluster domina-

tor.

We output the schedule where the nodes in set M, send
in slot 5. We claim that this process takes O(logn) steps to
complete.

LEMMA 12. Algorithm 1 ends after O(logn) iterations,
w.h.p., producing a spanning aggregation tree.

ProOOF. Note that by Lemma 11, E(|M;11]) < |M;] —
E(|L|) < (1 — 46)|M;|. We use this to argue termination.

CLamM 6.2. P(|M| > 1) <n™?, fort=6%1Inn.

PROOF. Since M; is non-increasing in 4, for contradiction,
condition on all M; > 2 for ¢ < ¢. Then by Lemma 11

1
1 631“"1 4 1 4
E(|M:]) < |1—=6 - < =
(< (1-36) Tetnlont,

from which the claim follows by Markov’s inequality. []

For any i, each node in M;y1 \ M; is connected by a link
to a node in M;. Thus, every node is connected to a root,
and thus the structure is an aggregation tree. Note that by
the way the algorithm proceeds, the scheduling order of the

links follows the direction of the links in the tree. Also, note
that since each iteration uses a single slot, the bound on
iterations implies the bound on the number of slots in the
schedule, thus proving the theorem.

In the remainder of Sec 6.1, we will prove Lemma 11.

6.1.1 Choosing a feasible set

First, a few definitions. Given v, define a v-class-partition
to be a partition of a link set L into v length classes L1 ... L,
sorted in descending order (with links in L; longer than those
in L;4+1), along with the assumption that all links (i.e. nodes
involved in the links) know the index ¢ of the length class
they belong to. Given a class-partition and a link £ in class
i, define S, = Uj<;L; \ {£} (i.e., the set of links in the same
or longer length classes), and similarly, S} = U;>;L; \ {€}.

The following was essentially shown in [6]:

THEOREM 13. Consider a set of n nodes partitioned into
well-separated clusters. Then, there is an algorithm running
in time O(log Alogn) that finds a set L of links of expected
Q(n) size, along with a log A-class-partition, with the prop-
erty that for each link ¢ in L,

Z o +g’f1 < withT—; (3)
s, " dg,) = T 28(1+4-3%)

vesf e 0

In [6] (Sections 6, 7 and 8), this result was proven for one
cluster. But given well-separated clusters (Claim 6.1), the
arguments go through easily (details omitted). From this,
the following lemma follows easily (the proof is provided in
Appendix B):

LEMMA 14. The link set L found by the algorithm of
Thm. 13 satisfies

=01, (4)

for each link ¢ € L.

To find a feasible power assignment we need to tighten
property in Lemma 14. The proof of the following lemma is
given in Appendix B.

LEMMA 15. Let L' be a set of n links, along with a v-
class-partition, satisfying FEqn. 4, such that for each link ¢
in L',

for some constant C. Then, there is a distributed algorithm
to find in O(v) time a subset L of Q(n) links, each satisfying

e 1
< = . 5
a5, = 15 )

el

6.1.2 Finding a feasible power assignment.

With these results in hand we give a distributed algorithm
computing a feasible power assignment respecting the power
limit. Assume we are given a set L of links satisfying Eqn. 5
along with a class-partition Li,...L,.

The algorithm runs in v rounds, with links in L; com-
puting their powers simultaneously in round ¢ in two steps.



First, all links ¢ in Uj<;L; (which have already received
their power) transmit with their assigned power p,. Each
link ¢ in L; measures the interference I , at its receiver:

Iy =N+ >

eV ;L

pz//d?'e .

Then, ¢ computes its power as
pe =2B071, . (6)

To show feasibility with limited power we need to show
that: a) power limits are not exceeded, and b) the SINR
constraints are fulfilled.

LEMMA 16. All powers assigned by the algorithm above
are at most the maximum power P.

