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improve the bound in the weighted case to [(A + 1)/3] using a simple partitioning
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vertices of minimum degree and achieves only a ratio of A — 1, significantly worse
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gorithm and describe a family of hypergraphs where both algorithms approach the
bound of A.

Key words: approximation algorithms, maximum independent set, hypergraph

* The corresponding author. Tel.: + 354 869 3041; fax: +354 525 4632.

Email addresses: mmh@ru.is (Magnis M. Halldérsson), elenal@hi.is (Elena
Losievskaja).
I Research funded by grants of the Icelandic Research Fund and the Research Fund
of the University of Iceland.

Preprint submitted to Elsevier 21 May 2008



1 Introduction

In this paper we consider the independent set problem in hypergraphs. A
hypergraph H is a pair (V, E), where V = {vy,...,v,} is a discrete set of
vertices and F = {ej,...,e,} is a collection of subsets of V', or (hyper)edges.
A hypergraph is simple if no edge is a subset of another edge. An independent
set in H is a subset of V' that doesn’t contain any edge of H, also referred to
as a weak independent set [2]. If an independent set in H intersects any edge
in £/ in at most one element, then it is said to be a strong independent set
[2]. Let MIS (MSIS) denote the problem of finding a maximum unweighted
weak (strong) independent set in hypergraphs, respectively. If we consider a
weighted version of MIS (MSIS), we state it explicitly.

MIS is of fundamental interest, both in practical and theoretical aspects. It
arises in various applications in data mining, image processing, database de-
sign, parallel computing and many others. MIS is intimately related with clas-
sical covering problems. The vertices not contained in a weak independent set
form a vertex cover, or a hitting set. Moreover, a set cover in the dual of a hy-
pergraph (replacing each set by a vertex and including a set for the incidences
of each original node) is equivalent to a hitting set in the original hypergraph.
Thus, in terms of optimization, MIS is equivalent to the Hitting Set and the
Set Cover problems.

Numerous results are known about independent sets in hypergraphs, including
approximation algorithms for MIS in [17] and [20]. The focus of the current
work is on bounded-degree hypergraphs, where each vertex is of degree at most
A. Given that both MIS and MSIS generalize the independent set problem in
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graphs, the problem is NP-hard to approximate within a factor A/2
unless P = NP [25].

In the case of graphs (2-uniform hypergraphs), there is no distinction between
weak and strong independent sets. Thus, we denote by MIS the problem of
finding a maximum independent set in graphs. Various approximation algo-
rithms have been given for MIS in graphs. Halldérsson and Radhakrishnan [14]
showed that the minimum-degree greedy algorithm approximates unweighted
MIS within a factor of %. A simple partitioning algorithm due to Halldérsson
and Lau [13] gives a (A + 2)/3-approximation of weighted MIS. A better ap-
proximation ratio for unweighted MIS is (A + 3)/5 obtained by Berman and
Fujito [4] using a local search algorithm. For large values of A, the best ap-
proximation is obtained by using semi-definite programming, with a ratio of
O(Aloglog A/log A) due to Vishwanathan [26] (and also in the weighted case,
shown independently by Halldérsson [12] and Halperin [15]).

The MSIS problem can be turned into an independent set problem in graphs,



by replacing each hyperedge with a clique (assuming that a hypergraph has
no singletons, otherwise we can always delete such vertices from the hyper-
graph, because they can not belong to any independent set). The reason for
considering the problem as a hypergraph problem is that the degrees in the
hypergraph can be much smaller than in the corresponding clique graph. If the
hypergraph is of degree A, then the corresponding clique graph contains no
A+ 1-claw, where a k-claw is an induced star on k£ edges. The work of Hurkens
and Schrijver [18] established that a natural local improvement method attains
a performance ratio of k/2 + ¢, for any fixed € > 0, on k + 1-claw free graphs.
Another local search algorithm by Berman [3] approximates weighted MIS in
(d+1)-claw free graphs within a factor of (d+ 1) /2, which implies also a A/2-
approximation. A strong hardness result of (5 A) is known for MSIS, due to
Hazan, Safra and Schwartz [16]. The focus of our study of MSIS is to consider
natural greedy methods and establish tight bounds on their performance ratio.

One of the most extensively studied heuristics of all times is the greedy set
cover algorithm, which repeatedly adds to the cover the set with the largest
number of uncovered elements. In spite of its simplicity, it is in various ways
also one of the most effective. Johnson [19] and Lovasz [22] showed that it
approximates the Set Cover problem within H, < In-+1 factor, which was
shown by Feige [10] to be the best possible up to a lower order term. Gener-
alizations to weights [8] and submodular functions [27] also yield equivalent
ratios. And under numerous variations on the objective function does it still
achieve the best known/possible performance ratio, e.g. Sum Set Cover [11]
and Entropy Set Cover [6]. Bazgan, Monnot, Paschos and Serriere [1] studied
the differential approximation ratio of the greedy set cover algorithm, this ra-
tio measures how many sets are not included in the cover. When viewed on
the dual hypergraph, this is equivalent to studying the performance ratio of
the greedy set cover algorithm for MIS. They proved that when modified with
a post-processing phase, it has a performance ratio of at most A/1.365 and at
least (A+1)/4 . Caro and Tuza [7] showed that the greedy set cover algorithm
applied to MIS in r-uniform hypergraphs always finds a weak independent set
of size at least © (n/ Aﬁ). Thiele [24] extended their result to non-uniform
hypergraphs and gave a lower bound on the size of an independent set found
by a greedy algorithm as a complicated function of the number of edges of
different sizes incident on each vertex in a hypergraph.

Another popular algorithm design technique is local search. This technique is
based on the concept of a neighborhood - a set of solutions close to a given
solution S. The idea is to start with some (arbitrary) solution S and iteratively
replace S by a better solution found in the neighborhood of S. Local search
gives the best approximations of weighted and unweighted MIS in bounded-
degree graphs for small values of A, due to Berman [3] and Berman and Fujito
[4]. Bazgan, Monnot, Paschos and Serriere [1] considered a simple 2-OPT local
search algorithm to approximate MIS in hypergraphs and proved a tight bound



of (A+1)/2.

Another simple approach in approximation algorithm design is partitioning.
The strategy is to break the problem into a set of easier subproblems, solve
each subproblem and output the largest of the found solutions. This approach
yields O(nloglogn/logn) and [(A + 1)/3] approximations to the weighted
MIS in graphs, as shown in [12]. In spite of its simplicity, partitioning has not
been used before to approximate MIS in hypergraphs.

