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Abstract

A complete partition of a graph G is a partition of its vertex set in which any two distinct
classes are connected by an edge. Let cp(G) denote the maximum number of classes in a
complete partition of G. This measure was defined in 1969 by Gupta [G69], and is known to
be NP-hard to compute for several classes of graphs. We obtain essentially tight lower and
upper bounds on the approximability of this problem. We show that there is a randomized
polynomial-time algorithm that given a graph G with n vertices, produces a complete partition
of size Ω(cp(G)/

√
lg n). This algorithm can be derandomized.

We show that the upper bound is essentially tight: there is a constant C > 1, such that
if there is a randomized polynomial-time algorithm that for all large n, when given a graph
G with n vertices produces a complete partition into at least C · cp(G)/

√
lg n classes, then

NP ⊆ RTime(nO(lg lg n)). The problem of finding a complete partition of a graph is thus the
first natural problem whose approximation threshold has been determined to be of the form
Θ((lg n)c) for some constant c strictly between 0 and 1.

1 Introduction

A complete partition of a graph G = (V,E) is a partition of the vertex set V in which there is an
edge connecting every pair of distinct classes. That is, a partition V1, . . . , Vt of V is complete if, for
every i, j, i 6= j, there is an edge {vi, vj} such that vi ∈ Vi and vj ∈ Vj . In the complete partition
problem, we wish to find a complete partition of the largest possible size, that is, a complete
partition with the maximum number of classes. Let cp(G) denote the maximum size of a complete
partition of G. This function is related to several other graph-theoretic parameters, and in graph
theory, it goes by the name pseudoachromatic number. It is known that computing cp(G) exactly
is NP-hard. We survey these results and connections below.

1.1 Our contribution

We consider approximation algorithms for the complete partition problem and show matching upper
and lower bounds.
Theorem 1.1 (Upper bound) There is a randomized polynomial-time approximation algorithm
that given a graph G on n vertices produces a complete partition of size Ω(cp(G)/

√
lg n).
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The randomized algorithm promised in this theorem can be derandomized using the method of
conditional expectations to get a deterministic polynomial-time algorithm with the same perfor-
mance guarantee but slightly worse running time. For bounded-degree degree graphs, we present
an efficient randomized algorithm, which given a graph with m edges and maximum degree ∆,
constructs a complete partition of size 1

4

⌊√
m

log ∆

⌋
, provided ∆2 lg ∆ = o(m). This immediately

implies a O(
√

lg ∆)-factor approximation algorithm for the complete partition problem, whenever
∆2 lg ∆ ≤ m. This algorithm was suggested by the referee.

In deriving our randomized algorithm, we work with an easily computable graph parameter
closely related to cp(G). Let β(G) be the largest integer t such that there exists a subgraph H ⊆ G
(H is not necessarily a vertex induced subgraph of G) with maximum degree at most t and at least
t2/2 edges. This number can be computed in polynomial time using an algorithm of Edmonds
and Johnson [EJ70] for computing the largest degree-constrained subgraph of a graph. It follows
immediately from definition that β(G) + 1 is an upper bound on cp(G). Interestingly, we show a
lower bound on cp(G) in terms of β(G).
Theorem 1.2 There is a polynomial-time approximation algorithm that given a graph G produces
a complete partition of size Ω(β(G)/

√
lg β(G)).

Note that Theorem 1.1 follows immediately from this. By considering the random graph Gn,1/2,
we show that this lower bound on cp(G) in terms of β(G) is the best possible. Next, we show that
Theorem 1.1 is essentially the best we can hope for.
Theorem 1.3 There exists a constant C ≥ 1 such that if there exists a randomized polynomial-
time algorithm that with high probability computes a complete partition in an n-vertex graph G of
size more than Ccp(G)/

√
lg n, then NP ⊆ RTime(nO(lg lg n)).

This lower bound is obtained by adapting to our setting the arguments based on interactive proof
systems previously used for the domatic number and the achromatic number problems [FHKS00,
KS03].

1.2 Motivation and related work

The complete partition problem was introduced by Gupta [G69] and further studied by Bhave [B79],
Sampathkumar and Bhave [SB76], Bollobás, Reed and Thomason [BRT83], Kostochka [K82], Yeg-
nanarayanan [Y02], and Balasubramanian et al. [B03]. These deal with bounds on special classes of
graphs, random graphs and extremal problems; however, almost no general upper or lower bounds
have previously been given for constructing a complete partition.

The complete partition problem is related to many well-studied combinatorial problems on
graphs, in particular, to the achromatic number problem, where we are required to properly color
the vertices of the graph with the maximum number of colors, so that there is an edge between every
pair of color classes. See, [Edw97] for a detailed survey. In this work, given a graph G, we denote its
achromatic number by achr(G). The achromatic number problem is thus a variant of the complete
partition problem, where we additionally demand that the classes in the partition be independent
sets. The current bounds known on the approximation threshold for the achromatic number leave
a huge gap. It can be approximated to within a factor O(n · lg lg n/ lg n) in general graphs [KK00],
to within a factor of O(n1/3) in graphs of girth 5 [KK00] and to within a factor O(n4/5) in bipartite
graphs [KS03]. On the other hand, no approximation algorithm can approximate it to within a
factor lg1/4−ε n (for any ε > 0), unless NP ⊆ RTime(npoly log n) [KS03]; this inapproximability result
applies to bipartite graphs.
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Complete partitions lie under the surface of several graph theoretic measures. An immediate
upper bound on complete partitions follows from the fact that there must be an edge between each
pair of classes, or cp(G) ≤ q(|E(G)|), where q(m) ≈

√
2m is the largest value t such that

(
t
2

)
≤ m.

Partitions where this bound is tight are vertex colorings where each pair of colors appears on exactly
one edge; they are said to be complete and harmonious. Edwards and McDiarmid [EMc95] showed
that it is NP-hard to determine if a tree has a complete harmonious coloring, and Bodlaender
[Bod89] showed that it is also NP-hard for graphs that are simultaneously cographs and interval
graphs. This implies the NP-hardness for the complete partition problem on these graph classes.
Hedetniemi [Hed98] conjectured that the achromatic and pseudoachromatic number are always
equal for a tree, but this was disproved by Edwards [Edw00]. On the other hand, Cairnie and
Edwards [CE98] gave an algorithm for forests of bounded degree that finds a complete coloring
with at least q(m) − 1 colors, thus approximating cp(G) within additive term of 1. They [CE97]
also showed that the achromatic number, and thus also the pseudoachromatic number, of bounded-
degree graphs is (1− o(1))q(|E(G)|).

Other complete partitioning problems have been studied. Bollobás, Catlin and Erdős [BCE80]
define the contraction clique number ccl(G) as the maximum number of classes in a complete
partition where each class induces a connected subgraph of a graph G. Equivalently, ccl(G) is the
largest clique minor of G. This is also known as the Hadwiger number of a graph, in relation to
a much studied conjecture that ccl(G) ≥ χ(G). The conjecture is equivalent to the Four Color
Theorem for ccl(G) = 4 and was proven for ccl(G) = 5 by Robertson, Seymour and Thomas
[RST93], but is open for larger values. Clearly, ccl(G) ≤ cp(G) for any graph G. Tight results
are known for random graphs. Bollobás et al. [BCE80] showed that for almost all graphs G,
ccl(G) = n/(

√
lg n+ θ(1)) and McDiarmid [McD82] showed the same type of bound for achromatic

number. Both of these imply that for almost all graphs, cp(G) ≥ bn/(
√

lg n+ θ(1))c.

1.3 Our techniques

We now describe briefly how the parameter β(G) described above helps us find a good complete
partition. Recall, that the input graph G has large β(G). So, there is a subgraph with all degrees
bounded by t = β(G) and with t2

2 edges. The algorithm of Edmonds and Johnson [EJ70], helps
us find such a subgraph. Now, we want to pick t′ ≈ t/

√
lg t disjoint sets X1, X2, . . . , Xt′ , such

that Xi ∼ Xj . The natural idea would be to pick a random partition into t′ classes (of size n/t′

each) and hope that with constant probability, all of them would be connected. Unfortunately,
this does not work, for for instance, for the graph consisting one Kt and n − t isolated vertices.
Then, a fraction t exp(−

√
lg t) of the Xi’s will consist of only isolated vertices. Note, however, that

the remaining Xi’s will be completely connected, and they are a constant fraction of all Xi’s. In
general, however, the situation is complicated. We need to use a two step process, where we first
partition the vertex set into sets of size n/t, and then after identifying the good candidates among
them, merge approximately

√
lg t of them. We present the argument in detail in Section 2. In

the next subsection, we show how to derandomize our algorithm. We then prove that there exists
graphs G such that β(G) = Ω(cp(G)

√
lg n).