ProOOF. The proof is by induction, closely resembling the
proof of Thm. 2.22 from [14]. Note that since we only have

intra-cluster links, we have that £ < %E,A < % (ﬁ 1/047
by definition of 4, ¢ and A, which implies that P > 43N¢.

Links ¢ € L1 compute p, = 28¢“N, which is clearly less
than P. For i > 1, all links £ in length classes L;,j < i,
have p,» < P, by the inductive hypothesis. Thus, the power
pe of link £ in L; satisfies

pe=26NC 425 S Py

dere
VeVl

< 2BN(* +2BP )

ves,

e

dyrg

< 28BN + ZﬂP I

<P,

using the inductive hypothesis, Eqn. 5, and the bound
48N~ < P, respectively. [

THEOREM 17. The power assignment computed on set L
is feasible.

PROOF. As mentioned, the algorithm is a parallel version
of an algorithm presented in [14, 15]. We show that this
is not a problem, and proof ideas from those papers carry
through.

We can bound the final interference received by a link ¢
as I + I, , where I} = Zé/eszr per /dg, and
I} = N+3pes\(stuey Pe/dire- Note that [ = 55pe /L7

We first expand I, j using the powers assigned:

=3 g (7)
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By rearranging indices, the second term is

The first term is bounded by 28N 3",
by Eqn. 3.

bounded by

g/()( >
2 1"
Yo X g (v,

vesy ees,

<28 > > p”'a
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The internal sum szgs* o, gz, can be bounded in both

. pg//
5,
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Observation 4 of [13} The first sum becomes

28 > 2-3° d T pe )l

eresy

cases by 2 -3 - , following the precise arguments in

<2-3°

e

by the definition of p;. Using (7), the second sum is smaller
than 458 -3% -7 - I}. Thus,

If <2BNT+2-3% 7. pg/t™ +45-3% 71,

which we can solve for I, obtaining:
< 28N +2-3% - py/t

1/7—p3-32
Using the bound 28N < pf/¢* in (9) and plugging in the
value for T gives I;” < %pg/fo‘ and thus I\ + 1, < %pg/ﬁa,

implying the required SINR. This together with the proof
for Lemma 16 concludes the proof. [

9)

6.2 g-based run-time

To remove dependence on log A, we need to allow links to
form without careful round-by-round control. Indeed, this is
not too difficult, a O(glogn) algorithm that connects a set of
n nodes is easy to demonstrate (and has been done recently
in the unpublished [2]). However, for us, merely forming a
network is not enough. It has to have the structure allowing
extraction of a large feasible subset with Eqn. 5 holding. To
do this, we must exert control over link length without the
stringent conditions of the O(log A)-based algorithm.

We prove the following theorem:

THEOREM 18. There is an algorithm running in time
O(g?log® n) that forms an aggregation network for all clus-
ters with cost O(logn).

We need to prove the following counterpart of Lemma 11:

LEMMA 19. There is a distributed algorithm running in
time O(g*logn) that, given a set of m nodes divided into b
disjoint clusters, finds a feasible set L of intra-cluster links
with E(|L]) = & - (m —b), for some fized constant §.

Once this lemma is proven, the overall performance of the
algorithm from Thm. 18 follows from the same argumenta-
tion for the log A based algorithm.

We first provide an algorithm to form a set in O(glogn)
time that connects the nodes (without a cost guarantee at
this point):

LEMMA 20. There is an algorithm that connects the nodes
(and finds an aggregation and a complementary broadcasting
network) in each cluster in time O(glogn).



Once we prove this, we will relate it to feasibility and
power assignments in Section 6.2.1 to achieve Lemma 19.

The algorithm proceeds in rounds running in O(logn)
time and continues until there is only one active node in each
cluster. When this happens the dominators of the clusters
will terminate the algorithm. We will prove in the analysis
that the latter will happen within g rounds, thus explaining
the running time.

