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tionThe purpose of this arti
le is to dis
uss a spe
ial kind of vertex 
oloring for a
y
li
 digraphs,where verti
es with a 
ommon an
estor must re
eive distin
t 
olors. We dis
uss someproperties of su
h 
olorings, similarity and di�eren
es with strong hypergraph 
olorings,and derive an upper bound whi
h, in addition, yields an eÆ
ient 
oloring pro
edure.Digraphs representing various biologi
al phenomena and knowledge are ubiquitous in thelife s
ien
es and in drug dis
overy resear
h, e.g. the gene ontology digraph maintained bythe Gene Ontology Consortium [7℄. An overview of several proje
ts relating to indexing ofsemistru
tured data (i.e. a
y
li
 digraphs) 
an be found in [1℄. In these biologi
al digraphsit is important to be able to a

ess the an
estors of nodes in a fast and eÆ
ient manner.Consider the problem of �nding a representation an a
y
li
 digraph in a database toallow for fast a

ess to the set of an
estors of a given node. The an
estors of a node are itsin-neighbors in the transitive 
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the transitive 
losure is also sparse. Thus, an adja
en
y matrix representation would beneither eÆ
ient nor fast. On the other hand, a matrix has the advantage of 
orrespondingni
ely to the relational representation of modern databases. In a database relation that
orresponds to an adja
en
y matrix, the non-empty elements in ea
h 
olumn 
orrespond tothe in-neighbors of the node indexing that 
olumn. This vertex set 
an then be 
ombinedby joins with other tables that are also indexed by verti
es, giving an e�e
tive language ofquerying based on graphi
al properties. Thus, it would be preferable to �nd a representationthat both has a matrix stru
ture, yet 
onsists of relatively small rows.One 
ompa
t matrix representation would be to store the adja
en
y lists in 
ompa
tedarray form, where a list with k elements is stored in the �rst k array elements. In this 
ase,however, there is no easy way of a

essing all the edges entering a given vertex. While this
ould be alleviated by storing the inverted adja
en
y matrix, note that in the 
ontext ofdatabase a

ess, rows are 
on
eptually di�erent from 
olumns. Instead, we seek a 
ompa
tedrepresentation where all in-edges of a given node are stored in the same 
olumn. We saythat a many-to-one mapping of verti
es to 
olumns that preserves adja
en
y lists, has theAC-property. By re
ording the mapping of nodes to their respe
tive 
olumn storing theirin-neighbors, one obtains the same desirable properties of adja
en
y matri
es in the 
ontextof a relational database. If the graph is sparse, the possibilities of storage redu
tion aresigni�
ant. The a
tual improvement is related to the number of 
olors needed in a 
ertain
oloring of the digraph, whi
h we now brie
y dis
uss.A proper down-
oloring of a digraph is a vertex 
oloring where verti
es with a 
ommonan
estor re
eive di�erent 
olors. The down-
hromati
 number of a digraph is the minimumnumber of 
olors in a down-
oloring of the digraph. In a 
ompa
ted matrix representationof the transitive 
losure of a digraph, we assign multiple verti
es to the same 
olumn, butin su
h a way that their in-adja
en
y lists must be disjoint. Two verti
es have disjointsets of in-neighbors in the transitive 
losure if, and only if, they have no 
ommon an
estor.Therefore, a down-
oloring of a digraph 
orresponds to a valid 
ompa
ted representation ofits transitive 
losure, and the down-
hromati
 number is the minimum number of 
olumnsneeded in su
h a representation.Example: Consider the digraph ~G, on n = 6 verti
es representing genes, where a dire
tededge from one vertex to a se
ond one indi
ates that the �rst gene is an an
estor of these
ond gene. V ( ~G) = fg1; g2; g3; g4; g5; g6g;E( ~G) = f(g1; g4); (g1; g5); (g2; g4); (g2; g6); (g3; g5); (g3; g6)g:In the adja
en
y matrix representation of this 6 node digraph, we assign a 
olumn to ea
hvertex gi. As we see in the left diagram of Table 1, most of the entries of this 6� 6 matrixare empty. By redu
ing the number of 
olumns in su
h a way that the AC-property stillholds, we obtain a smaller and more 
ompa
t 6 � 3 matrix representation as seen on theright diagram of Table 1. There, the i-th row still 
ontains the des
endants of gi and thean
estors of gi are those gj 's whose rows gi appears in. Note that, (i) ea
h gi appears in2