In this paper we analyze greedy, local search and partitioning approaches
to approximate weighted and unweighted MIS and MSIS in bounded-degree
hypergraphs. We describe a general technique that reduces the worst case
analysis of certain algorithms to their analysis on ordinary graphs. Given an
approximation algorithm A, this technique, called shrinkage reduction, trun-
cates a hypergraph H to a graph G such that an optimal solution on H is
also an optimal solution in G, and A produces the same worst approximate
solution on H and (. This technique can be applied to a wide class of algo-
rithms and problems on hypergraphs. For example, this technique allows us
to show that the greedy algorithm for MIS that corresponds to the classical
greedy set cover algorithm has a performance ratio of (A + 1)/2, improving
the bounds obtained by Bazgan et al. [1]. In addition, while their analysis
required a post-processing phase, our bound applies to the greedy algorithm
alone. It also allows us to apply results on local search algorithms on graphs
to obtain a (A + 1)/2 approximation for weighted MIS and (A + 3)/5 + €
approximation for unweighted MIS. We improve the bound in the weighted
case to [(A 4 1)/3] using a simple partitioning algorithm. Finally, we show
that another natural greedy algorithm for MIS, that adds vertices of minimum
degree, achieves only a ratio of A — 1, significantly worse than on ordinary
graphs.

For MSIS we describe two greedy algorithms: one constructs an independent
set by selecting vertices of minimum degree, the other selects vertices with the
fewest neighbors. We show that both algorithms have a performance ratio of A,
and this bound is tight. However, in r-uniform hypergraphs the performance
ratio of all greedy algorithms is improved: for MIS to © (Aﬁ) and 1+ %,

respectively; for MSIS to A — % for both greedy algorithms.

The paper is organized as follows. After giving essential definitions of vari-
ous hypergraph properties, we present the shrinkage reduction technique and
apply it to the analysis of local search and greedy algorithms to MIS in Sec-
tion 3. We conclude Section 3 with the application of simple partitioning and
the minimum-degree greedy algorithms to MIS. In Section 4 we describe two
greedy algorithms for MSIS.



2 Definitions

Given a hypergraph H = (V, E), let n and m be the number of vertices and
edges in H. The degree of a vertex v is the number of edges incident on v. We
denote by A and d the maximum and the average degree in the hypergraph,
respectively. In a bounded-degree hypergraph A is a constant. A hypergraph
is A-regqular if all vertices have the same degree A.

The rank r of a hypergraph H is the maximum edge size in H. A hypergraph
is r-uniform if all edges have the same cardinality r. By a t-edge we mean an
edge of size t.

A vertex u is a neighbor of a vertex v, if there exist an edge e € F that includes
both u and v. Given a vertex v € V| we denote by N(v) a set of neighbors of
v. Let Np(v) ={u eV :3e€ E,(u,v) € e,|e] =k} be a set of neighbors of v
in edges of size k. Given a set U C V., let N(U) = {v e V\U : Ju € U,Je €
E, (u,v) € e} a set of neighbors of vertices in U.

A hyperclique is a hypergraph in which each vertex is a neighbor of all other
vertices. Note, that a hyperclique need not be a uniform hypergraph. By anal-
ogy with a graph being a 2-uniform hypergraph, a clique is a 2-uniform hy-
perclique.

A (hyper)path in a hypergraph is a sequence of edges ey, es, ..., e, such that
e;Ne #0forany 1 <i<p-—1ande Ne; =0 for any ¢, j such that
li — 7] > 1.

An n-star is a tree on n + 1 nodes with one node of degree n (the root of the
star) and the others of degree 1 (the endpoints of the star).

We say that a hypergraph H'(V', E') is induced in H(V, E) on the vertex set
V'cV, it E' ={e € Ele C V'}. By deleting a vertex v from a hypergraph H
we mean just one operation: V' = V\{v}, and by deleting v with all incident
edges we mean two operations: V = V\{v} and £ = E\{e € Ev € e}.

In the remainder, we let H and G be the collections of all hypergraphs and

graphs, respectively. We denote by H a hypergraph in H and by G a graph in
G, respectively. By a cover we mean a hitting set in H or a vertex cover in G.

3 Weak Independent Set

We describe three different approaches to weighted and unweighted MIS in
bounded-degree hypergraphs: local search, greedy and partitioning. We also



present a general reduction technique for the worst case analysis of approx-
imation algorithms on hypergraphs and apply it to local search and greedy
algorithms.

3.1 Shrinkage Reduction

Shrinkage reduction is a general technique that reduces the worst case analysis
of algorithms on hypergraphs to their analysis on graphs. It is based on a
shrinkage hypergraph, or shrinkage for short.

Definition 3.1 A hypergraph H' is a shrinkage of H if V(H') = V(H),
|E(H'")| = |E(H)| and for any edge e € E(H) there exist an edge ¢’ € E(H')
such that ¢ C e. In other words, the edges of H might be truncated in H' into
sets of smaller size (and at least 2).

Shrinkage reduction works for hereditary optimization problems. Given an
instance I, an optimization problem consists of a set of feasible solutions S;
and a function w : S — R assigning a non-negative cost to each solution
Ses.

Definition 3.2 An optimization problem on hypergraphs is hereditary, if for
any shrinkage H' of a hypergraph H it satisfies Sgr C Spgr.

Many problems on hypergraphs are hereditary, including the Minimum Hitting
Set, the Maximum Independent Set, the Minimum Coloring and the Shortest
HyperPath. An example of non-hereditary problem is the Longest HyperPath.
Given a hereditary problem, the essence of shrinkage reduction is the following.

Proposition 3.3 Let A be an approzimation algorithm for a hereditary prob-
lem. Suppose we can construct a shrinkage graph G of a hypergraph H such
that an optimal solution in H is also an optimal solution in G and A produces
the same worst approximate solution on H and G, then the performance ratio
of A on hypergraphs is no worse than on graphs.

Note, that Proposition 3.3 applies also to non-deterministic (and randomized)
approximation algorithms.

It is not easy to give a general rule on how to construct a shrinkage for an
arbitrary approximation algorithm. In the following sections we describe re-
ductions for the greedy set cover and local search algorithms for weighted
and unweighted MIS in bounded-degree hypergraphs. The comparison of the
GreedyM AX and the GreedyMIN algorithms, described in Sections 3.3 and
3.5 respectively, suggests that the shrinkage reduction technique might be ap-
plicable only to algorithms that don’t alter edge sizes during the execution.