Each round contains three phases. The first two phases
run in O(logn) time. In the first phase active nodes decide
whether to participate and in the second phase links are
formed. The last phase only takes a constant number of
slots for the dominator to decide whether to proceed to the
next round or to terminate the algorithm. All nodes start
out active.

Participation Decision (PD): During this phase, an
active node u transmits with probability ¢ for ﬁ Inn
slots. When not transmitting, it listens for messages. If,
at the end of this phase, u has heard from some node more
than 12Inn times, it sets d, = d(u, z), where z is the nearest
node from which it has heard in this phase. Otherwise it sets
0y = 0.

Link Formation (LF): This phase contains —22 5 nn

1—
slot pairs (a slot pair is simply two consecutive giotg), In
the first slot still active nodes transmit with probability
g. If a non-transmitting (but active and participating)
node u receives such a message from v such that d(u,v) <
4min{dy,d,} (where §, is encoded in the message from v),
then u acknowledges the message with probability q. If v
receives the acknowledgment, the link ¢ = (v, u) is created
and v becomes inactive.

Termination Decision: In the first slot all active nodes
transmit and the dominators listen. If a dominator received
no message, the algorithm proceeds to the next round. If
the dominator did receive a message from a node z, then
the dominator broadcasts in the following slot telling all ac-
tive nodes except = to retransmit in the next slot. If in
this next slot the dominator receives a message, the algo-
rithm proceeds to the next round. If the dominator doesn’t
receive a message, it measures the received power. If the
received power is > 2P/(e’A)* the algorithm proceeds to
the next round (note that this is the lower bound on the
received power from a node in the same cluster). Other-
wise the dominator decides that z is the only active node in
the cluster and the cluster stops trying to form new nodes.
In the last slot of the phase the dominators broadcast their
decisions.

We claim that this algorithm connects the set (with an
aggregation and a complementary broadcasting network) in
time O(glogn).

We prove the following:

THEOREM 21. Within the first g rounds, the above algo-
rithm finds a set of links that connects each cluster.

To prove this we first show the following:

LEMMA 22. Consider the execution of any round of the
algorithm, and assume that the minimum distance among
active nodes is d. Let ¢(u) be the distance from active node
u to the nearest active node. Then:

1. If ¢(u) € [d, 2d), then 6, = P(u).
2. If 6, > 0, then 0, = ¢(u).

ProOOF. The first part says that nodes that have the clos-
est possible neighbors (up to a factor of 2), hear from them
Q(logn) times, thus setting ¢(u) as claimed in the Lemma.
We prove this using a technique very similar to Lemma 4
(also known from [6] — Lemmas 5 and 6) and the use of a
Chernoff bound.

CLAaM 6.3. The probability of node uw hearing from a
given node v with d(u,v) < 2d in a given time slot of the
PD or LF-phases is at least %q(l —q), when q is sufficiently
small.

PRrROOF. The proof of this claim is almost identical to that
of Lemma 4. We set k = 1, since the graded SINR region
does not play a role. Furthermore, instead of a given density
we use a minimal distance of d between active nodes but this
does not influence the proof. [

CLAIM 6.4. If ¢(u) € [d, 2d), then 6, = ¢(u).

PRrOOF. Let v be the closest neighbor of u, in which case
d(u,v) < 2d. By Claim 6.3, the probability that u re-
ceives a message from v in any given time slot is at least
2q(1 — g). Letting X be the number of successful (u,v)
transmission in the PD-phase, we get that E(X) > 241nn.
Using the Chernoff bound (2) with 6 = 1/2, it follows that
P(X <12lnn)<n™3 0O

The second claim from the lemma is a bit different. Note
that this claim places no restriction on ¢(u). What the claim
says is that if u does hear from some node > 121lnn times,
it will be able to compute ¢(u) correctly.

In the following definition we capture the case where a
node y would receive a message from a node z if the latter
was transmitting and the former was not. The definition
specifies no behavior for the two nodes, beyond the fact that
such a transmission would succeed were it to occur.