g1 g2 g3 g4 g5 g6g1 1 0 0 1 1 0g2 0 1 0 1 0 1g3 0 0 1 0 1 1g4 0 0 0 1 0 0g5 0 0 0 0 1 0g6 0 0 0 0 0 1 ! 1 2 3g1 g1 g4 g5g2 g6 g4 g2g3 g6 g3 g5g4 { g4 {g5 { { g5g6 g6 { {Table 1: An example for n = 6.exa
tly one 
olumn and, (ii) two genes appear in the same 
olumn only if their sets ofan
estors are disjoint. Here we 
an view the 
olumn numbers 1, 2, and 3 as distin
t 
olorsassigned to ea
h vertex. Note further that in this example the transitive 
losure of ~G issimply ~G itself. An expli
it example of how su
h a 
oloring 
an speed up queries in thegene ontology digraph 
an be found in the appendix of [6℄.Hen
e, it seems worthwhile to dis
uss two aspe
ts of su
h 
olorings: (1) How 
an weassign reasonably few 
olors to the verti
es/
olumns eÆ
iently, and (2) how large 
an thedis
repan
y theoreti
ally be between the a
tual minimum number of 
olors needed and andobvious lower bound of needed 
olors?Our ResultsThe 
ontributions of this paper are threefold. First, we establish a 
lose link between down
oloring digraphs and strong 
oloring hypergraphs. Se
ond, we give eÆ
iently 
omputablebounds on the down 
hromati
 number in terms of the indu
tiveness of the related hyper-graph and D( ~G), the maximum number of des
rendants of a given vertex. And thirdly,we give a tight bound on the dis
repan
y between the down 
hromati
 number and thelower bound D( ~G). This also has independent interest as 
hara
terizing the largest ratio ofthe strong 
hromati
 number of a hypergraph to the sum of the number of edges and thenumber of verti
es.Related WorkSome spe
ial 
lasses of su
h a
y
li
 digraphs are studied in [2℄, in parti
ular those of heighttwo in whi
h every vertex has an in-degree of two. For a brief introdu
tion and additionalreferen
es to the ones mention here, we refer to [2℄.Note that a
y
li
 digraphs are often 
alled dire
ted a
y
li
 graphs or DAG's by 
omputers
ientists, as is the 
ase in [13, p. 194℄.A straight forward 
ondition of a vertex 
oloring of a digraph ~G is to insist that twoverti
es u and v re
eive distin
t 
olor if there is a dire
ted edge from u to v in ~G. Su
h a
oloring is, of 
ourse, the same as 
oloring the verti
es of the underlying graph G of ~G (byforgetting the orientation of the dire
ted edges) in the usual sense.3



Another vertex 
oloring of digraphs that relies on the dire
tion of the edges is thedi
hromati
 number of a digraph ~G, as studied in [11℄ and [14℄, whi
h is de�ned as theminimum number of 
olors needed to vertex 
olor ~G in su
h a way that no mono
hromati
dire
ted 
y
le is 
reated.Strong 
olorings of hypergraphs have been studied, but not quite to the extent of variousother types of 
olorings of hypergraphs. Sin
e strong 
olorings are generalizations of theusual vertex 
olorings of graphs, the determination of the exa
t strong 
hromati
 number ofa hypergraph is in general a daunting task. Most results in this dire
tion in the literatureon strong 
olorings are restri
ted to some very spe
ial types of hypergraphs. In [16℄ ani
e survey of various aspe
ts of hypergraph 
oloring theory is found, 
ontaining almost allfundamental results in the past three de
ades. What we are 
on
erned here in this se
tionthough, is not ne
essarily an exa
t 
omputation of the strong 
hromati
 number, but rathera good theoreti
al upper bound that is valid for all possible 
orresponding digraphs ~G.In Se
tion 4 however, we dis
uss the asymptoti
s of how large the exa
t down-
hromati
number 
an be.2 Basi
 de�nitionsWe attempt to be 
onsistent with standard graph theory notation in [17℄, and the notationin [15℄ when appli
able.For a natural number n 2 N we let [n℄ = f1; : : : ; ng. A simple digraph is a �nite simpledire
ted graph ~G = (V;E), where V = V ( ~G) is a �nite set of verti
es and E = E( ~G) � V �Vis a set of dire
ted edges. The digraph ~G is said to be a
y
li
 if ~G has no dire
ted 
y
les.Hen
eforth ~G will denote an a
y
li
 digraph in this se
tion.The binary relation � on V ( ~G) de�ned byu � v , u = v; or there is a dire
ted path from v to u in ~G, (1)is re
exive, antisymmetri
 and transitive and therefore a partial order on V ( ~G). Hen
e,whenever we talk about ~G as a poset, the partial order will be the one de�ned by (1).The transitive 
losure of ~G is the poset ~G viewed as a digraph, that is the digraph ~G� onV ( ~G) where (v; u) 2 E( ~G�) i� u < v. By the height of ~G as a poset, we mean the numberof verti
es in the longest dire
ted path in ~G. We denote by maxf ~Gg the set of maximalverti
es of ~G with respe
t to the partial order �.For verti
es u; v 2 V ( ~G) with u � v, we say that u is a des
endant of v, and v isan an
estor of u. The 
losed prin
ipal down-set or simply the down-set D[u℄ of a vertexu 2 V ( ~G) is the set of des
endants of u in ~G, that is, D[u℄ = fx 2 V ( ~G) : x � ug. Likewise,the open prin
ipal down-set or the open down-set of a vertex u is D(u) = D[u℄ n fug.De�nition 2.1 A down-
oloring of ~G is a map 
 : V ( ~G)! [k℄ satisfyingu; v 2 D[w℄ for some w 2 V ( ~G) ) 
(u) 6= 
(v)for every u; v 2 V ( ~G). The down-
hromati
 number of ~G, denoted by �d( ~G), is the least kfor whi
h ~G has a proper down-
oloring 
 : V ( ~G)! [k℄.4