3.2  Local Search

The idea of the local search approach is to start with a (arbitrary) solution
and continually replace it by a better solution found in its neighborhood while
possible. We need formal definitions to determine what a ”better solution” and
a "neighborhood” mean.

A neighborhood function I' maps a solution S € S; into a set of solutions
I;(S) C &y, called the neighborhood of S. A feasible solution S is locally
optimal w.r.t. I', or I'-optimal for short, if it satisfies w(S) < w(S) (w(S) >
w(S)) for all S € I'7(S) for a minimization (maximization) problem. A feasible
solution S* is globally optimal, or optimal for short, if it satisfies w(S*) < w(S)
(w(S*) > w(S)) for all S € S; for a minimization (maximization) problem.
To specify more precisely the neighborhood functions used in our local search

algorithms, we need the following definition.

Definition 3.4 A neighborhood function I' is said to be edge-monotone for
a hereditary problem on hypergraphs if for any shrinkage H' of a given hyper-
graph H and any solution S € Sy the neighborhood of S satisfies I'y/(S) C
I'y(S).

In other words, edge-monotonicity means that edge reduction can only de-
crease the neighborhood size.

A I-optimal algorithm is a local search algorithm that given an instance I,
starts with a (arbitrary) solution S and repeatedly replaces it by a better
solution found in I7(S) until S is I'-optimal. The approximation ratio ors
of a ['-optimal algorithm on a instance I is the maximum ratio between the
weights of I'-optimal and optimal solutions over all I'-optimal solutions on I,

l.e. or; = max Lg) Or1 = max wS) ) for a minimization (maximization)
" vses; W87 " vies; w®)
problem. The performance ratio prz of a I'-optimal algorithm is the worst

approximation ratio over all instances I in the class of instances 7.

In the following theorem we show that if a neighborhood function I is edge-
monotone, then for the Minimum Cover problem the analysis of a ['-optimal
algorithm on hypergraph reduces to the analysis of this algorithm on graphs.
The reduction is based on the construction of a shrinkage graph with special
properties. Note, that a shrinkage graph is needed only for the analysis, but
not for the I'-optimal algorithm itself.

Theorem 3.5 Given an edge-monotone neighborhood function I' and a hy-
pergraph H with an optimal cover S* and a I'-optimal cover S, there exists a
shrinkage graph G of H on which S* and S are also optimal and I'-optimal
covers, respectively.



Proof: Given H, S* and S, we construct a shrinkage G as follows. From each
edge e in E(H), we arbitrarily pick vertices u and v such that {u,v} NS # 0
and {u,v}NS* # 0, and add (u,v) to E(G).

Any edge in E(G) contains at least one vertex from S and at least one vertex
from S*, and so S and S* are covers in G, ie. S,5* € Sg. Since G is
shrinkage of H and the Minimum Cover problem is hereditary, S¢ C Sy by
definition. For all S € Sy we have w(S*) < w(S), and so w(S*) < w(9S) for
all S € Sg. Thus, S* is an optimal cover in G. The local optimality of Sin G
follows by the same argument and the fact that I" is edge-monotone. O

Corollary 3.6 If a neighborhood function I is edge-monotone for MIS, then
Prn < Prg-

Proof: Given a hypergraph H(V, E), the vertices not contained in a weak
independent set [ form a vertex cover S in H, i.e. I = V\S. Given an edge-
monotone neighborhood function I" for MIS, we define a new neighborhood
function I'"(S) = {S" : V\S" € I'(V\S)}. Note, that I"(S) is edge-monotone
for the Hitting Set problem. Moreover, if I* and I are optimal and [-optimal
weak independent sets in H, then S* = V\I* and S = V\I are optimal and
I'-optimal covers in H, respectively. The claim then follows from Theorem
3.5. O

The simplest local search algorithm for MIS is ¢-Opt, which repeatedly tries to
extend the current solution by deleting ¢ elements while adding ¢+ 1 elements.
It is easy to verify that the corresponding neighborhood function I'(S) =
{8" € Sy : |S® S5’ <t} defined on Sy is edge-monotone (where @ is the
symmetric difference). Then, the following two theorems are straightforward
from Corollary 3.6 and the results of Hurkens and Schrijver on graphs [18].

Theorem 3.7 ¢-Opt approzimates MIS within A/2 + €, where tlim e(t) = 0.

Theorem 3.8 2-Opt approzimates MIS within (A +1)/2.

Theorem 3.9 For every e > 0, MIS can be approximated within (A+3)/5+¢€
for even A and within (A + 3.25)/5 + € for odd A.

Proof: We extend the algorithm SICa j of Berman and Firer [5] for MIS in
bounded degree graphs to the hypergraph case. Given a hypergraph H(V, E)
and a weak independent set A in H, let By equal V — A if the maximum
degree of H is three, and otherwise equal the set of vertices that have at least
two incident edges with vertices in A. Let Comp(A) be the subhypergraph
induced by B4. The formal description of the algorithm is given in Figure 3.2.



ALGorITHM HSIC (H, A, k)

If A < 2 then compute MIS exactly and stop
Let A be any maximal weak independent set
Repeat

Do all possible local improvements of size O(k log n)

If A =3thenl = lelsel =2

Recursively apply HSIC(Comp(A), A —1, k)

and select the resulting weak independent set if it is bigger

Until A has no improvements

Fig. 1. The algorithm HSIC

There are two neighborhood functions in HSTC'. The first function which maps
a solution A to a set of all possible local improvements of size O(klogn), is
t-optimal with ¢ = O(klogn), and thereofre edge-monotone. The second func-
tion, which maps a solution A to a set of weak independent sets in Compy (A),
is edge-monotone, because shrinking H to H' reduces the degree of some ver-
tices, implying B4(H') € Ba(H). Consequently, a weak independent set in
Compp(A) is also a weak independent set in Compg(A). Thus, both neigh-
borhood functions are edge-monotone and the performance ratio of HSIC is
no worse than the performance ratio of SICa j by Corollary 3.6. O

Theorem 3.10 Weighted MIS can be approzimated within (A +1)/2 on hy-
pergraphs of a constant rank r.

Proof: We extend the algorithm Squarel M P of Berman [3] for weighted MIS
in bounded degree graphs to the hypergraph case. Let S be a weak independent
set in H. We say that (A, B) is an improvement of S, if there is a vertex v € S
such that A C N(v)N(V\S), BC N(A)NS, (S\B)UA is a weak independent
set and w?((S\B) U A) > w?(S). The formal description of the algorithm in
Figure 3.2.