DEeFINITION 23. Consider two nodes x and y forming the
(potential) link ¢ = (x,y). The event ps(x,y) is said to
occur in a slot if SINR((,T) > B, where T is the set of
nodes transmitting in the slot.

CLAIM 6.5. Consider any three points u,x and y such
that d(u, x) < d(u,y). Then, P(ps(z,u)) > P(ps(y,u)).

PRrROOF. Since interference is computed at the receiver,
the interference from any point z received at u is identical
for (z,u) and (y,u). The signal is at least as strong for (z, u)
since x is the closer node. Thus, for any configuration for
which (y,u) succeeds, so will (z,u). The claim follows. [

CLAIM 6.6. Let u be a node and v be a node from which
u recetved at least 12Inn messages during the PD-phase.
Then, during each slot of the PD-phase, P(ps(v,u)) > 11—2

PROOF. Let P(ps(v,u)) = p. The probability that v suc-
cessfully transmits to w in any given slot is ¢(1 — q) - p,
so the expected number over the whole phase is E(X) =

qg(1—q)-p- ﬁ Inn = 48pInn. Suppose for contradiction

that p < 5. Let X be the number of successful (v, u) trans-
missions in the phase. Noting that success is i.i.d. across
slots, we employ the following Chernoff-type bound [20]:

o6 E(X) X .



41Inn
gives that P (X > 12Inn) < (;—i) < n~*, implying that
with high probability the message (u,v) will not succeed the

required 12Inn times. [

Now we can prove the second claim in Lemma 22. If
6w > 0, there was a v from which u received at least 121lnn

messages in the PD-phase From Claim 6.6, ps(v,u) > 1

12°
Let z be the node closest to u (thus d(z,u) = ¢(u)). The
by Claim 6.5, ps(z,u) > % Now the probability that u has
48
never heard from z is at most (1 — 15¢(1 —¢))73-9 Inn <

674 Inn _ n74'

Which proves Lemma 22 and leads to the following;:

LEMMA 24. After each round, the minimum distance
among active nodes increases by a factor of 2.

Proor. Let d be the minimum distance at the begin-
ning of the round. Consider any two active nodes u, v with
d(u,v) < 2d. Now by the first part of Lemma 22, §, > 0
and 0, > 0 (i.e. both of them actively participate in the link
formation phase). By Claim 6.3 there is a constant proba-
bility of the link (u,v) forming in each slot pair of the link
formation phase. An application of the Chernoff bound over
the Q(logn) slot pairs proves the Lemma. [J

The proof of Thm. 21 now follows automatically, since
each of the g non-empty length classes are exhausted in
O(logn) slots.

To prove the actual runtime and correctness of the algo-
rithm we now need to show that dominators terminate at
the correct moment.

THEOREM 25. Fvery dominator correctly determines
within g rounds that there is at most one active node in its
cluster and succeeds to subsequently terminate the algorithm
for his cluster.

Proor. We need to prove:

CLAIM 6.7. A dominator does not mistakenly decide that
there is only one active node in the cluster.

PrROOF. If a message was not received in the slot, the
dominator decides correctly. If a message was received from
z, let y be another active node in the cluster. Since it trans-
mits in the second slot, from the cluster radius it can be
verified that the received power at the dominator will be
larger than the threshold and thus the dominator will de-
cide correctly to enter the next round. []

Moreover,

CLAaM 6.8. Within g rounds, a dominator decides that
there is only one active node in the cluster.

PROOF. After g rounds there will be exactly one active
node in each cluster. By Lemma 32, in the first slot, each
dominatee will hear from this node . Thus, we enter the case
of second slot, where no one transmits. The noise level is
not enough to break the received power threshold and thus
the dominators will correctly decide the existence of only
one active node. []

If each dominator broadcasts a message, all nodes in the
respective clusters will receive the relevant message (details
provided in Lemma 32 in Appendix B). And thus every
dominator succeeds to inform their cluster of their decision.
A union bound over all nodes completes the proof of the
Theorem.