Clearly, in an undire
ted graph G the verti
es in a 
lique must all re
eive distin
t 
olors ina proper vertex 
oloring of G. Therefore !(G) � �(G) � jV (G)j where !(G) denotes the
lique number of G. Similarly, if D( ~G) = maxu2V ( ~G)fjD[u℄jg for our a
y
li
 digraph ~G, we
learly have D( ~G) � �d( ~G) � jV ( ~G)j. Hen
e, when 
onsidering down-
olorings, it 
an beuseful to map the problem to one on undire
ted graphs. Given an a
y
li
 digraph ~G, the
orresponding simple undire
ted down-graph G0 has the same set of verti
es, with ea
h pairof verti
es 
onne
ted that are 
ontained in the same prin
ipal down-set:V (G0) = V ( ~G);E(G0) = ffu; vg : u; v 2 D[w℄ for some w 2 V ( ~G)g:In this way we have transformed the problem of down-
oloring the digraph ~G to the problemof vertex 
oloring the simple undire
ted graph G0 in the usual sense, and we have �d( ~G) =�(G0). Hen
e, from the point of down-
olorings, both ~G and G0 are equivalent.As observed in [2, Obs. 2.3℄ we have:Observation 2.2 There is no fun
tion f : N ! N with �d( ~G) � f(D( ~G)) for all a
y
li
digraphs ~G.However, although not a fun
tion of D( ~G) alone, there are 
omputable parameters su
hthat �d( ~G) 
an be bounded by fun
tions in terms of these parameters. That will be thepurpose of the following se
tion.3 Hypergraph representationsIn this se
tion we dis
uss alternative representations of our digraph ~G, and de�ne someparameters whi
h we will use to bound the down-
hromati
 number �d( ~G).We �rst 
onsider the issue of the height of digraphs. We say that two digraphs onthe same set of verti
es are equivalent if every down-
oloring of one is also a valid down-
oloring of the other, that is, if they indu
e the same undire
ted down-graph. We showthat for any a
y
li
 digraph ~G there is an equivalent a
y
li
 digraph ~G2 of height two with�d( ~G) = �d( ~G2).Lemma 3.1 Any down-graph G0 of an a
y
li
 digraph ~G is also a down-graph of an a
y
li
digraph ~G2 of height two.Proof. The derived digraph ~G2 has the same vertex set as ~G, while the edges all go frommaxf ~Gg to V ( ~G) n maxf ~Gg, where (u; v) 2 E( ~G2) if, and only if, v 2 D(u). In this waywe see that two verti
es in ~G have a 
ommon an
estor if, and only if, they have a 
ommonan
estor in ~G2. Hen
e, we have the proposition. utTherefore, when 
onsidering down-
olorings of digraphs, we 
an by Lemma 3.1 assume themto be of height two. 5