Our lower bound proof uses some of the ideas from earlier inapproximability papers on covering
problems, for example, Lund and Yannakakis [LY94], Feige [F98], Feige, Halldórsson, Kortsarz and
Srinivasan [FHKS00], but borrows most heavily from Kortsarz and Shende [KS03], who showed
that no randomized algorithm can approximate the achromatic number of a graph to a factor much
less that (lg n)1/4 unless NP ⊆ RTime(nO(poly(lg n))). Following their approach, we show how to
reduce an NP-complete language to a random instance of the complete partition problem. The
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distribution of the random instances is such that when the original input is in the language, then
with probability one the random graph has a large complete partition, but when the original input
is not in the language, with high probability the random graph has no large complete partition. Our
argument can be adapted to improve the original inapproximability result in [KS03]: we can now
show that no randomized algorithm can approximate the achromatic number within a factor much
less than

√
lg n, unless NP 6⊆ RTime(nO(lg lg n)). In Section 3, we present our inapproximability

result. It is essentially self-contained, assuming a version of the PCP theorem from [FHKS00] and
Raz’s parallel repetition theorem [Raz98]. In Section 3.4, we present the proof of the improved
inapproximability result for the achromatic number problem.

1.4 Extensions

We mention here two variants of the complete partition problem. A total complete partition has,
for each pair i and j of not necessarily distinct classes, an edge between class i and class j. This
can be viewed as a homomorphism to the complete graph with all self-loops. Also, this asks for
the largest improper coloring such that each pair of not necessarily distinct colors appear on some
edge. We can see that a complete partition can be turned into a total complete partition of half the
size, by merging pairs of classes together. Hence, approximations of cp(G) translate to this total
complete partition number within a constant factor.

A directed version of the complete partition problem is to partition the vertices of a directed
graph so that edges go in both directions between any two classes. It can be seen that our algorithms
apply also to this directed version, with no decrease in performance. The directed version of
the total complete partition problem has a particularly interesting description in terms of matrix
partitioning: Partition the indices of a square matrix, simultaneously for the rows and columns, so
that any block contains a non-zero element.

2 Approximation algorithm for complete partition

In this section, we present an O(
√

lg n)-factor approximation algorithm for obtaining a complete
partition of a graph. Notation: when we say that X ∼ Y for X,Y ⊆ V (G), we mean that there is
an edge in G connecting some vertex of X and some vertex of Y .

2.1 Dense degree-bounded subgraphs and t-expanding sets

Let us consider first the case of regular graphs, in order to develop some intuition. Observe that√
m/2 is an upper bound on cp(G), since there need to be at least

(cp(G)
2

)
edges to separate all the

classes. It gives good results to simply partition the vertex set at random. Suppose we partition
the set into

√
m/2 classes. The expected number of edges separating a given pair of classes is then

around 1. Merging these classes together so that each new set contains around
√

3 log n classes,
means that the expected number of edges between any pair of sets becomes approximately 3 log n.
This can be turned into a high probability statement, so that we can conclude using the union
bound that the partition is almost always good. For technical reasons, it may require special
treatment for regular graphs of high degree, but in all cases a random partition suffices.

For non-regular graphs, additional ideas are needed. To begin with, the bound cp(G) ≤
√
m/2 is

not useful in general; a case in point being the star graph K1,`, that contains ` edges but cp(G) = 2.
Instead, we need a new, polynomially computable upper bound measure, which we introduce in
the following paragraph. Also, disparate degrees can wreak havoc with a naive partition. Instead,
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we develop another measure, that induced a large bipartite subgraph, and show how to partition
it. The actual partitioning is done in two rounds, one for each sides of the bipartite subgraph.
Definition 2.1 For a graph G, let β(G) be the largest integer t such that there exists a subgraph
H of maximum degree at most t and with at least t2

2 edges. That is, H satisfies ∀v ∈ V (H),
degH(v) ≤ t and |E(H)| ≥ t2

2 .
An algorithm of Edmonds and Johnson [EJ70] for computing the largest degree-constrained sub-
graph of G can be used to determine β(G) efficiently. The most efficient algorithm known for this
problem, due to Gabow [G83], runs in time O(m

3
2 ), where m = |E(G)|. Clearly, we need at most

n calls to this algorithm to find β(G), where n = |V (G)|. Now, consider a complete partition
S1, S2, . . . , St of G. For each pair {Si, Sj}, (i 6= j), retain exactly one edge connecting them, and
delete all other edges from G. Clearly, the resulting graph has maximum degree at most t− 1 and
at least

(
t
2

)
edges. Thus, β(G) ≥ t− 1.

Proposition 2.2 cp(G) ≤ β(G) + 1.

In the next subsection, we will show that cp(G) = Ω
(
β(G)/

√
lg β(G)

)
. For this, we need to relate

β(G) to another parameter of G.
Definition 2.3 (Multi-expansion) Let G be a graph and let C be a collection of disjoint subsets
of V (G). We say that C is t-expanding if (i) |C| = t, and (ii) ∀ S ∈ C, |N(S) \

⋃
T∈C T | ≥ t. The

multi-expansion number of G, denoted by me(G), is the largest t such that there is a t-expanding
collection of subsets of V (G).

Our approach: We wish devise an algorithm that given a graph with large β(G), produces a
large complete partition. Instead of working directly with β(G) it will be convenient for us to work
with me(G). That is, we first show (Lemma 2.4) that if β(G) is large, then me(G) is large; next,
we show that if me(G) is large, then cp(G) is large (Theorem 2.5).
Lemma 2.4 me(G) ≥ β(G)

20
Proof: Let b = β(G). Then, by the definition of β(G), there is a subgraph H of G such that
(a) ∀v ∈ V (H) degH(v) ≤ b, and (b) |E(H)| ≥ b2/2. We can obtain a bipartite subgraph
H0 = (U0, V0, E0) of H with at least b2/4 edges. We will show that there are at least k ≥ b/20
disjoint subsets S1, S2, . . . , Sk of U0 such that for i = 1, 2, . . . , k, |NH0(Si)| ≥ b/20. Note that since
N(Si) ⊆ V0, we automatically have NH0(Si) ∩

⋃
j Sj = ∅.

We construct the sets S1, S2, . . . , Sk sequentially. Suppose S1, S2, . . . , Si have been constructed.
To construct Si+1, we consider the induced bipartite subgraph Hi = (Ui, Vi, Ei) of of H0, where
Ui = U0 \ (S1 ∪ S2 ∪ · · · ∪ Si) and Vi = V0. Now, starting from Si+1 = ∅, repeatedly add vertices
from Ui to Si+1 until |N(Si+1)| ≥ b/20. At each step, a new vertex v is chosen such that, at that
point, at least half of its neighbors are outside N(Si+1); that is, |N(v)−N(Si+1)| > 1

2 degHi
(v). If

no such vertex is available, we stop, set k = i, and return the sets S1, S2, . . . , Sk.
It only remains to show that k ≥ b/20. We now examine the vertices in the graph H0. When

the process terminated, the set Sk+1 was left incomplete. Let F ′ denote the set of of edges of H0

incident on S1∪S2∪· · ·∪Sk∪N(Sk+1) at this point. We claim that |F ′| ≥ 1
2 |E0|. For otherwise, the

set F ′′ = E0 \ F ′ has size more than 1
2 |E0|. This implies that there is a vertex in U0 that has more

edges incident on it from F ′′ than it has from F ′. Such a vertex qualifies to be added to Sk+1. But
since the process terminated, there was no such vertex. We conclude that |F ′| ≥ 1

2 |E0| ≥ b2

8 . We
can also obtain an upper bound for |F ′| by bounding the number of edges incident on S1, S2, . . . , Sk

and N(Sk+1) separately.
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First consider E(Si), the set of edges incident on Si. By our rule for choosing the new vertex,
each time a vertex is added, the number of edges added to E(Si) is at most twice the number of
new neighbors added. So, at all times, we have |E(Si)| ≤ 2|N(Si)|. At the moment just before
the last vertex was added to Si, we have |N(Si)| < b/20, so that |E(Si)| < 2(b/20) at that point.
Now, the last vertex has degree at most b. Thus, when the construction of Si is complete (and we
are ready to move on to Si+1) |E(Si)| < b + 2(b/20) ≤ (11/10)b. Thus, the total number of edges
incident on S1, S2, . . . , Sk is at most k× (11/10)b. Furthermore, since Sk+1 could not be completed,
|N(Sk+1)| ≤ b/20, and since all degrees are at most b, the number of edges incident on N(Sk+1)
can be at most b× (b/20).

Combining the upper and lower bounds for |F ′|, we obtain

k × (11/10)b+ b× (b/20) ≥ |F ′| ≥ b2/8.

Thus, k ≥ (3/44)b ≥ (1/20)b.

2.2 The randomized approximation algorithm

In this section, we present a randomized polynomial-time algorithm that, given a graph G, produces
a complete partition of G whose size is, with high probability, within a factor O(

√
lg cp(G)) of the

optimum. This follows immediately from the following theorem.
Theorem 2.5 There is a polynomial-time algorithm that takes as input a graph G on n (assumed
to be large) vertices and a t-expanding family of sets {S1, S2, . . . , St} in G (with t ≥ 10), and with
probability at least 1

4 , delivers a complete partition of G of size at least t/(4
√

lg t).