6.2.1 Link selection and power control

We now show how to select a feasible set from the link set
constructed above. We need a crucial definition from [6]:

DEFINITION 26. A set L of links is ¢ -sparse if, for every
closed ball B in the plane,

where rad(B) is the radius of B, L(d) is the set of links in
L of length at least d, and B N Q denotes the links in a set
Q with at least one endpoint in ball B.

LEMMA 27. For the link set constructed in the previous
section, consider the nodes with degree bounded by some
(large constant) C'. The link set induced by these nodes is
O(C)-sparse and has expected size Q(n).

ProOOF. Every time a node forms a link, it has probability
1 of becoming inactive (and thus forming no more links).
Thus, the probability of a node having more than C incident
links falls exponentially. The statement about the expected
size being Q(n) follows from this (also see Thm. 8, [6]).

For sparsity, consider any disc B of radius p in the plane.
Let L be the set of links induced by the node considered in
the statement of the Lemma. We claim that at most one
node in B has a node incident to a link in L(8 - p) N B, from
which C-sparsity follows since the node has degree at most
C.

For contradiction, assume that there are two such nodes u
and v. Assume without loss of generality that v is active in
the slot pair when u forms the first link in L(8- p) N B (call
this link ¢). Then ¢(u) < d(u,v) < 2p < £. But then, by
Lemma 22 and the description of the link formation phase,
the link ¢ cannot be formed. This is a contradiction. [

It is known that O(1)-sparsity implies Eqn. 4 [7]. It would
appear that the link selection and power control algorithm
of Section 6.1 applies at this point. Specifically, one could
invoke Lemma 13 and the algorithm for power assignment
from Section 6.1.2 setting v = g (instead of v = logA),
achieving a O(g) running time. However, in this case, the
assumption that link £ knows the L; it belongs to is missing.
In the g-based algorithm, links can form out of order, thus
the round 4 in which it was formed is not indicative of the
L; it belongs to. X

To this end, links of length in the range [nw%,A] and
links of smaller lengths are considered separately. The larger
of the two feasible sets extracted from these two sets enter
the solution. For the longer set, link ¢ € [2%15 QL%) gets
the index i, for a total of O(logn) indices. This is precisely
the same type of partition employed in the O(log A) based
algorithm, thus a O(log2 n) time algorithm suffices to choose
and assign powers to a constant factor feasible set, in the
same way described for the O(log A) based algorithm. This
runtime is subsumed by the runtime of other parts of the
algorithm.

Let us assume now that all links are shorter than —g'=.
For these links the index i can be learned with some extra
cost:

LemMA 28. Assume all links have length shorter than
RTR/G. All links can learn the L; (i < g) to which they
belong in O(g*logn) time.



PRrROOF. Let us limit ourselves to a single cluster first.
Let M be the maximum length of a link in L. We simply
aggregate this value up to the root. Aggregating from nodes
up to a dominator takes time O(glogn) (since the connected
set formed in time O(glogn) includes an aggregation tree).
This value can be transmitted back from the root to each
node in a single broadcast, and links with length in [M, M/2)
set ¢ = 1. Now the maximum link length smaller than M/2
is aggregated in a similar way, and recursively until all links
are exhausted. This process takes g rounds of aggregation
for a total cost of O(g*logn).