ALGORITHM HSquarel MP (H)
S — 0
While there exist an improvement (A, B) of S
S «— (S\B) U A
Output S

Fig. 2. The algorithm HSquarel M P

The neighborhood function in HSquarel M P is edge-monotone. Shrinking H
to H' reduces the degree of some vertices and so every improvement A, B
of S in H’ is also an improvement of S in H. Hence, the performance ratio
of HSquarel M P is no worse than the performance ratio of Squarel M P by
Corollary 3.6.



Note, that finding an improvement (A, B) takes O(n22° =2~ steps. Namely,
in the worst case we check every vertex v € S, every possible subset A C
N(v) N (V\S) and every possible subset B C N(A) N S to see whether
(S\B) U A is a weak independent set and w?((S\B) U A) > w?*(S). Since
IN(v)N(V\S)| < A(r—2), there are at most 2202 possible A-sets. Similarly,
since [N(A)NS| < A(r —2)(A(r — 1) — 1), there are at most, 22 ~2(Ar=1-1)
possible B-sets. In total, we consider at most 22°("=2(=1) possible pairs (A4, B)
for every vertex v € S until an improvement is found. O

3.8 The GreedyM AX Algorithm

The idea of the greedy approach is to construct a solution by repeatedly
selecting the best candidate on each iteration. There are two variations, called
GreedyM AX and GreedyMIN, depending on whether we greedily reject or
add vertices.

The GreedyM AX algorithm constructs a cover S by adding a vertex of max-
imum degree, deleting it with all incident edges from the hypergraph, and
iterating until the edge set is empty. It then outputs the remaining vertices as
a weak independent set I. The formal description of the algorithm is given in
Figure 3.3.

ALGORITHM GreedyMAX (H)
S =10
While the edge set is not empty
Add a vertex v of maximum degree to .S

Delete v with all incident edges on v from H
Output I = V' \ S

Fig. 3. The algorithm GreedyM AX

Given a hypergraph H(V, E), let S* be a minimum cover. Then, the perfor-
mance ratio of GreedyM AX is:
n— |S*

P g] (1)

The analysis has two parts. First we prove that the worst case for GreedyM AX
occurs on graphs. Namely, we describe how to reduce any hypergraph to a
graph (actually, a multigraph) G for which GreedyM AX has no better per-
formance ratio. We then show that the bound actually holds for (multi)graphs.

Lemma 3.11 Given a hypergraph H with a minimum cover S*, there exists

10



a shrinkage G' of H on which S* is still a cover and where GreedyM AX
constructs the same cover for G as for H.

Proof: The proof is by induction on s, the number of iterations of GreedyM AX .
For the base case, s = 0, the claim clearly holds for the unchanged empty
graph.

Suppose now that the claim holds for all hypergraphs for which GreedyM AX
selects s — 1 > 0 vertices. Let u; be the first vertex chosen by GreedyM AX,
E(uy) be the set of incident edges, and H; be the remaining hypergraph after
deleting u; with all incident edges. Based on FE(u), we form a set E'(u;)
of ordinary edges as follows. If u; is contained in both S and S*, then for
each edge e in E(u;) we pick an arbitrary vertex v from e and add (u,v) to
E'(uy). If uy is only in S and not in S*, then for each edge e in E(u;) we
pick an arbitrary vertex u from e that is contained in S* and add (uy,u) to
E’(uy); such a vertex u must exist, since e is covered by S*. This completes
the construction of E’(uy).

By the inductive hypothesis, there is a shrinkage GG; of H; with a greedy cover
of S\ {u1} and G is still covered by S*. We now form the multigraph G on
the same vertex set as H with the edge set E'(u;) U E(G1), and claim that it
satisfies the statement of the lemma. Since (G; is covered by S* and all edges
of E’'(uy) are also covered by vertices of S*, S* covers all edges of G. The edge
shrinkage only decreases the degrees of vertices, but does not affect the degree
of uy. Therefore, u; remains the first vertex chosen by GreedyM AX and, by
induction, the vertices chosen from (G; are the same as those chosen from H;.
Hence, GreedyM AX outputs the same solution on GG as on H, completing the
lemma. O

From Lemma 3.11 it follows immediately that the performance ratio of Greedy M AX
on hypergraphs is no worse than on graphs. Sakai, Togasaki, and Yamazaki
[23] obtained a lower bound on the size of weighted independent set I pro-
duced by a weighted generalization of GreedyM AX on graphs. In unweighted
case this bound reduces to a Caro-Wei improvement of the Turan bound on
graphs || > %:v W. For completeness we give below the proof from [23]

adapted for unweighted multigraphs.

Lemma 3.12 Given a (multi)graph G = (V, E), GreedyM AX finds an inde-
1

endent set of size at least .
p f v%:v d(v)+1
Proof: Let s be the number of iterations of GreedyM AX on G. For 0 <17 < s,
let G; be the remaining (multi)graph after i iterations. We denote by dg, (v)
and Ng,(v) the degree and the neighborhood of a vertex v € V(G;). Note,
that since G; is a multigraph, N, (v) is a multiset and dg, (v) = |Ng, (v)|. For

11



a vertex u € Ng,(v) let eg, (v, u) be the number of multiple edges (v, u) in G;.

Let f(G;) = e\;(:c-) Wiﬁ)“ be a potential function on a graph G;. We show

that f(Giy1) > f(G;) for 0 < i < s. Consequently, f(Gs) > f(Gp), where
Gy is the original graph G and G is a collection of isolated vertices. Then,
GreedyM AX outputs a weak independent set of size at least:

1] = f(Gs) = f(G) = (2)

Let v; be the vertex chosen by GreedyM AX on the iteration 7. Then,

1
f(Giy1) =
u€V(Git1) dc... (u) +1
1 1 1
= 2 - + > (
wevion de. (W) + 1 de, () +1 | yioive ) \doun (1) +1
1
=f(Gi) - ————+Y,
JG) = G+
where

1 1
y= Y ( _ )
u€V (Gi)NNg, (vi) dGi+1(u) +1  dg(u)+1

.S 1

1 1
— 4
weNg () eq, (v, u) <dGi(u) —eqg,(v,u)+1  dg,(u)+ 1) (4)

1
> |Ng, (vs i
= | Ne, (vi)] uer]\lflclil%vi) (da; (u) = eq; (v, u) + 1) (dg, (u) +1)

1
> |Ng, (v; i
2 |Ne, (vi)l ueIJ\Iflcll-I%vi) dg,(u) (dg,(u) +1)

[N, (v3)]
“dg,(v) (dg, (vi) + 1) (5)
L 5
B dg,(v;) +1 (

and (4) follows from dg,,, (u) = dg,(u) — eg, (v, u), which is minimized when
e, (v,u) = 1; (5) holds by the greedy rule dg,(v;) > rré%xdgi(u). It follows

from (3) and (6) that f(G;+1) > f(G;) completing the proof. O

Lemma 3.13 The performance ratio of GreedyM AX on (multi)graphs is at
most %.