Re
all that a hypergraph is H is set system on V , that is H = (V; E) where V is a set ofverti
es and E is a set (possibly a multiset) of subsets of V 
alled hyperedges. A hypergraphis simple if E is not a proper multiset (that is, E � P(V ), the power set of V ), and ea
hhyperedge has 
ardinality 2 or more. For a given hypergraph H, simple or not, denote byV (H) the set of its verti
es and E(H) the set of its hyperedges. To every simple hypergraphH there is an asso
iated simple 
lique graph G on the same verti
es as H where two verti
esare 
onne
ted i� they are 
ontained in the same hyperedge. Note that two distin
t simplehypergraphs 
an have identi
al 
lique graphs.There is a natural 
orresponden
e between a
y
li
 digraphs and 
ertain hypergraphs.De�nition 3.2 For a digraph ~G, the 
orresponding down-hypergraph H ~G of ~G is de�nedby: V (H ~G) = V ( ~G) nmaxf ~Gg;E(H ~G) = fD(u) : u 2 maxf ~Ggg:Conversely, for a hypergraph H the 
orresponding up-digraph ~GH of H is de�ned by:V ( ~GH ) = V (H) [ fwe : e 2 E(H)g;E( ~GH ) = f(we; u) : u 2 e 2 E(H)g:Note that with the notation from above we have for any digraph ~G with no isolated verti
esthat ~GH~G = ~G2, the equivalent digraph of height two from here above. We summarize inthe following:Observation 3.3 For any hypergraph H we have H ~GH = H and for any digraph ~G ofheight two with no isolated verti
es we have ~GH~G = ~G.Hen
e, for our down-
oloring purposes, digraphs are equivalent to digraphs of height twowith no isolated verti
es, whi
h then again are equivalent to hypergraphs, where verti
esin the same hyperedge re
eive di�erent 
olors. This is pre
isely a strong 
oloring of ahypergraph H, that is a map 	 : V (H)! [k℄ su
h that u; v 2 e for some e 2 E(H), implies	(u) 6= 	(v). The strong 
hromati
 number �s(H) is the least number k of 
olors for whi
hH has a proper strong 
oloring 	 : V (H)! [k℄. Just as for graphs, when 
onsidering strong
olorings of hypergraphs, we 
an, with no loss of generality, restri
t to simple hypergraphs.For an a
y
li
 digraph ~G we see that an optimal strong 
oloring of H ~G will yield andoptimal down-
oloring of ~G, simply by 
ompleting the 
olorings of maxf ~Gg in a greedyfashion. In the 
ase where �s(H ~G) = �(H ~G), then sin
e D( ~G) = �(H ~G) + 1, we have�d( ~G) = �s(H ~G) + 1. Otherwise, when �s(H ~G) > �(H ~G), we always have at least oneavailable 
olor from the set f1; 2; : : : ; �s(H ~G)g to 
omplete the down-
oloring of ~G in alegitimate and optimal fashion. Hen
e we have �d( ~G) = �s(H ~G) in this 
ase. We summarizein the following. 6



Theorem 3.4 For an a
y
li
 digraph ~G we have�d( ~G) = � �s(H ~G) + 1 if �s(H ~G) = �(H ~G);�s(H ~G) if �s(H ~G) > �(H ~G):We 
an also 
hara
terize the down 
hromati
 number pre
isely in terms of the strong
hromati
 number of related hypergraph. The 
losed down hypergraph Ĥ ~G has the samevertex set as H ~G but the edgeset E(Ĥ ~G) = fD[u℄ : u 2 maxf ~Ggg.Observation 3.5 For an a
y
li
 digraph ~G, we have�d( ~G) = �s(Ĥ ~G):The down-graph G0 of ~G is pre
isely the 
lique-graph of the 
losed down-hypergraph Ĥ ~G.Computable boundsTwo verti
es of a hypergraph H are neighbors in H if they are 
ontained in the same edge inE(H). An edge in E(H) 
ontaining just one element is 
alled trivial. The largest 
ardinalityof a hyperedge of H will be denoted by �(H). The degree dH(u), or just d(u), of a vertexu 2 V (H) is the number of non-trivial edges 
ontaining u. The minimum and maximumdegree of H are given by Æ(H) = minu2V (H)fdH(u)g and �(H) = maxu2V (H)fdH(u)grespe
tively. The subhypergraph H[S℄ of H, indu
ed by a set S of verti
es, is given byV (H[S℄) = S;E(H[S℄) = fX \ S : X 2 E(H) and jX \ Sj � 2g:De�nition 3.6 Let H be a simple hypergraph. The degenera
y or the indu
tiveness of H,denoted by ind(H), is given by ind(H) = maxS�V (H) fÆ(H[S℄)g :If k � ind(H), then we say that H is k-degenerate or k-indu
tive.Note that De�nition 3.6 is a generalization of the degenera
y or the indu
tiveness of a usualundire
ted graph G, given by ind(G) = maxH�G fÆ(H)g. Note that the degenera
y of a (hy-per)graph is always greater than or equal to the degenera
y of any of its sub(hyper)graphs.To illustrate, let us for a brief moment dis
uss the degenera
y of an important 
lass ofsimple graphs, namely that of simple planar graphs. Every subgraph of a simple planargraph is again planar. Sin
e every planar graph has a vertex of degree �ve or less, thedegenera
y of every planar graph is at most �ve. This is the best possible for planargraphs, sin
e the graph of the i
osahedron is planar and 5-regular. That a planar graphhas degenera
y of �ve, implies that it 
an be vertex 
olored in a simple greedy fashion withat most six 
olors. The degenera
y has also been used to bound the 
hromati
 number of7