As mentioned, the above ignores the possibility that links
from different clusters of widely varying lengths may be as-
signed the same i. We argue that since inter-cluster separa-
tion is much larger than the lengths of the links, this does
not matter. We shall demonstrate this using the case of Eqn.
3, the case of others are similar. The equation is as follows:

Y et ST
vest o 00

Note that by Claim 6.1, if £ and ¢ are in different clus-
ters, dyy > R. On the other hand, ¢ and ¢ are both up-

per bounded by %/a. Thus, f% + % is bounded by
" e’ oo

%, which even summed over at most n4possible links is
a minuscule value which does not asymptotically affect the
bound. [J

With this lemma in hand, the arguments of Lemma 13 and
Section 6.1.2 now apply directly, with v = g, thus achieving
the claimed results from Lemma 19 and consequently Thm.
18.
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APPENDIX
A. MISSING PROOFS FROM SECTION 5

We restate Lemma 4 as follows:

LEMMA 29. Let L be an n-dominating set with constant
density ¢. Then if each node in L transmits with (small
enough) probability q, the probability of a transmission from
node u to node v is successful, given that u and v are neigh-
bors, is /i%q(l —q).

PRrROOF. Let link £ = (u,v). Note that d(u,v) < A(1 —
1/2¢€') since u and v are neighbors. Let B, be the set of
nodes transmitting in a given time slot. Note that

P(u € By and v ¢ By) =¢q(1 —q) .

For t =0,1,... define C; to be the ball around v of radius
A(t 4+ 1) + 1, and define the annulus A; as Ag = Co, A, =
Ct \ Ct—l for ¢ 2 1.

By definition of constant density, L contains at most ¢
nodes in every ball with radius 7. We cover the annulus A;
with balls of radius 7.

The limit of the ratio of the area of A; to the area of
smaller balls is % [12]. All balls intersecting A; are com-
pletely within the annulus containing the ball around v with
radius A(¢ + 1) + 27, but not containing the ball around v

with radius At — 2n. And thus we can write for A

7(A(t 4 1) 4 2n)? — (At — 2n)? - 3v3
Xt 7TN> ~ 2

)

where x: is the number of smaller balls needed to cover A;.
This equation has the solution

32(1+€)(1+2t
xe < (14 €)( ).
3v/3e27r

Note that A; contains at most ¢ - x+ nodes in L. This means
there is a constant 1. depending on € such that |A; U L| <

Ner .
4(4e! 12 2

Solving a similar equation for A gives xo < %
We will denote the upper bound on |4g U L| < xo - ¢ with
no-

We use the notion of affectance, introduced in [4, 8] and
refined in [16]. The affectance a.,(¢) on link ¢ from a sender
w is the interference of w on v relative to the power received,

or
. P, (d(u,v)\*
w 0) = 17 o )
oot =min{t0 2 (7035) |

where ¢, = 81/(1 — p1Nd(u,v)*/P,) depends only on the
parameters of the link ¢. The equation SINR > f1 can be
rewritten as ar(£) < 1 and thus is ¢ successful with proba-
bility & iff ar (¢) < 1.

We bound the affectance on ¢ by the other nodes in
B,. For z € B, N Ao,az(¢) < 1, by the definition of af-
fectance. For x € B, N A; for t > 1, d(z,v) > A -t

7yye 1/«
and thus a,(¢) < q%. Using A = (BfN)

B1

we get ¢ a1z e Now we rewrite az(¢) <
(AQ-1/2¢N> _ 1\« :
= aay = Nela (1) where ne A is a constant de-

pending on € and A.
E(ag, (€)) = E(ag,nao(0) + Y _E(as.na, ()

t>1

1 «
< qno+Bineme.a Y (;) ot

t>1

1
< qno + qbinene . Aa——
oa—2

using the bound ((z) = >_, -, L < L. on the Riemann
zeta function. Thus, for any g < (4noq+qnene a—5)"", we
get that E(ap, (£)) < 1/2. By Markov’s inequality, ap,. (£) <
1 with probability at least 1/2. Thus,

P(ag,(!) <land u € B and v ¢ B,) > —q(1—q) ,
and thus the probability of a successful transmission is
n%q(l — ¢), which concludes the proof. [

DN =

Similarly, we restate Lemma 5.
Lemma 5: Let every node transmit with sufficiently low
probability q during O(logn) slots. Then each node succeeds
in transmitting to each of its neighbors Q(logn) times, with
high probability.