Example: Suppose G = Kn,n is the complete bipartite graph with each partition of size n. Color
G with two colors, and let {Ai : i = 1, 2, . . . , n} be the collection of singleton sets in the first color
class and let {Bj : j = 1, 2, . . . , n} be the collection of singleton sets in the second color class. Note
that {Ai : i = 1, 2, . . . , n} is an n-expanding family in G. Furthermore every Ai has an edge to
every Bj . So, we immediately obtain the complete partition {Ai ∪Bi : i = 1, 2, . . . , n}.

In our algorithm we will try get into a situation similar to the above example, using the as-
sumption that me(G) is large. Instead of the singleton sets Ai in the above example, we will have
have sets Ŝi, which will be obtained by randomly merging some of the sets in the given t-expanding
family {S1, S2, . . . , St}; instead of the singleton sets Bj , we will have sets T̂j obtained by randomly
choosing vertices that belong to no Si. The final complete partition will be {Ŝi∪T̂i : i = 1, 2, . . . , n}.

We now describe the algorithm formally. Let S =
⋃t

i=1 Si, where {S1, S2, . . . , St} is the t-
expanding family given to us. We know that for all i, |N(Si) \ S| ≥ t. Our algorithm has two
steps.

Step I: We obtain disjoint sets T̂1, T̂2, . . . , T̂ˆ̀⊆ V \ S, where ˆ̀= Ω(t/
√

lg t). Each T̂j will have a
neighbor in at least (1− ε)t of the Si’s. We will ensure that ε = exp(−Ω(

√
lg t)).

Step II: We randomly merge groups of O(
√

lg t) Si’s into one, and get Ŝ1, Ŝ2, . . . , Ŝˆ̀. This will
ensure that with high probability Ŝi ∼ T̂j for i, j = 1, 2, . . . , ˆ̀.

The final solution will be obtained by merging Ŝi with T̂i (for i = 1, 2, . . . , ˆ̀) and putting any
remaining vertices into these sets. We will need two lemmas (one for each step) to show that the
algorithm outlined above succeeds with constant probability.

Let ` = t
2
√

lg t
, and let T1, T2, . . . , T` be a random partition of V \ S into equal parts (we ignore

divisibility issues). We say that Ti is well-connected if Ti ∼ Sj for at least (1− 4 exp(−2
√

lg t))t of
the sets Sj . Let ˜̀ be the random variable denoting the number of well-connected Ti’s.
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Lemma 2.6 Pr[˜̀≤ `
2 ] ≤ 1

2 .
Proof: For i = 1, 2, . . . , ` and j = 1, 2, . . . , t, let χij be the indicator variable for the event Ti ∼ Sj .
We will use the following fact: if A is a subset of [N ] = {1, 2, . . . , N} of size a and B is a random
subset of [N ] size b (each of the

(
N
b

)
sets being equally likely), then

Pr[A ∩B = ∅] =
(N − a)(N − a− 1) · · · (N − a− b+ 1)

N(N − 1) · · · (N − b+ 1)
≤
(
1− a

N

)b
≤ exp(−ab

N
).

Since Sj has at least t neighbors outside S and Ti is a random subset of V \ S of size |V \ S|/` =
|V \ S| · 2

√
lg t/t, we have

Pr[χij = 0] ≤
(

1− t

|V \ S|

) |V \S|·2
√

lg t
t

≤ exp
(
−2
√

lg t
)
.

In particular, the expected number of pairs (Ti, Sj) such that Ti 6∼ Sj is at most exp(−2
√

lg t)`t.
Let p = Pr[˜̀ ≤ `

2 ]. Now, whenever Ti is not well-connected, Ti ∼ Sj holds for at most
(1 − 4 exp(−2

√
lg t))t of the sets Sj , that is, Ti 6∼ Sj for at least 4 exp(−2

√
lg t)t values of j. It

follows from the definition of p, that the expected number of pairs (Ti, Sj) such that Ti 6∼ Sj is at
least p · `

2 · 4 exp(−2
√

lg t)t. Thus, we have

2p exp
(
−2
√

lg t
)
`t ≤ exp

(
−2
√

lg t
)
`t;

that is p ≤ 1
2 .

Assume we have succeeded in Step I, and there are at least ˆ̀= `
2 = t

4
√

lg t
well-connected sets

among the Ti’s; of these, we retain exactly ˆ̀ and refer to them as T̂1, T̂2, . . . , T̂ˆ̀.
We are now ready to implement Step II. Randomly partition the Si’s into ˆ̀ blocks each with

t/ˆ̀ sets, and merge the sets in each block to obtain Ŝ1, Ŝ2, . . . , Ŝˆ̀.
Lemma 2.7 With probability at least 1

2 , T̂i ∼ Ŝj for all i, j = 1, . . . , ˆ̀.
Proof: Each T̂i has a neighbor in at least (1− 4 exp(−2

√
lg t))t of the Sj . So,

Pr[T̂i 6∼ Ŝj ] ≤
(
4 exp(−2

√
lg t)

)t/ˆ̀

≤
(
exp(−2

√
lg t+ 2)

)t/ˆ̀

.

Now, t
ˆ̀ = 4

√
lg t. So, Pr[T̂i 6∼ Ŝj ] ≤ exp(−8 lg t+ 8

√
lg t) ≤ 1

t2
. The lemma follows from the union

bound because the number of (i, j) pairs, ˆ̀2 � t2.

Proof of Theorem 2.5 : By Lemmas 2.6 and 2.7, with probability at least 1
2 ×

1
2 = 1

4 , we obtain
sets Ŝ1, Ŝ2, . . . , Ŝˆ̀ and T̂1, T̂2, . . . , T̂ˆ̀, such that Ŝi ∼ T̂j . For i = 1, 2, . . . , ˆ̀, let V̂i = Ŝi∪ T̂i. Clearly,
V̂1, V̂2, . . . , V̂ˆ̀ is a complete partition of G.

Proof of Theorem 1.2: Note that one can, in polynomial-time, compute β(G) and obtain the
required dense degree-bounded subgraph. Given such a subgraph, by Lemma 2.4, we can, in
polynomial-time, obtain a multi-expander of size β(G)/20. Finally, using Theorem 2.5 we obtain a
complete partition of size Ω(β(G)/

√
lg β(G)).
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2.3 Derandomization

Both steps in the randomized algorithm can be derandomized using the method of conditional
expectation. We present the details only for Step I; for Step II, which is similar, we just sketch the
main ideas. In Step I, we randomly partition the set V \ S into ` equal parts and argue that with
high probability many of the sets in the partition will be well-connected. We now show how we
can produce many well-connected sets deterministically.

Let T1, T2, . . . , T` be a random partition of V \ S into sets of (almost) equal sizes. Recall that
the indicator random variable χij (used in the proof of Lemma 2.6) takes the value 1 if and only if
there is an edge between Ti and Sj . Let χ =

∑
ij χij . We have argued that

E[χ] ≥
(
1− exp(−2

√
lg t)

)
`t.

We now wish to instantiate the sets Ti in such a way that the value of χ is at least its expected
value. Once this is done, we immediately see that at least 3

4` of all Tj ’s will be well-connected.
This instantiation will be done incrementally. At each stage, we will pick a new vertex in V \ S
and decide which Ti it must go into.

We will use P1, P2, . . . , P` to describe the choices made so far, where Pi consists of those vertices
of V \S that will belong to Ti in our instantiation. Initially, we set P1, P2, . . . , P` = ∅, and add the
vertices of V \S one after another to these sets ensuring that |Pi| ≤ |V \S|/`. Let “P ⊆ T” denote
the event “Pi ⊆ Ti for i = 1, 2, . . . , `.” Then, initially,

E[χ | P ⊆ T ] = E[χ].

We will ensure that at all times,
E[χ | P ⊆ T ] ≥ E[χ].

Suppose we need to insert v ∈ V \ S into one of the Pi’s (after having made the choice for the
previous vertices). We try each choice of Pi (provided it is not already of the required size), insert v
into Pi, compute the conditional expectation E[χ | P ⊆ T ] in each case, and retain the choice that
gives the highest conditional expectation. It is straightforward to verify that this method works
correctly. We only need to describe how the conditional expectations are evaluated. By linearity of
expectation, it is enough to show how E[χij | P ⊆ T ] can be computed efficiently. Suppose, Sj and
Pi are connected by an edge then we have E[χij | P ⊆ T ] = 1. Otherwise, let p be the number of
vertices of V \ S, that are still not in any Pi, and q be the number of neighbors of Sj among these
p vertices. Then,

E[χij | P ⊆ T ] = 1−

( p−q
k−|Pi|

)( p
k−|Pi|

) ,
where k = |V \ S|/` (the desired size of the sets in the final partition).