the square G2 of a planar graph G, where G2 is a graph obtained from G by 
onne
tingtwo verti
es of G if, and only if, they are 
onne
ted in G or they have a 
ommon neighborin G (see [4℄.) In general, the degenera
y of an undire
ted graph G yields an orderingfu1; u2; : : : ; ung of V (G), su
h that ea
h vertex ui has at most ind(G) neighbors among thepreviously listed verti
es u1; : : : ; ui�1. Su
h an ordering provides a way to vertex 
olor Gwith at most ind(G)+1 
olors in an eÆ
ient greedy way, and hen
e we have in general that�(G) � ind(G) + 1.The degenera
y of a simple hypergraph is also 
onne
ted to a greedy vertex 
oloring ofit, but not in su
h a dire
t manner as for a regular undire
ted graph, sin
e, as noted, thenumber of neighbors of a given vertex in a hypergraph is generally mu
h larger than itsdegree.Theorem 3.7 If the simple undire
ted graph G is the 
lique graph of the simple hypergraphH then ind(G) � ind(H)(�(H) � 1).Proof. For ea
h S � V (G) = V (H), let G[S℄ and H[S℄ be the subgraph of G and thesubhypergraph of H indu
ed by S, respe
tively. Note that for ea
h u 2 S, ea
h hyperedgein H[S℄ whi
h 
ontains u, has at most �(H[S℄) � 1 � �(H) � 1 other verti
es in additionto u. By de�nition of dH[S℄(u), we therefore have that dG[S℄(u) � dH[S℄(u)(�(H) � 1), andhen
e Æ(G[S℄) � Æ(H[S℄)(�(H) � 1): (2)Taking the maximum of (2) among all S � V (G) yields the theorem. utRe
all that the interse
tion graph of a 
olle
tion fA1; : : : ; Ang of sets, is the simple graphwith verti
es fu1; : : : ; ung, where we 
onne
t ui and uj if, and only if, Ai \Aj 6= ;.Dire
tly by de�nition of the indu
tiveness we have the following.Observation 3.8 For a simple 
onne
ted hypergraph H, then ind(H) = 1 if, and only if,the interse
tion graph of its hyperedges E(H) is a tree.What Observation 3.8 implies, is that edges of H 
an be ordered as E(H) = fe1; : : : ; emg,su
h that ea
h ei interse
ts exa
tly one edge from the set fe1; : : : ; ei�1g. If now G is the
lique graph of H, this implies that ind(G) = �(H)�1 and hen
e �(G) = �(H). Therefore,by Theorem 3.4, we have in general the following:If ind(H ~G) = 1, then �s(H ~G) = �(G) = �(H ~G), and hen
e �D( ~G) = �(H ~G)+1 = D( ~G).Otherwise, if ind(H ~G) > 1, then by Theorem 3.7 we have�s(H ~G) = �(G) � ind(G) + 1 � ind(H ~G)(�(H ~G)� 1) + 1:Sin
e now D( ~G) = �(H ~G) + 1 we have therefore the following 
orollary.Corollary 3.9 If ~G is an a
y
li
 digraph, then its down-
hromati
 number satis�es thefollowing:1. If ind(H ~G) = 1 then �d( ~G) = D( ~G). 8



2. If ind(H ~G) > 1 then �d( ~G) � ind(H ~G)(D( ~G)� 2) + 1.Moreover, in both 
ases the given upper bound of 
olors 
an be used to down-
olor ~G in aneÆ
ient greedy fashion.Example: Let k;m 2 N , let A1; : : : ; Ak be disjoint sets, ea
h Ai 
ontaining exa
tly mverti
es. Let H(k;m) be the hypergraph withV (H(k;m)) = [i2[k℄Ai;E(H(k;m)) = fAi [Aj : i 6= j; fi; jg � [k℄g;Let ~G(k;m) = ~GH(k;m) be the up-digraph of the hypergraph H(k;m). Clearly ~G(k;m) is asimple a
y
li
 digraph on km+ �k2� verti
es and with �k2� � 2m = k(k � 1)m dire
ted edges.Further, �(H(k;m)) = 2m and so D( ~G(k;m)) = 2m+ 1. Sin
e ea
h vertex is 
ontained inexa
tly k hyperedges we have ind(H(k;m)) = k � 1. Hen
e, by Corollary 3.9, we obtainthat �d( ~G(k;m)) � (k � 1)(2m� 1) + 1 = �(km), whi
h agrees with the asymptoti
 valueof the a
tual down-
hromati
 number km (also a �(km) fun
tion). Hen
e, up to a 
onstant(of 2), Corollary 3.9 is asymptoti
ally tight.4 Dis
repan
y between parametersSo far we have dis
ussed how to approximate the down-
hromati
 number �d( ~G) of ana
y
li
 digraph ~G in terms of D( ~G) and ind(H ~G), the indu
tiveness of the 
orrespondingdown-hypergraph. In this se
tion we will dis
uss the relative dis
repan
y between D( ~G)and the a
tual down 
hromati
 number �d( ~G), and determine a tight asymptoti
 upperbound for their ratio.If H(k;m) is the hypergraph de�ned in the previous se
tion, then for ~GH(k;m) we 
learlyhave �d( ~GH(k;m))D( ~GH(k;m)) = km2m+ 1 !1as k !1 andm is �xed. Hen
e, allowing an unbounded number of verti
es of ~G, the aboveratio 
learly 
an be
ome arbitrarily large even when D( ~G(k;m)) = 2m+ 1 is �xed.The purpose of this last se
tion is to derive a tight upper bound for �d( ~G)=D( ~G) amongall a
y
li
 digraphs ~G with D( ~G) bounded and with bounded number of verti
es.De�nition 4.1 For n; Æ 2 N de�ne the relative down-
oloring dis
repan
y, or simply therd
d, dd(Æ; n) by dd(Æ; n) = maxjV ( ~G)j�n; D( ~G)�Æ(�d( ~G)D( ~G)) ;where the maximum is among all a
y
li
 digraphs ~G satisfying the stated 
onditions.9