PrOOF. By Lemma 4 the probability that a node u suc-
ceeds in transmitting to a fixed neighbor v is %Ku -q(1—q).
Now let X be the number of successful transmissions in
(1/2)k-q(1—q)) ' C'Inn slots, where C is a constant. Clearly
E(X)=Clnn. Set § =1—-1/C, then (1 —0)E(X) =Inn.
The Chernoff bound states here

P(X <Inn) < p=CA-1/07/2 ,

which means that the number of successful transmissions is
O(logn) with high probability. [

B. MISSING PROOFS FROM SECTION 6

Coloring

LEMMA 30. Given an n-dominating set with constant
density ¢, the dominators can color themselves using a con-
stant number of colors in O(log?n) slots so that the cor-
responding clusters having dominators with the same color
satisfy Claim 6.1.

PrOOF. This proof uses the definition of neighbor and
NCOMM from Section 5. Recall that for a dominator, a neigh-
bor is a dominator within distance A(1 — €’/2). The primi-
tive NCOMM allows dominators to contact each neighboring
dominator within O(logn) slots.

Since the dominators form an 7-dominating set we need
the minimum distance between two dominators to be at least
T-€ - A+2-n to satisfy the claim.

Since the density is constant, the number of other domi-
nators within a distance of (T +1/2)¢’ - A of a dominator is a
(larger) constant v. We assume €’ is small enough such that
(T +1/2)€’ < 1— € (otherwise, nodes can choose €' small
enough to ensure this, as Y is independent of €'). Nodes
within this distance of each other are clearly neighbors.

Nodes start out with the same color. Nodes can have
one of two states — finished or violator. All nodes start out



as violator. The algorithm contains O(logn) rounds, each
with O(logn) slots. In the first slot of the round, violators
choose a color from {1...10y}. Then an NCOMM is used
for all nodes to be informed about their neighbors colors,
which takes O(logn) slots. Nodes that are not finished and
have the same color as a neighbor remain violators. The
probability of a violator to become finished is at least (1 —
ﬁ)m”*l, which is lower bounded by a constant. Thus in
O(logn) rounds, all nodes will become finished w.h.p. It is
clear that a valid coloring of the finished nodes exists. [

Proof of Lemma 14

In Thm. 3 in [13] it is proved that a set with property de-
scribed in Eqn. 3 is feasible. The remainder of the proof is
analogous to Thm. 1 of [13].

We use the signal strengthening technique from [8] to de-
compose S, into [2-3%/B]? sets, which makes the set fea-
sible with 3’ = 3% for every transmission. Since there is a
constant number of sets we prove the lemma for one set.

Consider links ¢ and ¢” with dgy e < dgrer in such a set
S[/. We know the SINR condition is fulfilled with 8’ = 3%
and thus for for some arbitrary power assignment we have

p(f") _ Lap(t”) p(l") _ Lap(l)
> >
pla — 3 d@”e/ and o — 3 d@’e’ ’

and by multiplying
derrgr - dprgn > 940" . (10)
By the triangle inequality we get
dergr -~ dgrrgr < dnel € - (0 + dypen +0') . (11)

Note that dger > min{2¢,2¢"}. By contradiction, if
dper < 20 and dper < 20”7 then by Eqn. 11, we get
dg/g// . dg//g/ < 2111111(5’,(”) . 4max(€’,£”) = 8-/ - ¢ which
contradicts Eqn. 10. Remember that ¢,¢” > 1¢ and thus
dgrrgr > dyrgr > £ and thus the distance between any of the
nodes in {s,s’,r,7'} is at least £¢. To simplify notation we
use d = %E.