The argument for Step II is similar. Suppose we have identified the well-connected sets T̂1,
T̂2, . . . , T̂ˆ̀. In the randomized algorithm, we randomly partition the family {Si : i = 1, 2, . . . , t}
into ˆ̀ equal parts and argue that with high probability each T̂j will have a neighbor in some Sj

of each block of the partition. In our deterministic algorithm, we start with ˆ̀ empty blocks and
add Sj ’s one after another to the blocks. Let ηij be the indicator random variable for the event
“some neighbor of T̂i is in some set in block j” (here i, j = 1, 2, . . . , ˆ̀) when the blocks are chosen
randomly and of equal size; let η =

∑
ij ηij . The calculation in Lemma 2.7 shows that E[η] > ˆ̀2−1.

As in the derandomization of Step I, we can build the blocks by adding one set Si at a time, and
ensure that in the end the conditional expectation of η is more than ˆ̀2 − 1. But at this point η is
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an integer with value at most ˆ̀2. So, its value must be ˆ̀2, implying that each T̂i has a neighbor in
some set of each block.

2.4 The gap between β(G) and cp(G)

In this section we will show that the relationship between β(G) and cp(G) is essentially optimal.
Theorem 2.8 For all large n, for almost all graphs G on n vertices β(G) = Ω(n) and cp(G) =
O( n√

lg n
).

Proof: Consider the random graph G on n vertices obtained by placing each edge independently
with probability 1

2 . Using Chernoff bounds, it is easy to verify that with probability 1 − o(1)
|E(G)| ≥ 1

2

(
n
2

)
− n lg n and, for all v ∈ V (G), we have deg(v) ≤ n−1

2 + 2
√
n lg n. For large n,

(n−1
2 + 2

√
n lg n)2/2 ≤ 1

2

(
n
2

)
− n lg n, implying that with probability at least 1 − o(1), β(G) ≥

n−1
2 + 2

√
n lg n.

We will show that with probability at least 1 − o(1), G has no complete partition of size
t = 2n√

lg n
+ 1. Thus, with probability 1 − o(1), the events ‘β(G) ≥ n

2 ’ and ‘cp(G) < t’ hold
simultaneously. Our theorem follows from this.

It remains to bound the probability that cp(G) ≥ t. Fix a partition S = (S1, S2, . . . , St) of
V (G); let si = |Si|.

Pr[S is a complete partition] =
∏

1≤i<j≤t

(1− 2−sisj )

≤
∏

1≤i<j≤t

exp(−2−sisj)

= exp(−
∑

1≤i<j≤t

2−sisj )

≤ exp(−
(
t

2

)
2−

∑
1≤i<j≤t sisj(t

2)
−1

)

(because Geometric Mean ≤ Arithmetic Mean)

≤ exp(−
(
t

2

)
2−

1
2
(
∑t

i si)
2(t

2)
−1

)

≤ exp(−
(
t

2

)
2−

1
2
n2(t

2)
−1

).

For our choice of t, the last expression is at most exp(−n1.5). Since there are at most nt possible
choices for S,

Pr[G has a complete partition of size t] ≤
∑
S

Pr[S is a complete partition of G]

≤ nt × exp(−n1.5).

2.5 Bounded degree graphs

The original version of this paper gave an O(
√

∆) factor approximation algorithm for graphs with
degree bounded by ∆. The following substantially stronger result is due to the referee.
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Theorem 2.9 Let G be a graph with m edges and maximum degree ∆ such that
√
m > 2000∆

√
log ∆.

Then, G has a complete partition with at least 1
4

⌊√
m

log ∆

⌋
parts. A randomized polynomial-time

algorithm can produce such a partition with high probability.

Since, cp(G) = O
(√

|E(G)|
)
, we have the following corollary.

Corollary 2.10 Let G be a graph with m edges and maximum degree ∆ such that m = ω(∆2 lg ∆).
Then, there is a randomized polynomial-time algorithm that produces a complete partition whose
size is smaller than the optimum by a factor at most O(

√
log ∆).

We are now ready to prove Theorem 2.9.
Proof: The overall plan is as follows. We will color the vertices of the graph randomly with
` = θ

(√
m

log ∆

)
colors, in the hope of finding at least `

4 color classes that are completely connected.

Unfortunately, our argument will only ensure that all but some m
4∆ of the pairs of color classes are

automatically connected. To take care of the missing connections, we will first set aside a matching
of about m

4∆ edges and color only the rest of the graph. These matching edges will then be used to
connect the pairs that remain unconnected after the random coloring.

To construct the matching M , greedily pick
⌈

m
4∆

⌉
non-adjacent edges from the graph G. Set

these edges aside for later use. Let G1 be the graph obtained from G by deleting all vertices
belonging to some edge in M . Each edge of M is adjacent to at most 2∆ − 2 other edges, so the
number of edges that are removed from G is at most( m

4∆
+ 1
)

(2∆− 1) ≤ m

2
+ 2∆− 1− m

2∆
− 1 ≤ m

2
.

Thus, G1 has at least m
2 edges. We are now ready to color the vertices of G1, but it will be

convenient to do this coloring in two phases. First, partition the vertex set into sets V1 and V2 such
that the induced bipartite subgraph H = (V1, V2, E) has at least m

4 edges. Let k = 2
√

lg ∆ and let

` =
⌊√

m
k

⌋
. Choose colors for the vertices of V1 from the set [`], uniformly and independently. To

identify the color classes that are likely to get connected easily when we color V2, we will examine
the neighborhoods of the color classes in V1. The probability that a vertex w ∈ V2 has a neighbor
(in V1) colored r ∈ [`] is exactly

1−
(

1− 1
`

)dw

≥ 1−
(

1− k√
m

)dw

≥ 1− exp
(
−kdw√

m

)
≥ kdw

2
√
m
.

Here dw is the degree of w in the graph H; for the last inequality we used our assumption that√
m ≥ 2000∆

√
lg ∆. For r ∈ [`], let Nr be the neighborhood of the color class r, that is, the set of

vertices in V2 that have a neighbor colored r. Thus,

E [|Nr|] ≥
∑
w∈V2

kdw

2
√
m

≥ k

2
√
m
× m

4
≥ k

√
m

8
. (1)

We wish to show that |Nr| is usually not much smaller than its expectation. For this, we bound
the variance of |Nr|. For v ∈ V1, let ψv be the indicator variable for the event “v is colored r.” In
particular, we have Pr[ψv = 1] = E[ψi] = 1

` . Then, it can be shown that

var [|Nr|] ≤
∑
v∈V1

d2
v E[ψv] ≤ 1

`

∑
v∈V1

d2
v ≤ ∆

`

∑
v∈V1

dv ≤ ∆m
`

≤ 1.1∆k
√
m. (2)
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From (1) and (2), using Chebyshev’s inequality, we can conclude that

Pr
[
|Nr| <

k
√
m

16

]
<

var[|Nr|
(|E[|Nr|]/2)2

<
1
2
.

(We used our assumption that
√
m ≥ 2000∆

√
lg ∆.) Thus, the expected number of r with |Nr| ≥

k
√

m
16 is more than `

2 , and by Markov’s inequality, with probability at least 1
3 , the number of such

color classes r is more than `
4 . Fix a set of `′ =

⌈
`
4

⌉
good color classes.

Now, color the vertices of V2 at random with good colors, chosen uniformly and independently.
Fix a pair of good colors (r1, r2). We want to estimate the probability that some edge of H connects
the color classes r1 and r2. The probability that no vertex in Nr1 receives the color r2 is at most

(
1− 1

`′

)|Nr1 |
≤
(

1− 1
`′

) k
√

m
16

≤ exp
(
−k

√
m

`′

)
≤ exp

(
−k

2

4

)
.

The expected number of pairs of good color classes that have no edge connecting them is at most

exp
(
−k

2

4

)(
`′

2

)
≤ m

8∆
,

and the probability that more than m
4∆ edges are missing is at most 1

2 . Finally, connect these pairs
using the edges of the matching M that were set aside in the beginning. This leads to a complete
partition with `

4 ≥
1
4

⌊√
m

lg ∆

⌋
parts.

3 Lower bound

The goal of this section is to prove the following.
Theorem 3.1 Let L ⊆ {0, 1}∗ be a language in NP. Then, there is a randomized transformation f
that transforms inputs in {0, 1}∗ to graphs, and a polynomial-time computable function α : {0, 1}∗ →
N such that for all x ∈ {0, 1}∗,

(a) If x ∈ L then cp(f(x)) ≥ α(x) with probability 1;

(b) If x 6∈ L, then with probability at least 3
4 , we have cp(f(x)) ≤ Cα(x)/

√
lg |V (f(x))|, where

C ≥ 1 is an absolute constant independent of L and x.

Furthermore, f(x) can be computed in time |x|O(lg lg |x|).
Corollary 3.2 There exists a constant C ≥ 1 such that if there exists a randomized polynomial-
time algorithm that with high probability computes a complete partition in a graph G of size more
than Ccp(G)√

lg |V (G)|
, then NP ⊆ RTime(nO(lg lg n)).