Note that for a hypergraph H, it holds that D( ~GH) = �(H) + 1 and jV ( ~GH)j = jV (H)j+jE(H)j. Hen
e, for n; � 2 N we de�ne the relative strong-
oloring dis
repan
y, or simply thers
d, ds(�; n) by ds(�; n) = maxjV (H)j+jE(H)j�n; �(H)��� �s(H)�(H) + 1� ; (3)where the maximum is taken among all hypergraphsH. By Lemma 3.1 and Observation 3.3we have the following.Observation 4.2 For n; Æ; � 2 N we have dd(� + 1; n) = ds(�; n).Although our original motivation for the relative dis
repan
y dd(Æ; n) is given by De�ni-tion 4.1, by Observation 4.2 it suÆ
es to (and in some ways is more natural to) determinea tight upper bound of ds(�; n) for given n; � 2 N from (3).De�nition 4.3 For n; � 2 N , let r+(�; n) denote the positive root of the quadrati
 polyno-mial x+ x(x�1)�(��1) = n in terms of x.Using De�nition 4.3 we now 
an state our �rst theorem.Theorem 4.4 For n; � 2 N the rs
d ds(�; n) satis�esds(�; n) � r+(�; n)� + 1Proof. Let H be a hypergraph with jV (H)j + jE(H)j � n, �s(H) = x 2 N and �(H) = �.In this 
ase there is an optimal strong x-
oloring of the verti
es of H. Let V1; : : : ; Vx be
orresponding partition of V (H) into 
olor 
lasses. For ea
h i and j with 1 � i < j � x,there is at least one hyperedge eij 2 E(H) that 
ontains one vertex from Vi and one vertexfrom Vj. Sin
e jej � � for ea
h e 2 E(H), ea
h hyperedge 
an 
over at most ��2� sets of twoverti
es that are 
olored by distin
t pairs of 
olors. Sin
e there are �x2� pairs of 
olors, thenumber of hyperedges of H must satisfyjE(H)j � �x2���2� = x(x� 1)�(� � 1) :Sin
e ea
h 
olor 
lass Vi is nonempty, we must have jV (H)j � �s(H) = x. Combining thelast two inequalities we obtain, in parti
ular, thatn � jV (H)j + jE(H)j � x+ x(x� 1)�(� � 1) : (4)Viewing n and � as arbitrary but �xed, we obtain by (3) and (4) thatds(�; n) � maxx+ x(x�1)�(��1)�n� x� + 1� : (5)10