12



Proof: We show that GreedyM AX attains its worst performance ratio on
regular graphs. First we refine d as follows: let k& € [0, 1] be the value so that
kn vertices are of degree A and the remaining (1 — k)n vertices have average
degree d < A — 1. Then,

d=kA+(1—k)d . (7)

Since each vertex can cover at most A of the m edges of the graph, any optimal
cover S* is of size at least

m dn N (kA + (1 - k)d')
1571 = A 2A 2A ®)

We also rewrite (2) using (7) as

1 kn 1
|| > > + _— . 9)
Y CESEb RN A O
Since f(d) = d%rl is a convex function, we can apply Jensen’s inequality? to
(9):
k 1—k
12 g LR (10)

A+1 d+1

Note, that the same result follows from the harmonic-arithmetic mean inequal-
ity applied to (9). Combining (1), (8) and (10) we obtain an upper bound on
the performance ratio of GreedyM AX:

N n — |S¥| n—\S*\<2A—kA—(1—k)d/
£ = max = max <
vit n—|S| il 20 (55 + 425
A+ 1)(d +1) A—d —1
- oA Y AT oea—dy ) (11)

where (11) is maximized when k = 1, yielding a bound of 2. O

Theorem 3.14 The performance ratio of GreedyM AX on hypergraphs is
A+l
o

Proof:

2 Jensen’s inequality for a convex function f: Y1 | f(x;) > nf (% S )
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The upper bound is straightforward from Lemmas 3.11 and 3.13, because G
and H have the same number of edges and the same maximum degree. The
edge reduction in F(H) might create multiple edges in F(G), but they don’t
affect the performance ratio of GreedyMAX.

For the lower bound, consider the graph Gaiias1, formed by a complete
bipartite graph missing a single perfect matching. GreedyM AX may remove
vertices alternately from each side, until two vertices remains as a maximal
weak independent set. The optimal solution consists of one of the bipartitions,
of size A+1. By taking independent copies, this can be extended for arbitrarily
large instances. O

Theorem 3.15 The performance ratio of GreedyM AX in r-uniform hyper-
graphs is at most (%1) H (1+ = 1)) ©) (Ar 1)

Proof: We assume that » > 3 because 2-uniform hypergraphs are ordinary
graphs and the analysis of the greedy algorithm on graphs is given in Lemma
3.13.

Caro and Tuza [7] showed that GreedyM AX always finds an independent set
I of size at least:

n= ST (1 =ty) = ST - s 2o}

veV i=1 veV i=1 i ( U) —+ _)d(v)

. d! d+ -1 .
where 24 = x(x—1) ... (r—y+1). The function f(d) = m = ( i ) is

convex, because its first derivative is monotonically increasing on the interval
[1, A]. Therefore, we can apply Jensen’s inequality to (12):

L
u|zn<d+f—1> |
d

Any maximum independent set in a r-uniform hypergraph on n vertices con-
tains n — |S| vertices, where S is a minimum hitting set. Since there are at
most dn/r edges in a r-uniform hypergraph and each vertex from S covers at
most A edges, there are at least ~ vertices in . Then, the performance ratio
of GreedyM AX is at most

— dn d+ 2= 1N\ (A + L
p= 7; ST = <1 rdA> < +d ) = (1 B ;) ( +Ar1>
(")

1 —
—1) is maximized when d = A. O

because f (07)

I
—~
—_
|
Bl
N—
/N

IS
+
[SWE
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Theorem 3.16 The performance ratio of GreedyM AX in r-uniform hyper-
raphs is at least (== 1+ — O (A1
grap (= )an( o) =9 (

5

Proof: Let n be a multiple of H( (r — 1) + 1) and for any i € [1,A] let
j=

A
v = iy 1 j(’T(:)lJ)rl. We define a chain of regular r-uniform hypergraphs
j=i

HY c H® . c HAY ¢ H®) where our hypergraph H(V, E) = H®),

The first hypergraph H®W is defined on rx; vertices and consists of z; dis-
joint edges, 1e V = {olV . o) '} and BV = {e] M eelV} Where e(l) =
{v%llh“ = } for any j € [1 r1]. Let T = B and Ul = {vM® o) T

It is easy to see that H() is a 1-regular r-uniform hypergraph.

For i € [2,A], let y; = iz;. The hypergraph H® consists of H~Y an ad-
ditional set of vertices U® = {ugi), o ,ugg?} and an additional set of edges
TO = {0 , 140}, connecting U® to HO=Y ie VO = V=D yU® and
EW = B-D yT®, The first y;,_; edges in T are the copies of the edges
in 701 with the last VerteX 1n each copy replaced by a vertex from U®

ie t() = t(l 2 \{ (i=by U{ D/ﬂ} for each j € [1,y;_1]. Let the replaced

vertices form the set W@ = {ul=D {Y Lol The last y; — yi
edges in T® are formed by the vertices in U (l and W® t(l = u(h)/ﬂ U
{w]('l)’wj('ll(yi*yi—l)’ T 7w]('2(7”*2)(yi*yi71)}7 for each j € [yi*1 + 173/@]- The hy-

pergraph H® is i-regular by induction: each Vertex in U® is a root of a
hyperstar with i edges, while every Vertex in HO\U® has i — 1 incident edges
in £0~Y and one incident edge in 7. Then, the hypergraph H(V, E) = H®)
is A-regular and r-uniform.

A
Now we show that GreedyM AX finds a cover S of size Y. x; in H, while an

optimal cover S* in H is of size | E|/A. Thus, the ratio between the sizes of the
optimal independent set [* = V\S* and the greedy independent set I = V'\ S
is the one defined in (12). Since the hypergraph H = H®) is A-regular,
GreedyM AX might start by selecting all vertices in U®) and deleting all
edges in T®). The remaining hypergraph is H*~1 and GreedyM AX might
continue by selecting all vertices in U*~Y and deleting 7*~. Inductively,
GreedyM AX might select all vertices in U™ U...UUW as a minimal cover

S of size Z iz; and output the remaining (r — 1)z; vertices as a maximal

1ndependent set 1.