Plan: Our proof is inspired by the result of Feige, Halldórsson, Kortsarz and Srinivasan [FHKS00]
on the inapproximability of the domatic number of a graph. In that work, they show how one can
transform an input instance x of a language L ∈ NP into a bipartite graph G = (V1, V2, E) with
the following properties. If x ∈ L, then V1 can be partitioned into a large number of disjoint
dominating sets; however, if x 6∈ L, then every dominating set of G is large, so that no such large
partition can exist. Our construction will closely follow this idea. We will ensure that when x ∈ L,
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V1 can be partitioned into |V2| disjoint dominating sets. Now, a complete partition of size V2 can
easily be obtained from this by adding one vertex of V2 to each dominating set. We also need to
show that when x 6∈ L, the size of the largest complete partition is O(|V2|/

√
lg n), where n is the

number of vertices in G. The result in [FHKS00] can be used directly to ensure that when x 6∈ L,
then V1 cannot be partitioned into many disjoint dominating sets. But this does not immediately
imply that there is no complete partition of large size. To prove our result, we need to examine
the structure of the graph more closely. In fact, our graph G will be constructed randomly. To
show that in the case x 6∈ L all complete partitions have size O(|V2|/

√
lg n), we will show that the

probability of any fixed partition with a large number of classes being completely connected is very
small, and get our required conclusion by summing over all such potential complete partitions.

3.1 Background

Let In be the set of 5-regular, simple graphs with vertex set [n] = {1, 2, . . . , n}. Let I =
⋃

n≥1 In.
We say that a graph I ∈ I is ε-non-3-colorable if in every 3-coloring of the vertices of I at most (1−
ε)|E(I)| edges of I are properly colored. The following consequence of the PCP theorem [ALMSS]
appears in Feige et al. [FHKS00].
Theorem 3.3 There is an ε > 0 such that the following holds. Let L ⊆ {0, 1}∗ be a language in
NP. Then, there is a polynomial computable function f : {0, 1}∗ → I such that for all x ∈ {0, 1}∗

• if x ∈ L, then f(x) is 3-colorable;

• if x 6∈ L, then f(x) is ε-non-3-colorable.

Consider the following two-prover protocol. In this protocol, and later, we will refer to colorings
of the form χ : e→ {R,G,B}, where e is an edge of a graph. Here e is to be thought of as a set of
two vertices, say {v, w}. Then, the color assigned to v is χ(v) and the color assigned to w is χ(w).

Input: I ∈ I.

Verifier: Picks a v ∈ V (I) at random. Picks a random pair of edges (e, e′), both
incident on v. Sends e to the Prover I and e′ to Prover II.

Prover I: Sends a proper 3-coloring χ : e→ {R,G,B} to the verifier.

Prover II: Sends a proper 3-coloring χ′ : e′ → {R,G,B} to the verifier.

Verifier: Accepts iff χ(v) = χ′(v).

Proposition 3.4 If I is 3-colorable then there is a strategy for the provers that convinces the
verifier with probability 1. If I is ε-non-3-colorable, then for every strategy of the provers,

Pr[Verifier accepts] ≤ 1− ε

2
.

Theorem 3.5 (Raz’s parallel repetition theorem) If we perform ` parallel repetitions of a
one-round two-prover protocol with probability of acceptance ε, and accept if and only if all ` runs
lead to acceptance, then the probability of acceptance is at most 2−c` where c > 0 is a constant that
depends only on ε, and the length of the answers of the provers in the original proof system.
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Consider the following `-fold parallel repetition of the protocol above.

Input: I ∈ I.

Verifier: Picks v1, v2, . . . , v` ∈ V (I) at random. For each i = 1, 2, . . . , `, picks a
random pair (ei, e′i) of edges both incident on vi. Sends 〈e1, e2, . . . , e`〉 to the
first prover and 〈e′1, e′2, . . . , e′`〉 to the second prover.

Prover I: Sends 〈χ1, χ2, . . . , χ`〉 to the verifier, where χi : ei → {R,G,B} is a proper
coloring of ei.

Prover II: Sends 〈χ′1, χ′2, . . . , χ′`〉 to the verifier, where χ′i : e′i → {R,G,B} is a
proper coloring of e′i.

Verifier: Accepts iff for all i = 1, 2, . . . , `, χi(vi) = χ′i(vi).

Corollary 3.6 Let the maximum number of properly colored edges in any 3-coloring of I be (1 −
ε)|E(I)| (ε > 0). Then, there exists a constant c = c(ε) > 0 such that the following holds for all
`. Let Π be a strategy for the provers in the above protocol that makes the verifier accept with the
highest probability. Then, under Π, Pr[Verifier accepts] ≤ 2−c`.
From now on, we will use c for the constant associated in the above corollary with the constant ε
promised in Theorem 3.3; we may assume c ≤ 1.

The task of determining the best strategy for the provers in the parallel protocol corresponds
to solving a certain covering problem on a graph obtained from the input instance I. We will use
the Min-Rep problem formulated in Kortsarz [Kor01].
Definition 3.7 (Min-Rep-Graph [Kor01]) Given a graph I ∈ I, the bipartite graph MRG(I) =
(U1, U2, E), is defined as follows. U1 and U2 consist of tuples

〈e1, e2, . . . , e`, χ1, χ2, . . . , χ`〉,

where for i = 1, 2, . . . , `, ei ∈ E(I) and χi : ei → {R,G,B} is a proper coloring of ei. The edges of
MRG(I) will be labeled by elements of V (I)`, and we will use (u, u′, v) to denote the edge between
u ∈ U1 and u′ ∈ U2 with label v ∈ V (I)`. Let Ev be the edges labeled v.

Ev = {(〈e, χ〉, 〈e′, χ′〉, v) : 〈e, χ〉 ∈ U1 and 〈e′, χ′〉 ∈ U2 and
for i = 1, 2, . . . , `, vi ∈ ei, e′i and χi(vi) = χ′i(vi)}.

Finally, the edge set of MRG(I) is
⋃

v∈V (I)` Ev.
Note: In the graph above, and in those we shall encounter below, there may be parallel edges
connecting two distinct vertices 〈e, χ〉 and 〈e′, χ′〉; this happens when there is an i such that ei = e′i
and χi = χ′i. However, different edges connecting the same two vertices have different labels.

The vertices of U1 can be naturally partitioned into sets (Ae : e ∈ E(I)`), where Ae consists
of vertices of the form 〈e, χ〉, all with the same first component. The elements of Ae correspond
to all potential responses of Prover I in the above parallel protocol, when the Verifier sends e.
Similarly, U2 can be partitioned into sets (Be : e ∈ E(I)`). Since there are six ways to properly
3-color an edge, |Ae| = |Be| = 6`; since the instance I is a 5-regular graph, there are precisely
q = |E(I)|` = (5

2)`|V (I)|` parts in each partition. Let ≡ denote the equivalence relation on U1 ∪U2

induced by the partition above.
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Definition 3.8 Let G be a graph and ≡ be an equivalence relation on V (G) (or equivalently a
partition of V (G)). Let G/≡ be the graph with vertex set V/≡ (i.e. the set of equivalence classes
under ≡) and E(G/≡) = {(x/≡, y/≡, v) : (x, y, v) ∈ E(G)} where x/≡ is the equivalence class of
x under ≡. Note that E(G/≡) is a set, that is, there is at most one edge with a given label between
two vertices.

Remark: We will refer to the graph MRG(I)/ ≡ as the super min-rep-graph and refer to its
vertices as super vertices and its edges as super edges. Also, we will write MRG≡(I) instead of
MRG(I)/ ≡. Note that MRG≡(I) is a regular graph with 2q super vertices, each with degree 2`5`;
thus, the number of super edges in MRG≡(I) is:

h = q · 2`5` = |V (I)|`52`.

Definition 3.9 Let S ⊆ V (MRG(I)) and let GS be the graph on V (MRG(I)) consisting of those
edges of MRG(I) that have both end points in S. Let ≡ be the equivalence relation on V (MRG(I))
defined above. We say that S covers a super edge ẽ ∈ MRG≡(I) if ẽ ∈ E(GS/≡). We say that S is
a cover if it covers all super edges in MRG≡(I).

Remark: Note that S is a cover if and only if GS/ ≡ is the same as MRG≡(I). For example,
the entire vertex set V (G(I)) is a cover. Note that when S covers the super edge ẽ = (Ae, Be′ , v),
it has a vertex u1 ∈ Ae and a vertex u2 ∈ Be′ such that (u1, u2, v) ∈ E(MRG(I)). In particular,
since it is not enough if S has only one end point of the edge, this notion of covering, referred to as
min-rep-covering by Kortsarz and Shende [KS03], is different from the usual definition for vertex
covers.

We are now ready to state the key properties of MRG(I).
Lemma 3.10 (Main Lemma) • If I ∈ I is 3-colorable, then V (MRG(I)) can be partitioned

into 6` disjoint covers each of size 2q.