For the remainder of the proof we use the same technique
as in the proof for Lemma 4. For t =0, 1,... define C} to be
the ball around node v (the sender of ¢) of radius d(t + 1),
and define the annulus A: as A9 = Co, A; = C; \ C—1 for
t > 1. We compute

Area(A;) = nd*(2t +1) . (12)

Since the distance between any two points in S, "is at least

d, balls of radius % around any pair of points in S, " do
not intersect. Combining this with Eqn. 12, we see that for
t > 1, A; contains at most 16(2¢ + 1) < 33t nodes in S[,
(note that |Ag| < 16).

Since L is feasible we know for any link ¢’ € L that
O(1) and thus that there is a constant ¢ such that

ZO{
derg

<c

s
dyrg

for any ¢ in |Ap].

. £ } (2d) \*
Z min § 1, — < c~|A0|+Z\At|~(7
ves, { Kz t>1 dt+1)
2 «@
< c.|A0|+Z33t(z)
t>2
o 1
< ¢ 1642°— 33
a—2

= 0(1).
O
Proof of Lemma 15

The algorithm proceeds in rounds. The solution set S starts
out empty, with links in L; adding themselves to the solution
simultaneously in round i, explaining the runtime.

In round ¢, nodes currently in S transmit with power P.
Any node £ in L; transmits with power P with small constant
probability ﬁ, and adds itself to the solution set if it
succeeds with SINR > 4. Thus,

P/t
>43,
Socs, (PIBg)+ N

which implies
L < 1 N ’
g, — 48  Pi~

from which bound claimed in the Lemma follows.

Let L be the links sending in phase i and let L} be the
links that succeeded. We claim that using a sufficient power
assignment at least a constant fraction of L; gets selected.
For every link £ in L] the expected value for the sum is

0~ 1
E Z T 3@.

1724
' eSuUL)

Using Markov’s inequality we argue that for every i at least
half the nodes in L; will have

Za < 1 .
dgy 86

E
L'eSUL)

Assuming P > I\E;fa these links will have SINR > 48 and
consequently will add themselves to the set. From which the

lemma follows. [

Cluster broadcast

LEMMA 31. Assume a set of well-separated clusters. Fiz
a cluster and a node x in it, and assume that exactly one
node is transmitting from each of the other clusters. Then
the received power at x from the transmitting nodes in other

clusters is < @By

PRrROOF. For t = 1,2... define Ay = C¢41 \ Ct, where Ct

is the Rt/Q-ball around z. It is clear that all transmitting
nodes in other clusters must belong to an A;. Furthermore,
it is easily computed that the area of A; is

Area(A;) = R /4(2t + 1) . (13)

Since the clusters are well-separated, R/2-balls around
nodes in different clusters do not intersect. Combining this



with Eqn. 13 and the assumption that exactly one node is
transmitting in each cluster, we see that A; contains at most
2t + 1 > 3t transmitting nodes, for all ¢t > 1 .

The power received at = from these nodes is then at most

3tP 3P 1 3P 1 P
ZA a: » azta—lz » o 2Sﬁ INE:
= (Rt/2)*  (R/2)* & (R/2)> a — (¢A)
Here the first equality is by rearrangement, the second is by
bounding the sum by using the bound ((z) = 3_, -, = <

ﬁ on the Riemann zeta function, and the last inequality

1/a
is by assuming T > 2 (;—fz) . g

Lemma 31 implies the following:

LEMMA 32. Assume at most one node transmits in each
cluster. Then all nodes in a cluster that has a transmitting
node will receive the message.

ProOOF. Consider any node z in a cluster where a node
y in transmitting. The signal received at x from y is at

least %. By Lemma 31 the interference at x from other

transmitting nodes is at most ﬁ. Plugging in the value

of noise, N = Lﬁ%’ gives
2P
e/ A)x 2 2
SINR= —— 2% 1 1 > s =8,
BrA™ + B A)e (E —+ 557'0‘) e'a Be'™ €

Here the equalities are by rearrangement and the inequality
1/«
is by using €’ < (%) . O