Let z; = 7 and z; = x;—2;_1 /i for any i € [2, A]. An optimal cover S* includes
all vertices from U and the last z; vertices from each U for i € [2, A] (note,

15



that by definition x; is multiple of any 7 € [+ 1, A], then z; is also a multiple
of any j € [i + 1,A]). The vertices in U cover all edges in T, and the
first 71 edges in every T for i € [2, A]. By induction, the last z; vertices
in U® cover the remaining edges in 7 and z edges in every TU), where
J € [i + 1, A]. Consequently, all edges in H are covered by the vertices from
S*. Since H is A-regular and no two vertices from S* appear in the same
edge (by construction of H), S* is an optimal cover of size |E|/A. Then, an
optimal independent set is of size [I*| = n — |E|/A = n(r — 1)/r, because
|E| = nA/r in A-regular r-uniform hypergraphs. Finally, the ratio in (12) can
be simplified to .7~ = nr=l) L which is exactly |I*]/|I]. O

r (r—1)zi’

3.4 Partitioning

The idea of the partitioning approach is to split a given hypergraph into k
induced subhypergraphs so that MIS can be solved optimally on each subhy-
pergraph in polynomial time. This is based on the strategy of [13] for ordinary
graphs. Note, that the largest of the solutions on the subhypergraphs is a k-
approximation of MIS, since the size of any optimal solution is at most the
sum of the sizes of the largest weak independent sets on each subhypergraph.

We extend a partitioning lemma of Lovész [21] to the hypergraph case.

Lemma 3.17 The vertices of a given hypergraph can be partitioned into [(A+
1)/3] sets, each inducing a subhypergraph of mazimum degree at most two.

Proof: Start with an arbitrary vertex partitioning into [(A+1)/3] sets. While
a set contains a vertex v with degree more than two, move v to another set
that properly contains at most two edges incident on v. Such a set exists,
because otherwise the total number of edges incident on v would be at least
3[(A+1)/3] > A+ 1. Any such move increases the number of edges between
different sets, and so the process terminates with a partition where every
vertex has at most two incident edges in its set. O

The method can be implemented in time O(> .5 |e|) by using an initial greedy
assignment as argued in [13].

Lemma 3.18 Weighted MIS in hypergraphs of maximum degree two can be
solved optimally in polynomial time.

Proof: Given a hypergraph H(V, E') we consider the dual hypergraph H'(E, V),
whose vertices eq, ..., e,, correspond to the edges of H and the edges v1,...,v,
correspond to the vertices of H, i.e. v; = {e; : v; € e; in H}. The maximum

16



edge size in H' equals to the maximum degree of H, thus H' is a graph, pos-
sibly with loops. A vertex cover in H is an edge cover in H' (where an edge
cover in H' is defined as a subset of edges that touches every vertex in H’),
and a minimum weighted edge cover in graphs can be found in polynomial
time via maximum weighted matching [9]. All edges not in a minimum cover
in H' correspond to the vertices in H that form a maximum weak independent
set in H. 0O

The following result is straightforward from Lemmas 3.17 and 3.18.

Theorem 3.19 Weighted MIS can be approzimated within [(A + 1)/3] in
polynomial time.

3.5  The GreedyMIN Algorithm

The GreedyMIN algorithm iteratively adds a vertex of minimum degree into
the weak independent set and deletes it from the hypergraph. If the vertex
deletion results in loops (edges containing only one vertex), then the algorithm
also deletes the vertices with loops along with all edges incident on such ver-
tices. The algorithm terminates when the vertex set is empty. In Figure 3.5 is
the formal description of the algorithm.

ALGORITHM GreedyMIN (H)
I =10
While the vertex set is not empty
Add a vertex v of minimum degree to [
Delete v from H
Delete all vertices with loops along with all edges incident on them from
Output [

Fig. 4. The algorithm GreedyMIN
Theorem 3.20 The performance ratio of GreedyMIN is at most A — 1.

Proof: Let [ and I* be the greedy and the optimal solutions. We split the
sequence of iterations of the algorithm into epochs, where a new epoch starts
when the algorithm selects a vertex of degree A. Clearly, if the algorithm
always selects a vertex of degree less than A, the whole sequence of iterations
is just one epoch. Let I; and I} be the set of vertices from the greedy and the
optimal solutions, respectively, deleted during epoch t. Then, |I| = Zt: |I;| and

|I*| = > |I}|. We show that |I}|/|I;] < A —1 for every epoch t.
t

Consider an iteration 7 in epoch t. The algorithm selects a vertex v;, whose set
of neighbors in 2-edges we denote by N(v;). The vertices of N(v;) are deleted

17
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in the iteration along with all incident edges. The maximum number of nodes
removed in the iteration 7 that can belong to I; is at most the degree of v;. If
i is the first iteration in ¢, then d(v;) = A; for any other iteration in the same
epoch d(v;) < A (by the definition of an epoch).

Suppose one of the deleted edges is incident on a vertex u outside of N(v;).
Then, in iteration 7 + 1, the vertex u will have degree at most A — 1, and
therefore, the degree of v;, is at most A — 1. Thus, the iteration 7 4+ 1 will be
in the same epoch as 7, and the maximum number of nodes removed in any
such iteration that can belong to I} is at most A — 1.

The last iteration of an epoch occurs when a vertex v; is chosen whose neigh-
borhood is contained in N(v;) U {v;}. This neighborhood then forms a hyper-
clique, because any vertex in N(v;) has at least the degree of v; and all its
neighbors are contained in N(v;) U {v;}. Notice that we may assume with-
out loss of generality that the hypergraph is simple, namely that no edge is a
proper subset of any other edge. Therefore, since the degree of v; is at most
A, any edge of the hyperclique contains at most A — 1 vertices, and the maxi-
mum number of nodes removed in this iteration that can belong to an optimal
solution [} is at most A — 2.

We see that in any epoch ¢ the maximum number of deleted vertices that
belong to I is at most A in the first iteration, at most A — 2 in the last
iteration and at most A — 1 in any intermediate iteration. Amortized, the
maximum number of deleted vertices that belong to [ in any iteration of
epoch t is at most A — 1, while exactly one deleted vertex belongs to I;.
Therefore, |I}|/|I;] < A —1 for every epoch t. O

Theorem 3.21 The performance ratio of GreedyMIN is at least A — 1 for
A=3 andatleastA—Z—i—ALHforanyAZZL.

Proof: We consider two cases: A = 3 and A > 4, and describe hard hyper-
graphs for both cases. Let an n-star refer to a star with n + 1 vertices.