• If I is ε-non-3-colorable, then any set S of size at most 2qk, covers at most a fraction
(32k22−c`)1/3 of the super edges of MRG≡(I).

Proof: For the first part, assume that τ1, τ2, . . . , τ` are ` proper 3-colorings of I (not necessarily
distinct). Let

S ∩ U1 = {〈e, χ〉 : for i = 1, 2, . . . , `, χi is the restriction of τi to ei};
S ∩ U2 = {〈e′, χ′〉 : for i = 1, 2, . . . , `, χ′i is the restriction of τi to e′i}.

It is easy to verify that S is a cover in MRG(I). Now, fix a 3-coloring χ of I. Then, there are 6
different variants of χ (we may assume that I is has at least one edge, so χ cannot be the constant
function). Letting τ1, τ2, . . . , τ` each range over these 6 possibilities in all possible ways, we get 6`

versions of the cover S. These versions are pairwise disjoint. Note that each cover has exactly 2q
vertices.

For the second part, fix a set S of size 2qk and let α be the fraction of the super edges of MRG≡(I)
covered by S. We will use the two-prover protocol above. The verifier’s actions correspond to
picking a random super edge (Ae, Be′ , v) of MRG≡(I), and sending e to Prover I and e′ to Prover
II. Consider the following strategy for the provers: on receiving e from the verifier, Prover I picks a
random vertex 〈e, χ〉 in Ae ∩ S (such a vertex exists) and returns χ; similarly, on receiving e′ from
the verifier, Prover II picks a random vertex 〈e′, χ′〉 in Be′ ∩ S and sends back χ′.
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Since MRG≡(I) is regular, the expected value (over a random choice of the super edge (Ae, Be′ , v))
of MRG≡(I)) of |S ∩ (Ae ∪Be′)| is 2qk/q = 2k. By Markov’s inequality,

Pr[|S ∩ (Ae ∪Be′)| ≥
4k
α

] ≤ α

2
.

Thus, with probability α/2 the following two events hold simultaneously: S covers the super
edge (Ae, Be′ , v) and |S ∩ (Ae ∪Be′)| <

4k
α . If S covers the super edge (Ae, Be′ , v), then there is an

edge (〈e, χ〉, 〈e′, χ′〉, v) between them in MRG(I) with both end points in S. If |S ∩ (Ae∪Be′)| <
4k
α

the probability that both provers pick their corresponding end point in our randomized strategy is at
least ( α

4k )2. Thus, the overall probability of the verifier accepting is at least α/2·(α/4k)2 = α3/32k2.
Our claim now follows from Corollary 3.6.

3.2 The construction

As stated earlier, our final graph G(I) will be generated using the graph MRG(I). This trans-
formation is similar to constructions used in earlier works (e.g. Lund and Yannakakis [LY94],
Feige [F98], and especially Feige, Halldórsson, Kortsarz and Srinivasan [FHKS00], and Kortsarz
and Shende [KS03]). However, since we do not assume that the reader is familiar with the details
in those papers, we shall present the construction in detail. We will first describe a random graph
G̃(I). The final graph G(I) will be obtained by taking several independent copies of G̃(I) and
identifying some vertices from different copies.

The intermediate random graph G̃(I): The graph G̃(I) is a random bipartite graph with
vertex sets Ṽ1 and Ṽ2. The first vertex set Ṽ1 will, in fact, be the same as V (MRG(I)), and as
before we partition it into 2q clusters (Ae, Be : e ∈ E(I)`) each with 6` vertices. The other vertex
set Ṽ2 has one set Mẽ of m vertices for each super edges ẽ of MRG≡(I). Since there are exactly
|V (I)|`52` super edges in MRG≡(I), Ṽ2 has |V (I)|`52`m vertices.

We now describe how the edges are placed in G̃(I). The edges connecting Mẽ to the vertices
in Ṽ1 are determined using a random process. This process is run independently for each edge ẽ of
MRG(I). Consider a super edge ẽ = (Ae, Be′ , v) of MRG≡(I). The vertices in Mẽ have neighbors
only in Ae and Be′ . To describe how these neighbors are chosen, we partition Ae into 3` sets
(Ae,τ : τ ∈ {R,G,B}`) each of size 2`, where

Ae,τ = {〈e, χ〉 : χi(vi) = τi}.

The idea is that Ae has 6` vertices, each corresponding to assigning a different coloring to the edges
involved in e. Some of these colorings agree on what they assign to the vertices in v; these vertices
are put into a single class. Similarly, we partition Be′ into 3` sets of size 2` each, where

Be′,τ = {〈e′, χ〉 : χi(vi) = τi}.

Note that in MRG(I) every vertex in Ae,τ is connected by an edge to every vertex of Be′,τ . A
vertex v2 ∈ Mẽ is connected to either all the vertices in Ae,τ or all the vertices in Be,τ , but not to
both, that is, if a vertex of Mẽ has a neighbor in Ae,τ , then it has no neighbors in Be′,τ . Under

these conditions the vertex v2 ∈Mẽ has exactly 23`
possible neighborhoods, we choose one of them

randomly. Alternatively, we may use the following randomized procedure to generate the edges
connecting Mẽ to Ae and Be′ .
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for each v2 ∈Mẽ independently

for each τ ∈ {R,G,B}` independently
Pick C ∈ {Ae,τ , Be′,τ} at random (each with probability 1

2);
Connect v2 to all vertices in C.

Remarks: Note that the appearance of edges in G̃(I) depends on random choices. However, there
are some pairs of vertices that never get connected. We call a pair (u, v2) ∈ Ṽ1× Ṽ2 a potential edge
if it appears as an edge in some instance of G̃, that is, the event “(u, v2) ∈ E(G̃(I))” has non-zero
probability; for a potential edge p, let Jp be the indicator random variable for the event p ∈ G̃.
Two potential edges (u, v2) and (u′, v′2) are said to be related if the events events “(u, v2) ∈ E(G̃)”
and “(u′, v′2) ∈ E(G̃)” are dependent; this happens if and only if

• v2 = v′2 (say v2 ∈Mẽ where ẽ = (Ae, Be′ , v)) and

• both u, u′ ∈ Ae,τ ∪Be′,τ for some τ ∈ {R,G,B}`.

Thus, the set of potential edges related to an (u, v2) ∈ (Ae,τ ∪Be′,τ )×Mẽ, where ẽ = (Ae, Be′ , v), is
precisely (Ae,τ ∪Be′,τ )×{v2}. Since, |Ae,τ |, |Be′,τ | = 2`, (u, v2) is related to precisely 2`+1 potential
edges (including itself). Furthermore, we have the following proposition. [Parts (a) and (b) follow
immediately from our construction, part (c) follows from part (b), and part (d) follows from part
(c) using Lemma 3.10.]
Proposition 3.11 (a) Suppose E1 and E2 are events and S1 and S2 are subsets of potential edges,

such that E1 is fully determined by (Jp : p ∈ S1) and E2 is fully determined by (Jp : p ∈ S2).
Suppose no potential edge in S1 is related to a potential edge in S2. Then, E1 and E2 are
independent.

(b) Suppose (u, u′, v) ∈ E(MRG(I)). Then, M(u/≡,u′/≡,v) ⊆ N(u) ∪N(u′).

(c) If S is a cover in MRG(I), then N(S) = Ṽ2 in G̃(I).

(d) If I is 3-colorable, then Ṽ1 can be partitioned into 6` disjoint sets S1, S2, . . . such that N(Si) =
Ṽ2.

The final random graph G(I): The final random graph G(I) is obtained as follows. First, pick r
independent copies of G̃(I); call them G̃1, G̃2, . . . , G̃r, with corresponding vertex sets (Ṽ 1

1 , Ṽ
1
2 ), (Ṽ 2

1 , Ṽ
2
2 ),

. . . , (Ṽ r
1 , Ṽ

r
2 ); let

r =
|Ṽ2|
6`

.

[Our choice of parameters below ensure that r is an integer.] The graph G(I) is obtained by
identifying the corresponding vertices in Ṽ 1

2 , Ṽ
2
2 , . . . , Ṽ

r
2 . E.g., for each super edge ẽ of MRG≡(I),

there is an instance of Mẽ, say M j
ẽ ⊆ Ṽ j

2 . These r instances of Mẽ are identified to produce just
one set Mẽ of size m. Thus, G(I) is a bipartite graph with vertex sets (V1, V2) where

V1 = Ṽ 1
1 ∪ Ṽ 2

1 ∪ · · · ∪ Ṽ r
1 ,

has 2rq6` = 2q|V2| vertices and V2 has |V (I)|`52`m vertices. Note that each cluster of vertices of the
form Ae has r versions in V1; we refer to them as A1

e, A
2
e, . . . , A

r
e. Similarly, we have B1

e , B
2
e , . . . , B

r
e .

