
SORTING AND PREIMAGES OF PATTERN CLASSES

ANDERS CLAESSON AND HENNING ÚLFARSSON

Abstract. We introduce an algorithm to determine when a sorting operation, such as
stack-sort or bubble-sort, outputs a given pattern. The algorithm provides a new proof
of the description of West-2-stack-sortable permutations, that is permutations that are
completely sorted when passed twice through a stack, in terms of patterns. We also
solve the long-standing problem of describing West-3-stack-sortable permutations. This
requires a new type of generalized permutation pattern we call a decorated pattern.

Contents

1. Introduction 1

2. Generalized permutation patterns 2

3. Finding preimages of patterns 4

4. An algorithm 9

5. Open problems 12

6. Acknowledgements 12

References 13

1. Introduction

The set of permutations of {1, . . . , n} is denoted Sn. Permutations will be written in
one-line notation, and the identity permutation 12 · · ·n will be denoted idn, or just id if
n is understood from context.

In the 1970’s Knuth [Knu75] initiated the study of sorting and pattern avoidance in
permutations. He considered the problem of sorting a permutation by passing it through
a stack. A stack is a last in, first out data structure with two fundamental operations: the
push operation moves an item from the input to the top of the stack; the pop operation
moves an item from the top of the stack to the output. Consider trying to sort the
permutation 231 by a stack, as shown in Figure 1.

Note that we always want the elements in the stack to be increasing, from the top,
since otherwise it would be impossible for the output to be sorted. We failed to sort
the permutation in one pass and therefore say that it is not stack-sortable, which Knuth
showed is equivalent to containg 231 as a pattern. We will reprove this in Theorem 3.1.

Key words and phrases. Permutation Patterns, Sorting algorithms.

1

2 CLAESSON AND ÚLFARSSON

23131

2

3121

3

22

3
1

1

3

2312

Figure 1. Trying, and failing, to sort 231 with a stack. The figure is read
from right to left

Several variations on Knuth’s original problem have been considered, see Bóna [Bón03]
for a survey. In this paper we consider repeatedly passing a permutation through a stack,
while keeping the elements on the stack in increasing order from top to bottom. We also
consider the bubble-sort operator. We introduce a new method for finding patterns in a
permutation that will cause these sorting devices to output a given pattern, and use this
to solve the long-standing problem of describing West-3-stack-sortable permutations. If
the given pattern is classical (defined below) we show that the mesh patterns introduced
by Brändén and the first author [BC11] suffice, but if the given pattern is itself a mesh
pattern we will need to introduce a new kind of generalized pattern we call a decorated
pattern.

In Section 4 we describe an algorithm that given a classical pattern p produces a finite
list of (marked) mesh patterns P such that S−1(Av(p)) = Av(P), where S is the stack-
sort operator. This algorithm automates proving some of the statements in the previous
sections and can be extended to cover the bubble-sort operator as well.

We hope that our work is a step towards the general comprehension of the stack-sort
operator and other similar operators. This extended abstract will appear at FPSAC 2012
and is based on two papers of the authors [Ú11a, CU11].

2. Generalized permutation patterns

A standardization of a list of numbers is another list of the same length such that the
smallest letter in the original list has been replaced with 1, the second smallest with 2, etc.
The standardization of 5371 is 3241. A classical (permutation) pattern is a permutation
p in Sk. A permutation π in Sn contains, or has an occurrence of the pattern p if there
are indices 1 ≤ i1 < · · · < ik ≤ n such that the standardization of π(i1) · · · π(ik) equals
the pattern p. If a permutation does not contain a pattern p we say it avoids p. The
permutation π = 526413 contains the pattern p = 132, and has three occurrences of it,
in the subsequences 264, 263 and 243. We can draw the graph of the permutation by
graphing the coordinates (i, π(i)) on a grid. For example the permutation π above is
shown in Figure 2 where we have circled the occurrences of the pattern p.

Figure 2. The permutation 526413 and three occurrences of the pattern 132

SORTING AND PREIMAGES OF PATTERN CLASSES 3

The same permutation avoids 123, since we cannot find an increasing subsequence of
length three.

2.1. Mesh patterns and barred patterns. Mesh patterns were introduced in [BC11].

We review them via an example. The mesh pattern occurs in a permutation if we

can find the underlying classical pattern 132 positioned in such a way that the shaded
regions are not occupied by other entries in the permutation. Another way of writing a
mesh pattern is to give the underlying classical pattern, followed by the set of shaded
boxes, labelled by their lower left corner (the left-most box in the bottom-most row being
(0, 0)). This mesh pattern is (132, {(0, 2), (1, 2), (2, 2)}).