Case I: A = 3. For any [ > 2 we construct a 3-regular hypergraph, composed of
[ 2-stars (see Fig. 5). For i € [1,1], each 2-star H; has a root ¢; and 2 endpoints
v; and u;, connected to the root by the edges (¢;,v;) and (t;,u;). The root t; of
each star H; is connected to the endpoints of the preceding star by one edge
(ti,ui—1,v;—1) (the root of the last star is connected to the endpoints of the
first star by an edge (¢;,u1,v1) ). The endpoints of all stars are connected into
one edge (U1, Us, ..., U, V1, Vo, ..., 0U]).

Since the hypergraph is regular, the algorithm might start by selecting the
root of the first star, adding it to the independent set and deleting it from the
hypergraph. After this deletion, the endpoints of the second star have loops,

18
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Fig. 5. Example of a hard 3-regular hypergraph for GreedyMIN, where the grey ver-
tices represent an optimal solution, the black vertices represent the greedy solution.

and so the algorithm deletes the endpoints of the second star with all incident
edges, reducing by one the degree of the endpoints of all other stars and the
root of the second star. The algorithm proceeds this way, choosing all the roots
of the stars for a solution of size [. On the other hand, an optimal solution is
of size [(A —1) — 1 and includes the endpoints of all but one stars. Therefore,
the performance ratiois p=A — 1 — %, approaching A — 1, when [ is large.

Case II: A > 4. We construct a A-regular hypergraph, composed of A blocks
and a vertex s. For i € [1,1], each block is a A-star H; with a root ¢; and A end-
points {v}, ..., v2} connected to the root by A edges {(t;,v}), (t;,v2), ..., (t;, v}
In each block the vertices {v},...,v27'} are connected to the vertex s by

a single edge (s,v},...,v°7"); the vertex v is connected to the vertices
{v},..., 027"} by A — 1 edges of cardinality A — 1 each (see Fig. 6).

) Y
» Y

Fig. 6. Example of a hard 4-regular hypergraph for GreedyMIN, where the grey
vertices represent an optimal solution, the black vertices represent the greedy solu-
tion.

The hypergraph is regular, and so the algorithm might start by selecting the
vertex s. The deletion of s doesn’t change the degree of the remaining vertices,
because s has no incident 2-edges and the algorithm doesn’t delete any edges.
This leaves disjoint regular A-stars, where the greedy algorithm chooses only
the roots of the stars for a solution of size A + 1. On the other hand, an
optimal solution is of size A(A — 1) and includes A — 1 endpoints from each

star. Therefore, the performance ratio is p = ﬁﬁ =A—-2+ A%Ll. O
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Theorem 3.22 [n r-uniform A-reqular hypergraphs GreedyMIN approaches
the performance ratio of 1 + %.

Proof: We assume that r > 3, because 2-uniform hypergraphs are ordinary
graphs and the analysis of the greedy algorithm on graphs can be found in
[14].

Given a hypergraph H(V, E), let I be a weak independent set in H. We de-
note by I,,4, and I,,;, the largest and the smallest maximal weak independent
sets in H. The performance ratio of any approximation algorithm for MIS is
bounded by the maximum ratio between I,,,, and I,,, taken over all hyper-
graphs:

|Imax‘
< .
P (13)

Any minimal cover S in H is of size at least

B _AV] _ V|

> = 14
sz =20 =0 (14

where in the last equality we use the fact that the number of edges in r-uniform
A-regular hypergraph is exactly |E| = %. It is also easy to prove that any
minimal cover is of size at most:

AlV]

<
‘S‘_A+r—1

(15)

For the reader’s convenience we cite here the proof of (15) from [2]. Since
S is a minimal cover, for any vertex v € S there is at least one edge in F
covered only by v. Consequently, each such edge includes r — 1 vertices from
V\S and the total degree of vertices in V'\S is at least |S|(r — 1). On the
other hand, the total degree of vertices in V\ S is at most A(|V| —[S]). From
|S](r — 1) < A(|V| = |S|) the inequality (15) follows immediately.

Any vertex in V' belongs either to a minimal cover or to a maximal weak
independent set, then |I| = |V| — |S|. Consequently, any maximal weak inde-
pendent set is of size at least:

AlV]

Linl > V| - ——— 16
ial 2 V] = 2 (16)
and at most
v
el < V1 - 1 an
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where the first inequality involves the upper bound on the size of a minimal
cover in H from (15), and the second inequality uses the lower bound from
(14).

Finally, combining together (13), (16) and (17) we obtain the upper bound on
the performance ratio of any approximation algorithm for MIS:

- Atr—1 A1
e . (18)

T r

1
r
A
A+r—1

<
P_l_

For the lower bound, we construct a A-regular r-uniform hypergraph H com-
posed of a hyperclique B on A + 1 vertices and a set A of r — 1 vertices. The
edges of the hyperclique are all possible A-combinations of A + 1 vertices.
Each vertex of the hyperclique except one is connected to the set A by one
edge.

Since the hypergraph is regular, the GreedyMIN algorithm might start by
selecting vertices in the set A. The deletion of the first r—2 vertices reduces the
size of the incident edges from r to 2 and doesn’t produce loops. The deletion
of the last vertex in A creates loops on all vertices in B, and the algorithm
deletes the set B and all incident edges. Thus, the greedy weak independent
set includes r — 1 vertices from A and one vertex from B, while an optimal
weak independent set includes A vertices from B and r — 2 vertices from A.
The approximation ratio is then =22, O

4 Strong Independent Set

There are two greedy algorithms for the MSIS problem in hypergraphs. Both
algorithms iteratively construct a maximal strong independent set by selecting
vertices either of minimum degree (the GreedyD algorithm) or with fewest
neighbors (the GreedyN algorithm).

Lemma 4.1 Any maximal strong independent set is a A-approzimation.

Proof: Each node in the optimal solution is dominated by a node in the max-
imal solution, i.e. either by itself or by its neighbor. However, each node in
the maximal solution can dominate at most A optimal vertices, as its neigh-
borhood is covered by at most A edges, each containing at most one optimal
vertex. O

Lemma 4.2 There exist A-reqular hypergraphs where the approximation ratio
of GreedyD is A.
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Proof: For any [ > 2 we construct the hypergraph H,(V, E), composed of
a vertex s and [ cliques on [ vertices each. The vertex s is connected to the
cliques by [ edges, so that the i-th edge includes the vertex s and the i-th
vertex from each clique.

Fig. 7. Example of a hard 4-regular hypergraph for GreedyD, where the grey vertices
represent an optimal solution, the black vertex represents the greedy solution.