By solving the 
orresponding quadrati
 inequality x+ x(x�1)�(��1) � n in terms of x, keeping inmind that x is positive, we have that 0 < x < r+(�; n). The maximum value of the fra
tionx=(� + 1) is 
learly taken when x is at maximum, that is for x = r+(�; n). Hen
e, by (5)we obtain ds(�; n) � r+(�; n)� + 1 ;whi
h 
ompletes the proof. utBy solving the quadrati
 equation x+ x(x� 1)=(�(� � 1)) = n for x we getr+(�; n) = p�(� � 1)nq1 + (�(��1)�1)24�(��1)n + �(��1)�1p4�(��1)n ;it is immediate that r+(�; n) �p�(� � 1)n, andlimn!1 r+(�; n)pn =p�(� � 1): (6)Hen
e, by Theorem 4.4 we obtainCorollary 4.5 For n; � 2 N the rs
d ds(�; n) satis�esds(�; n) � p�(� � 1)� + 1 pn:Note that for a �xed � the upper bounds for ds(�; n) in Theorem 4.4 and Corollary 4.5are by (6) asymptoti
ally the same as n ! 1. We now argue that the upper bound fromCorollary 4.5 is asymptoti
ally tight in the sense thatlim supn!1 ds(�; n)pn = p�(� � 1)� + 1 (7)for in�nitely many values of �. More spe
i�
ally, we will show that there is an in�nite
olle
tion (�i)i�1 su
h that for ea
h i there is again an in�nite 
olle
tion (nij)j�1 with theproperty that there exists a hypergraph Hij with jV (Hij)j+ jE(Hij)j = nij and �(Hij) = �ithat mat
hes the upper bound of Theorem 4.4, that is�s(Hij)�(Hij) + 1 = r+(�i; nij)�i + 1for ea
h i and j. This together with Theorem 4.4 and Corollary 4.5 will yield (7). For thiswe need some additional terminology for hypergraphs.Re
all that a balan
ed in
omplete blo
k design or a BIBD for short, is a simple hy-pergraph H = (V;B) where V is a �nite set of verti
es and B � P(V ) is a 
olle
tion ofhyperedges where (i) all the hyperedges have the same 
ardinality that is stri
tly less than11



that of V , (ii) ea
h vertex is 
ontained in the same r > 0 number of hyperedges, and (iii)ea
h pair of verti
es is 
ontained in exa
tly � > 0 hyperedges. In this 
ase the verti
esare sometimes 
alled varieties and the hyperedges blo
ks. In a series of three papers [18℄,[19℄ and [20℄, R. M. Wilson proved that for any given k; � 2 N there exists a 
onstantC = C(k; �) 2 N su
h that for any v � C satisfying (i) �(v � 1) � 0 mod (k � 1) and (ii)�v(v � 1) � 0 mod k(k � 1), then there exists a BIBD on v verti
es, where ea
h hyperedgehas 
ardinality k and where ea
h vertex is 
ontained in � hyperedges. In parti
ular, for� = 1, we have with our notation and terminology from above the following.Corollary 4.6 For ea
h � 2 N there exists a K = K(�) 2 N su
h that for all k � K withk2 � k mod �, we haveds��; k(� � 1 + k) + 1� k(k � 1)� � = k(� � 1) + 1� + 1 :Proof. By R. M. Wilson, there is a C = C(�) 2 N su
h that for all v � C satisfyingv � 1 � 0 mod (� � 1) and v(v � 1) � 0 mod �(� � 1), there is a BIBD, 
all it H, on vverti
es su
h that ea
h hyperedge has exa
tly � verti
es, ea
h pair of verti
es is 
ontainedin exa
tly one hyperedge. In parti
ular, the number of hyperedges of H is given byjE(H)j = �v2���2� = v(v � 1)�(� � 1) :The 
onditions on v mean that v = k(� � 1) + 1 where k2 � k mod � and k 2 N is largeenough, say k � K = K(�). Sin
e ea
h pair of the v verti
es is 
ontained in a hyperedge,we 
learly have �s(H) = v. We also 
learly have �(H) = � and hen
e, in this 
ase we have�s(H)=(�(H) + 1) = v=(�+1) = (k(�� 1) +1)=(�+1). Also, for v = k(�� 1) + 1 we haven = v + v(v � 1)�(� � 1) = k(� � 1 + k) + 1� k2 � k� :By (3) this implies thatds��; k(� � 1 + k) + 1� k(k � 1)� � � k(� � 1) + 1� + 1 :Sin
e r+ ��; k(� � 1 + k) + 1� k(k�1)� � = k(��1)+1, we have by Theorem 4.4 the 
orollary.utWe 
on
lude this se
tion by an expli
it and self 
ontained 
onstru
tion of a 
lass of hyper-graphs for whi
h the asymptoti
 value in (7) 
an also be rea
hed. First note that for � 2 Nand v = �k then v � 1 � 0 mod (� � 1) and v(v � 1) � 0 mod �(� � 1) hold for all k 2 N .Before proving Proposition 4.7 we re
all some notations and results: Every �nite �eldhas 
ardinality of a prime power q = pn. If Zp denotes the integers modulo p, then theunique �eld F q of 
ardinality q 
an be given as the quotient F q = Zp[X℄=(Xq �X) whi
h12