Consider the permutation 526413. From above we know that the classical pattern has
three occurrences in this permutation. In Figure 3 one can see that just one of these
satisfies the additional requirement that there be no additional entries in the shaded
region “between and to the left of the 3 and the 2”.

Figure 3. The permutation 526413 and one occurrences of the mesh pat-
tern (132, {(0, 2), (1, 2), (2, 2)})

Barred patterns, introduced by West [Wes90], are classical patterns with bars over some
of the entries. Such a pattern is contained in a permutation if the standardization of the
unbarred entries is contained in the permutation in such a way that they are not part
of an occurrence of the whole pattern. The permutation 5264173 contains the barred
pattern 35̄241, in the subsequence 5473, since that is an occurrence of 3241 that is not
part of an occurrence of 35241. In [BC11] it was shown that any barred pattern with one
barred entry is a mesh pattern. The barred pattern we discussed here is in fact the mesh
pattern below.

2.2. Marked mesh patterns and decorated patterns. Marked mesh patterns were
introduced by the second author in [Ú11b] and give finer control over whether a certain
region in a permutation is allowed to contain elements, and if so, how many. Again we

just give an example. Consider the marked mesh pattern
1

. The meaning of the 1 in

the region containing boxes (1, 0), (1, 1), (2, 0) and (2, 1) is that this region must contain
at least one entry. In Figure 4 we see that there is exactly one occurrence of this mesh
pattern in the permutation 526413.

Marked mesh patterns will be useful when we need to add elements into an existing
pattern to ensure other elements are popped by a particular sorting device. Below we

4 CLAESSON AND ÚLFARSSON

Figure 4. The permutation 526413 and one occurrence of a marked mesh pattern

will need even finer control over what is allowed inside a particular region in a pattern.
We will need to control whether the entries in the region contain a particular pattern.

Consider for example the decorated pattern . The decorated region in the middle

signifies that an occurrence of this pattern should be an occurrence of the underlying
classical pattern 21 that additionally does not have entries in the region that contain the
pattern 12 – or equivalently – whatever is in that region must be in descending order,
from left to right. In Figure 5 there is an occurrence of the decorated pattern on the left
and on the right we have an occurrence of the classical pattern 21 that does not satisfy the
requirements of the decorated region. Below we state the formal definition of a decorated
pattern.

Figure 5. The permutation 526413 and one occurrences of a decorated pattern

For integers a < b we use Ja, bK to denote the set {a, a+ 1, . . . , b}.

Definition 2.1. A decorated pattern (p, C) of length k consists of a classical pattern p of
length k and a collection C which contains pairs (C, q) where C is a subset of the square
J0, kK×J0, kK and q is some pattern, possibly another decorated pattern. An occurrence of
(p, C) in a permutation π is a subset ω of the diagram G(π) = {(i, π(i)) | 1 ≤ i ≤ n} such
that there are order-preserving injections α, β : J1, kK→ J1, nK satisfying two conditions:

(1) ω = {(α(i), β(j)) : (i, j) ∈ G(p)}.
(2) Let Rij = Jα(i) + 1, α(i+ 1)− 1K×Jβ(j) + 1, β(j + 1)− 1K, with α(0) = 0 = β(0)

and α(k+ 1) = n+ 1 = β(k+ 1). For each pair (C, q) we let C ′ =
⋃

(i,j)∈C Rij and

require that C ′ ∩G(π) avoidsq.

3. Finding preimages of patterns

In this section we define a method for describing patterns that are guaranteed to produce
a given pattern in a permutation after it is sorted by a stack or with the bubble-sort
operator.

SORTING AND PREIMAGES OF PATTERN CLASSES 5

3.1. The stack-sort operator. For a permutation π we will denote with S(π) the image
of π after it is passed once through a stack. Note that a permutation π in Sn is stack-
sortable if and only if S(π) ∈ Avn(21), where Avn(21) is the set of permutations of length
n that avoid 21. Of course Avn(21) = {id} but framing the definition like this leads
to a generalization: Given a pattern p, what conditions need to be put on π such that
S(π) ∈ Avn(p). Exploring a sorting operator from this angle was first done by Albert et
al. [AAB+11]; they, however, studied the bubble-sort operator rather than the stack-sort
operator.

Below we will call permutations such that Sk(π) = id, West-k-stack-sortable permuta-
tions, since West considered this generalization from the case of one stack first. Note that
for k > 1 these permutations are different from the k-stack-sortable permutations, which
are the permutations that can be sorted by using k stacks in series without the require-
ment that the elements on the stack are increasing from top to bottom. For example, the
permutation 2341 is not West-2-stack-sortable, but if we put the entries 2, 3, 4 onto the
first stack, pass 1 all the way to the end, and then use the second stack to sort 2, 3, 4 we
end up with 1234. So 2341 is 2-stack-sortable.