Let
We now examine how cp(G(I)) behaves for 3-colorable and ε-non-3-colorable instances I.
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When I is 3-colorable: Note, that Part (a) of Proposition 3.11 applies to G(I) as well. Also,
since r6` ≥ |V2|, Part (d) implies that if I is 3-colorable, there are |V2| disjoint sets S1, S2, . . . ⊆ V1,
such that N(Si) = V2. By adding a different vertex of V2 to each of these sets, we obtain a complete
partition of G(I) of size |V2(G(I))|.
Proposition 3.12 If I is 3-colorable, cp(G(I)) ≥ |V2| = |V (I)|`52`m.

When I is ε-non-3-colorable: We wish to show that if I is ε-non-3-colorable, then with high
probability cp(G(I)) ≤ D|V2|/

√
lg |V2|, for a suitable choice of D, ` and m. In the following, we let

t =

⌈
D|V2|√
lg |V2|

⌉
.

We fix the values of the parameters as follows:

` =
⌈

10
c

lg lg |V (I)|
⌉

;

m = 6`q;
D = 10.

Note that for this choice of parameters, lg |V2| = Θ(lg |V (G)|).
Our inapproximability result requires the following two inequalities.

• For a fixed partition X = (X1, X2, . . . , Xt) of V (G(I)),

Pr[X is a complete partition] ≤ exp(−Ω(|V2|5/3)). (3)

• The number of partitions of V (G(I)) into t parts is at most

t|V (G)| ≤ exp(O(|V2|3/2). (4)

Assuming these inequalities are proved, we have the following lemma, from which Theorem 3.1
follows immediately (using Theorem 3.3).
Lemma 3.13 (Separation) If I is 3-colorable, then cp(G(I)) ≥ |V2|. If I is ε-non-3-colorable,

then with high probability cp(G(I)) ≤ D|V2|√
lg |V2|

.

It remains to show the inequalities (3) and (4). We first outline our argument. In the outline, we
will encounter Lemmas 3.14, 3.15 and 3.16. After the outline, we state these lemmas and assuming
they hold, we complete the proof of inequalities (3) and (4). In Section 3.3, we prove the three
lemmas.

In order to prove (3), let us fix a potential partition X = (X1, X2, . . . , Xt). For X to be a
complete partition we should have Xi ∼ Xj for all pairs {Xi, Xj}, (i 6= j). Let us examine how
connections between Xi and Xj arise in G(I). There are three issues that we need to deal with in
our calculations:

Xi covers Xj: Suppose Xi ∩ V1 covers some super edge ẽ of MRG≡ and there is some vertex
v2 ∈Mẽ. Now, Proposition 3.11 (b) implies that v2 has a neighbor in Xi∩V1 with probability
1. In such a situation, we say that Xi covers v2, for no matter how the random edges are
chosen, v2 will be connected to some vertex in Xi. We say that Xi covers Xj if Xi covers
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some vertex of Xj ∩ V2. Since such pairs (Xi, Xj) are connected with probability 1, we need
to ensure that there are not too many such pairs. Lemma 3.14 below shows that in any fixed
partition X of V (G), for most pairs (Xi, Xj), Xi does not cover Xj . The reason for this is
that the size of a typical Xi ∩ V1 is O(q

√
lg n) and, we can use Lemma 3.10 to bound the

number of super edges ẽ of MRG≡(I) covered by such small sets.

Xi and Xj are strongly coupled: Suppose for a pair {Xi, Xj}, neither Xi covers Xj nor Xj

covers Xi. Consider the potential edges between Xi ∩ V1 and Xj ∩ V2. Each such edge
has probability exactly 1

2 of appearing in G(I). Furthermore, since Xi does not cover Xj ,
the events “(u, v2) ∈ E(G(I))”, for different potential edges (u, v2) connecting Xi ∩ V1 with
Xj ∩ V2 are either identical or independent. In particular, if there are kij potential edges
between Xi ∩ V1 and Xj ∩ V2, then

Pr[(Xi ∩ V1) ∼ (Xj ∩ V2) in G] ≤ 1− 2−kij .

To exploit this bound, we need to ensure that kij is small. Lemma 3.15 shows that for most
pairs (Xi, Xj), we have kij � lg |V (G)|.

Dependent potential edges: We have indicated above how we plan to control the probability
that there is an edge between Xi ∩ V1 and Xj ∩ V2. The events “(Xi ∩ V1) ∼ (Xj ∩ V2)” and
“(Xj ∩V1) ∼ (Xi ∩V2)” are independent because they involve different vertices of V2 (see the
remarks after the definition of G̃(I)). So, using the argument outlined above we can claim
that

Pr[Xi ∼ Xj in G] ≤ 1− 2−(kij+kji).

This quantity is quite close to 1 for the bound on kij that we ensure in Lemma 3.15. But,
we want our failure probability to be exponentially small. To achieve that we will exploit
the fact that Xi ∼ Xj for many pairs {Xi, Xj}. So, we ensure that the events of the form
Xi ∼ Xj are independent for many pairs {Xi, Xj}. The event Xi ∼ Xj is independent of
a set of events of the form “Xi′ ∼ Xj′”, if no potential edge between Xi and Xj is related
to a potential edge between any of the Xi′ and Xj′ . We stated above that we can ensure
that the number of potential edges between Xi and Xj are few (� lg |V2|); furthermore, each
such edge is related to at most 2`+1 other potential edges. This enables us to argue that for
at least Ω(t2/(2` lg |V2|)) pairs {Xi, Xj}, the events Xi ∼ Xj are mutually independent (see
Lemma 3.16 below).

Lemma 3.14 There are at most |V2|2
lg |V2| pairs {Xi, Xj} where Xi covers Xj or Xj covers Xi.

Lemma 3.15 There are at most 32|V2|2
lg |V2| pairs {Xi, Xj} where there are more than 1

4 lg |V2| potential
edges between them.
Lemma 3.16 Let P be a subset of pairs {Xi, Xj} such that there are at most 1

4 lg |V2| potential
edges connecting any pair. Then, there is a subset P ′ of P of size at least |P |/(2` lg |V2|) such that
for all pairs {Xi, Xj} ∈ P ′, the events Xi ∼ Xj are mutually independent.

Proof of (3): Let X = (X1, X2, . . . , Xt) be a partition of V (G). By Lemmas 3.14 and 3.15, for
at least (

t

2

)
− 33

|V2|2

lg |V2|
≥ |V2|2

lg |V2|
pairs {Xi, Xj}, we have
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• Xi does not cover Xj and Xj does not cover Xi;

• the number of potential edges between Xi and Xj is at most 1
4 lg |V2|.

By Lemma 3.16, there is a subset P ′ of at least |V2|2
2`(lg |V2|)2

pairs such that

• for all pairs {Xi, Xj} ∈ P ′ the events Xi ∼ Xj are mutually independent.

Then,

Pr[X is a complete partition] ≤ Pr[∀{Xi, Xj} ∈ P ′ : Xi ∼ Xj ]

≤
(

1− 1

2
1
4

lg |V2|

) |V2|
2

2`+2 lg |V2|

≤ exp

(
−Ω

(
|V2|7/4

lg |V2|

))
≤ exp(−Ω(|V2|5/3)).

Proof of (4): The total number of partitions of V (G) into t parts is at most

t|V (G)| ≤ |V2||V (G)|

≤ exp(|V (G)| lg |V2|)
≤ exp(O(|V2|3/2)).

To justify the last inequality, observe that

|V2|3/2 = |V2||V2|1/2

= |V2|
(
|V (I)|`52`m

)1/2

= |V2|
(
|E(I)|` · 10` · 6`q

)1/2

= |V2| ·
(
q · 10` · 6`q

)1/2

= |V2|q(60)`/2.

On the other hand, since |V1| = 2q|V2|, q = (5
2)`|V (I)|` and ` = 10

c lg lg |V (I)|, we have

|V (G)| lg |V2| = (2q + 1)|V2| lg |V2|
≤ (2q + 1)|V2| lg(|V (I)|`52`m)
= (2q + 1)|V2| lg(|V (I)|`52`6`q)
� |V2|q(60)`/2.

3.3 Proofs of the combinatorial lemmas

Proof of Lemma 3.14: Let |Xi ∩ V1| = 2kiq. Then,

t∑
i=1

2kiq = |V1| = 2q|V2|.
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Thus,
∑t

i=1 ki ≤ |V2|.
Recall that V1 consists of r copies Ṽ 1

1 , Ṽ
2
1 , . . . , Ṽ

r
1 of Ṽ1. Denote by vj

1 the copy of the vertex
v1 ∈ Ṽ1 that appears in Ṽ j

1 . If some Xi has many copies of a vertex, we retain exactly one of them
in X̂i:

X̂i = {v1 ∈ Ṽ1 : vj
1 ∈ Xi, for some j ∈ {1, 2, . . . , r}}.