turns out to be the splitting �eld of the polynomial Xq �X over Zp. In parti
ular, F r is asub�eld of F q whenever r = pm and m � n (See [10, p. 278℄.) The aÆne plane over a �eldF is the tuple (F 2;L) where L is the 
olle
tion of all lines f(x; y) : ax+ by = 
g � F 2. TheaÆne plane over F q is a BIBD with � = 1 (See [12, p. 199℄.)Proposition 4.7 If � = pk is a prime power, then for any m 2 N there is a BIBD on �mverti
es, where ea
h hyperedge has 
ardinality � and where ea
h pair of verti
es is 
ontainedin exa
tly one hyperedge.Proof. (Sket
h) The hypergraph on � verti
es with exa
tly one hyperedge 
ontaining allthe verti
es proves the basi
 
ase for m = 1.We pro
eed by indu
tion on m. Assume there is a BIBD H = (V (H); E(H)) on �mverti
es, where ea
h hyperedge has 
ardinality � and where ea
h pair of verti
es is 
ontainedin exa
tly one hyperedge. Without loss of generality we may assume V (H) = F q where q =pkm. In the aÆne plane of F q the lines either have the form of x = 
 or y = �x+� for some�; �; 
 2 F q. Call the lines of the latter form non-verti
al. ConsiderH 0 = (F��F q;L0) whereL0 
onsists of all non-verti
al lines from the aÆne plane of F q restri
ted to F� � F q � F2q ,together with ffag � L : a 2 F� and L 2 E(H)g. Then H 0 is a BIBD on �m+1 verti
es,where ea
h hyperedge has 
ardinality � and where ea
h pair of verti
es is 
ontained inexa
tly one hyperedge. This 
ompletes the proof. utRemarks: (i) The 
ondition that ea
h pair of verti
es is 
ontained in exa
tly one hyperedgeis a natural geometri
 
ondition 
alled the Eu
lid's �rst postulate, when verti
es are viewedas points and hyperedges as lines. (ii) Note that the aÆne plane over any �eld F , inparti
ular for the �nite �eld F q, satis�es the Eu
lidean parallel postulate (aka Eu
lid's �fthpostulate), that for any three verti
es, not all 
ontained in a hyperedge, there is pre
isely onehyperedge 
ontaining the third vertex, that is disjoint from the unique hyperedge 
ontainingthe �rst two verti
es. (See [8℄.) However, this does not hold inH 0 from the above proof, sin
eby restri
ting/trun
ating we introdu
e in general many additional hyperedges 
ontainingthe third vertex that are disjoint from the unique hyperedge 
ontaining the �rst two verti
es.In fa
t, the well-known 
onje
ture, whether or not there exists an aÆne plane on n verti
eswhen n is not a power of a prime, is still open. (See [5℄.)From Proposition 4.7 we dedu
e the following 
orollary.Corollary 4.8 If � = pk is a prime power, then for any m 2 N we haveds��; �m + �m�1(�m � 1)� � 1 � = �m� + 1 :Proof. We 
learly have r+��; �m + �m�1(�m � 1)� � 1 � = �m;13



and hen
e by Theorem 4.4 we haveds��; �m + �m�1(�m � 1)� � 1 � � r+(�; n)� + 1 = �m� + 1 ;yielding the upper bound.By Proposition 4.7 there is a BIBD H on �m verti
es, where ea
h hyperedge has 
ardi-nality � and where ea
h pair of verti
es is 
ontained in exa
tly one hyperedge. In this 
asewe have �s(H) = �m and �(H) = � and hen
eds��; �m + �m�1(�m � 1)� � 1 � � �s(H)�(H) + 1 = �m� + 1 ;yielding the lower bound and 
ompletes the proof. utRemark: Throughout this arti
le we have assumed our digraphs to be a
y
li
. However, wenote that the de�nition of down-
oloring 
an be easily extended to a regular 
y
li
 digraph~G by interpreting the notion of des
endants of a vertex u to mean the set of nodes rea
hablefrom u. In fa
t, if ~G is an arbitrary digraph, then there is an equivalent a
y
li
 digraph ~G0,on the same set of verti
es, with an identi
al down-graph: First form the 
ondensation Ĝof ~G by shrinking ea
h strongly 
onne
ted 
omponent of ~G to a single vertex. Then form~G0 by repla
ing ea
h node of Ĝ whi
h represents a strongly 
onne
ted 
omponent of ~G ona set X � V ( ~G) of verti
es, with an arbitrary vertex u 2 X, and then add a dire
ted edgefrom u to ea
h v 2 X n fug. This 
ompletes the 
onstru
tion.Observe that ea
h node v 2 X has exa
tly the same neighbors in the down-graph of ~G0as u, as it is a des
endant of u and u alone. Further, if node v was in a di�erent strong
omponent of ~G than u but was rea
hable from u, then it will 
ontinue to be a des
endantof u in ~G0. Hen
e, the down-graphs of ~G and ~G0 are identi
al.A
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