Each vertex in the hypergraph has degree [, and so the hypergraph is regular
with A = [. The maximum strong independent set is of size [ and includes the
i-th vertex from the i-th clique. GreedyD is a non-deterministic algorithm: in
the worst case the vertex s is selected first and no more vertices can be added
to the solution. Thus, the performance ratio is A. O

Lemma 4.3 There exist A-reqular hypergraphs where the performance ratio
of GreedyN approaches A.

Proof: For any m > 2 and | > 2 we construct the hypergraph H,, ;(V, E),
composed of m subgraphs on 3l vertices each. For i € [1,m], each subgraph
H; consists of a set U; of [ vertices and a complete bipartite graph (W;,T;)
with |W;| = |T;| = [, without one matching. For each vertex in W; there is
an edge containing this vertex and the set U;. All subgraphs are connected by
one edge, containing all T" sets.

Fig. 8. Example of a hard 4-regular hypergraph for GreedyN, where the grey vertices
represent an optimal solution, the black vertices represent the greedy solution.
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Each vertex in the hypergraph has degree [, and so the hypergraph is regular
with A = [. We can easily verify that every vertex in U and W has the same
number of neighbors, namely 21 — 1, and every vertex in T has [(m + 1) — 2
neighbors. In each subgraph H; every vertex in Uj; is a neighbor of [ —1 vertices
in U; and [ vertices in W;; every vertex in W; is a neighbor of [ vertices in Uj;
and [ — 1 vertices in T;; every vertex in T; is a neighbor of [ — 1 vertices in
Wi, 1 — 1 vertices in T; and (m — 1)l vertices in T-sets from the other m — 1
subgraphs.

A maximum strong independent set is of size ml and includes all W sets.
GreedyN is a non-deterministic algorithm, and so it might start by selecting a
vertex from Uy, delete U; and W, from the subgraph and reduce the number
of neighbors of any vertex in 737 to I(m — 1). Since m > 2, the vertices in T}
have at least the same number of neighbors as the vertices in any of the U
and W sets of the remaining subgraphs. Thus, the algorithm might proceed
by selecting a vertex from U, and so on until all U and W sets are deleted.
From the remaining edge composed of all T" sets, the algorithm adds only one
vertex to the solution. Therefore, the greedy solution is of size m + 1 and the
performance ratio is approximately [ = A provided m is large. O

Theorem 4.4 In r-uniform hypergraphs the performance ratio of GreedyD
and GreedyN is at most A — %.

Proof: Let v; be the vertex chosen by the algorithm (GreedyD or GreedyN) on
the i-th iteration; d; and n; denote the degree and the number of neighbors
of v;, respectively. The greedy algorithm terminates when the vertex set is
empty, say after ¢ iterations:

t

i=1

Since the vertex v; has n; neighbors, its degree is at least:

(20)

ng

Any neighbor v; of v; has at least the degree -". The reason is simple: in
GreedyD the vertex v; has the smallest degree, and so the degree of v; is at
least the degree of v;; in GreedyN the vertex v; has at least the same number
of neighbors as v; and consequently, it is degree is d; > i—fl > -, Then, the

total sum of degrees of all vertices in the hypergraph equals to dn:
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:Tilini(ni—l—l (ztj n;+1)? ) (21)

() -

where in (21) we use Cauchy-Schwarz inequality ® . From (22) we can derive
the lower bound on the size of the greedy solution:

> n
“dr—-1)+1"
Let ¢ be the minimum degree in a given hypergraph. Since the number of
edges in r-uniform hypergraphs is dn/r and each edge includes at most one
vertex from a maximum strong independent set, the size of any maximum
strong independent set is at most:
- dn
a —_
or
Then, the performance ratio of the greedy algorithm (GreedyD or GreedyN) is
at most:

d
ne i{; < 6T(d(r— 1)+1).
Let k be such that d = kA + (1 — k)d. Then, it is easy to verify that f(k) =

W(Siik((kA + (1 —=Fk)d)(r — 1) + 1) is maximized when A =6 or k = 1, i.e.

in regular hypergraphs. 0O

p_

Theorem 4.5 In r-uniform hypergraphs the performance ratio of GreedyD
and GreedyN is at least A — 521

Proof: We describe the construction for the GreedyD algorithm; for GreedyN
it is similar. The hypergraph H is composed of r subgraphs on Ar — A + 1
vertices each. The first r—1 subgraphs H; are disjoint, each of them consists of
a vertex s, a set A of A independent vertices and a set B of A(r — 2) vertices.
The r-th subgraph is connected to the first » — 1 subgraphs and contains a
vertex s and a set C' of A(r — 1) vertices. In each subgraph the vertex s is
connected to all other vertices by A-edges: in the first » — 1 subgraphs each
such edge includes one vertex from A and r — 2 vertices from B, while in the
last subgraph each such edge includes r —1 C-vertices. In each of the first r—1
subgraphs there are also A —1 edges incident on each vertex in A: half of these
edges includes (r — 1) vertices from B, the other half of the edges includes

3 Cauchy-Schwarz inequality for one dimensional space: > & | x? > % >0y z;)?
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(r — 3) vertices from B and two vertices from C. We can specify the edges
such that all edges have the cardinality r and all vertices in the hypergraph
have the same degree A.

Fig. 9. Part of a hard 3-regular 4-uniform hypergraph for GreedyN, where one of the
first  — 1 subgraphs is connected to the last subgraph. The black vertices represent
the s-vertices, the grey vertices represent the set A and the white vertices represent
the sets B and C.

A maximum strong independent set is of size (r — 1)A + 1 and consists of all
A-sets and the vertex s from the last subgraph. The greedy algorithm might
start by selecting the vertex s from the first subgraph and deleting the sets A
and B in the first subgraph. This deletion reduces the size of one edge in the
last subgraph by r — 2 vertices, but doesn’t reduce the degree of any of the
remaining vertices. Thus, on the next iteration the greedy algorithm might
repeatedly select vertices s from each subgraphs, and form a maximal strong
independent set of size r. Therefore, the performance ratio is A — %. O

Remarks. We conjecture that it should be possible to prove that GreedyMIN
have the worst performance ratio in A-regular r-uniform hypergraphs, and
so the result of Theorem 3.22 applies to arbitrary r-uniform hypergraphs.
In any case, the performance ratio of GreedyMIN in A-regular r-uniform
hypergraphs is worse than the performance ratio GreedyM AX in r-uniform
hypergraphs.
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