Clearly, |X̂i| ≤ |Xi| = 2kiq. Also, if Xi covers v2 ∈ Mẽ ⊆ V2, then X̂i covers the super edge ẽ in
MRG≡(I). Furthermore, the fraction of vertices of V2 covered by Xi is at most the fraction of super
edges of MRG≡(I) covered by X̂i. Let X̂i cover a fraction αi of the super edges of MRG≡(I). By
Lemma 3.10,

αi ≤ (32k2
i 2

−c`)1/3 ≤ 4k2/3
i 2−c`/3.

The number of Xj ’s covered by Xi is at most the number of vertices of V2 covered by Xi, that is,
αi|V2|. Thus, the total number of pairs (Xi, Xj) where Xi covers Xj is at most

t∑
i=1

αi|V2| ≤
t∑

i=1

4k2/3
i 2−c`/3|V2|

≤ 4 · 2−c`/3t|V2|

(
t∑

i=1

ki/t

)2/3

≤ 4 · 2−c`/3 · D|V2|√
lg |V2|

· |V2|
(lg |V2|)1/3

D2/3

≤ |V2|2

2 lg |V2|
.

[The second inequality holds because x2/3 is a concave function (Jensen’s inequality); the last
inequality holds because, for our choice of `, 2c`/3 � lg |V2|.]

So, the number of pairs (Xi, Xj) where Xi covers Xj is at most |V2|2
2 lg |V2| . Similarly, the number

of such pairs where Xj covers Xi is at most |V2|2
2 lg |V2| .

Notation: Recall that V1 is the disjoint union of sets A1
e, A

2
e, . . . , A

r
e and B1

e , B
2
e , . . . , B

r
e . Let

Ae =
r⋃

j=1

Aj
e, A =

⋃
e∈|E(I)|`

Ae, Be =
r⋃

j=1

Bj
e , B =

⋃
e∈|E(I)|`

Be.

We define a version of the super min-rep-graph with vertex sets {Ae : e ∈ E(I)`} and {Be : e ∈
E(I)`}. This graph, MRG∗

≡(I), has a super edge of the form ẽ = (Ae,Be′ , v) if and only if MRG≡(I)
has the corresponding super edge ẽ = (Ae, Be′ , v). Clearly, MRG∗

≡ is isomorphic to MRG≡(I)
under the correspondence Ae 7→ Ae and Be′ 7→ Be′ , where the edge ẽ corresponds to ẽ. With this
correspondence in mind, we will refer to the sets Mẽ ⊆ V2 as Mẽ.

Proof of Lemma 3.15: Let HA be the pairs (i, j) where the number of potential edges between
Xi ∩ A and Xj ∩ V2 is at least 1

16 lg |V2|. Similarly, let HB be the pairs (i, j) where the number of
potential edges between Xi∩B and Xj∩V2 is at least 1

16 lg |V2|. Clearly, if there are at least 1
4 lg |V2|

potential edges between Xi and Xj , then either (i, j) or (j, i) is in HA ∪ HB. Thus, it suffices to
show that

|HA|, |HB| ≤ 16|V2|2/ lg |V2|.
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In the following e ranges over the set E(I)` and i, j range over the set {1, 2, . . . , t}. Let te,i =
|Ae ∩Xi|. Clearly, ∑

e,i

te,i =
∑
e,i

|Ae ∩Xi| = |V1|/2. (5)

Now, if Xi has a vertex in Ae, we consider which all vertices of Xj ∩V2 it can have edges to. These
vertices must come from Mẽ, where ẽ is incident on Ae in the graph MRG∗

≡(I). Let

ne,j = |
⋃
ẽ

(Mẽ ∩Xj)|,

here ẽ ranges over super edges incident on Ae in the min-rep-graph MRG∗
≡(I) defined above. Every

Ae has the same number d of super edges (Ae,Be, v) incident on it. [Indeed d = 10`, because there
are 2` ways for choosing the label v, and once the label is chosen, there are 5` ways of choosing e′.]
So,

t∑
j=1

ne,j ≤ dm. (6)

We are now ready to estimate the size of HA. Note that the number of potential edges between
Xi ∩ Ae and Xj ∩ V2 is precisely ∑

e

te,i · ne,j .

Note that for (i, j) ∈ HA, this quantity is at least 1
16 lg |V2|. Let us sum this equation over all (i, j)

and note that the contribution from the pairs in HA itself will be |HA| · 1
16 lg |V2|. Thus, we have the

following sequence of deductions using (5) in the third inequality and (6) in the second inequality:∑
i,j

∑
e

te,j · ne,i ≥ |HA| ·
1
16

lg |V2|

∑
e,i

te,i
∑

j

ne,j ≥ |HA| ·
1
16

lg |V2|

dm ·
∑
e,i

te,i ≥ |HA| ·
1
16

lg |V2|

dm · |V1|
2

≥ |HA| ·
1
16

lg |V2|

q|V2|dm ≥ |HA|
1
16

lg |V2| (using |V1| = 2q · |V2|).

Finally, since qdm = |V2|, we conclude that |HA| ≤ 16|V2|2/ lg |V2|. Similarly, |HB| ≤ 16|V2|2/ lg |V2|.
It follows that the number of pairs {Xi, Xj} where there are at least 1

4 lg |V2| potential edges between
Xi and Xj is at most 32|V2|2/ lg |V2|.

Proof of Lemma 3.16: By Proposition 3.11 (a), two events of the form Xi ∼ Xj are dependent
only if they involve related potential edges. Let P ′ be a maximal subset of P such that for any
two distinct pairs {Xi1 , Xj1} and {Xi2 , Xj2} in P ′, every potential edge connecting Xi1 and Xj1

is unrelated to every potential edge connecting Xi2 and Xj2 . Let |P ′| = α|P | for some α ∈ [0, 1].
Then, for every pair {Xi′ , Xj′} in P \ P ′, some potential edge connecting Xi′ and Xj′ is related to
some potential edge connecting some pair in P ′ (otherwise, P ′ would not be maximal). There are
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at most 1
4 lg |V2| potential edges connecting any one pair in P ′, each such edge is related to exactly

2`+1 other potential edges. Thus,

|P \ P ′| ≤ (2`+1 · 1
4

lg |V2|)|P ′|,

implying

|P ′| ≥ |P |
1 + 2`−1 lg |V2|

≥ |P |
2` lg |V2|

.

3.4 Lower bounds for computing the achromatic number

The goal of this section is to prove the following.
Theorem 3.17 Let L ⊆ {0, 1}∗ be a language in NP. Then, there is a randomized transformation f
that transforms inputs in {0, 1}∗ to graphs, and a polynomial-time computable function α : {0, 1}∗ →
N such that for all x ∈ {0, 1}∗,

(a) If x ∈ L then achr(f(x)) ≥ α(x) with probability 3
4 ;

(b) If x 6∈ L, then with probability at least 3
4 , we have achr(f(x)) ≤ Cα(x)/

√
lg |V (f(x))|, where

C ≥ 1 is an absolute constant independent of L and x.

The function f can be computed in time |x|O(lg lg |x|).
Corollary 3.18 There exists a constant C ≥ 1 such that if there exists a randomized polynomial-
time algorithm that with high probability computes a complete partition in a graph G of size more
than C achr(G)√

lg |V (G)|
, then NP ⊆ RTime(nO(lg lg n)).

Proof of Theorem 3.17: Consider the bipartite graph G = (V1, V2, E) constructed above for
showing Theorem 3.1. We will need the following key property of this graph when the input x is
in the language L:

There is a partition C1, C2, . . . , of V1 into t = |V2| parts such that N(Ci) = V2. Fur-
thermore, each vertex in V2 has exactly t edges. Thus, for each vertex v2 ∈ V2 and class
Ci, there is exactly one edge between v2 and Ci.

Let G′ be the random graph obtained from G by randomly and independently deleting one edge
from each vertex in V2.

If x ∈ L: We need to show that in this case, with high probability, G′ has a large achromatic
partition. For i = 1, 2, . . . , t, let

V2,i = {v2 ∈ V2 : v2 6∈ NG′(Ci)},

and consider the sets C ′
i = Ci ∪ V2,i and let C ′′ =

⋃
i:V2,i=∅Ci. Then, it is easy to see that

{C ′
i : V2,i 6= ∅} ∪ {C ′′}

is an achromatic partition of G′. We need to argue that there are many i such that V2,i 6= ∅.
Note that the number of such i’s has exactly the same distribution as the number of non-
empty bins when t balls are thrown into t bins, independently at random. In this case, the
expected number of non-empty bins is exactly (1 − 1/e)t. Using the method of bounded
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differences [McD89] or by exploiting the negative correlation [DD98], we can conclude that
the Chernoff-Hoeffding bounds hold for this distribution, that is,

Pr[the number of non-empty bins ≤ (1− 1/e− ε)t] ≤ exp(−2ε2t).

Thus, with probability at least 3/4, G′ has an achromatic partition of size at least t/2,
provided that |V2| = t ≥ 10.

If x 6∈ L: We know that every complete partition of G has size O(t/
√

lg |V (G)|). Thus, in partic-
ular, the achromatic number of G is O(t/

√
lg |V (G)|).
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