The basic idea behind the method we are about to describe is that S(π) has an oc-
currence of a pattern p of length k if and only if the k elements in this occurrence were
present in π as some kind of pattern before we sorted. We start by showing how this
idea allows us to describe stack-sortable permutations as well as West-2-stack-sortable
permutations.

We know that π is not sorted by the stack if and only if S(π) contains the classical
pattern 21. Therefore consider a particular occurrence of this pattern in S(π). Before

sorting, the elements in this occurrence must have formed the pattern 21 = in π. In
order to remain in this order the element corresponding to 2 must be popped off the stack
by a larger element before the element corresponding to 1 enters. Thus the box (1, 2)
must have at least one element and we have an occurrence of the marked mesh pattern

1

which is equivalent to the pattern . We have therefore reproven Knuth’s result.

Theorem 3.1 ([Knu75]). A permutation is stack-sortable if and only if it avoids 231.

We can similarly reprove West’s result on West-2-stack-sortable permutations, i.e.,
permutations π such that S2(π) = id. By Knuth’s result we know that π will be sorted
by two passes through the stack if and only if S(π) avoids the pattern 231. An occurrence
of 231 must have formed either of the patterns

in π. For the elements in the pattern on the left to stay in the same order as they
pass through the stack we must have an element in the box (2, 3) to pop the element
corresponding to 3 out of the stack before the smallest element enters. Now, the opposite
happens for the pattern on the right. The 3 must stay on the stack until 2 enters, so there
can be no elements in the box (1, 3). Then both 2 and 3 must leave the stack before 1
enters. Thus the patterns above become the two marked mesh patterns on the left below.

6 CLAESSON AND ÚLFARSSON

These are more naturally written as the two mesh patterns on the right.

1 1

By a lemma of Hilmarsson, et al. [HJS+11], the last pattern on the right is equivalent to

, in the sense that a permutation either contains both patterns or avoids both. (For
these two patterns it is also easy to see directly that they are equivalent.) As mentioned
above this pattern is another representation of the barred pattern 35̄241. Thus we have
re-derived West’s result.

Theorem 3.2 ([Wes90]). A permutation is West-2-stack-sortable if and only if it avoids
2341 and 35̄241.

3.2. The bubble-sort operator. The bubble-sort operator swaps adjacent entries in a
permutation if the left entry is larger than the right entry. Let B(π) denote the output
of one pass of bubble-sort on π. For instance, B(521634) = 215346. A modification of
the method above works equally well for B. We see that B(π) contains the pattern 21 if

and only if π contains 21 = . To make sure that these elements stay in this order,
we either need a large element in front of 2, which would mean 2 would never be moved;
or a large element in between 2 and 1 that will stop 2 from moving past 1. We get the

marked mesh pattern
1

, which is equivalent to the two classical patterns 231 and

321. Thus, B(π) = id if and only if π avoids 231 and 321, as was first made explicit by
Albert, et al. [AAB+11]. In the same paper the authors show that for any classical pattern
p with at least three left-to-right maxima, the third of which is not the final symbol of
p, the set B−1(Av(p)) is not described by classical patterns. We consider the smallest

example of such a pattern, p = 1243. For a proof of the following proposition see [Ú11a,
Proposition 3.3].

Proposition 3.3. B−1(Av(1243)) = Av

(
1

,

1

,

1

,

1
)
.

Note that all the patterns can be expanded to mesh patterns, but at the cost of having
more patterns.

3.3. West-3-stack-sortable permutations. We now turn to West-3-stack-sortable per-
mutations, i.e., permutations π such that S3(π) = id. By West’s result (Theorem 3.2)
S3(π) = id if and only if S(π) avoids these two patterns:

W1 = W2 = (3.1)

We will use the same method as we did above, but when we consider the pattern on the
right, the shaded box will cause some complications and the decorated patterns introduced
above will be necessary.

SORTING AND PREIMAGES OF PATTERN CLASSES 7

Lemma 3.4. An occurrence of W1 in S(π) comes from exactly one of the patterns below
in π.

I1 = I2 = I3 = I4 = I5 =

Proof. Use Algorithm 1 from Section 4. See also [Ú11a, Lemma 4.1]. �

We now consider the pattern W2, but without the shading.

Lemma 3.5. An occurrence of 3241 in S(π) comes from exactly one of the patterns below
in π.

j1 =
1

j2 = j3 = 1

Proof. Use Algorithm 1 from Section 4. See also [Ú11a, Lemma 4.2]. �

We now consider what additional conditions cause the patterns j1, j2 and j3 in the
lemma to give the correct shading in the pattern W2. We express these conditions in the
next lemma and two propositions.

Lemma 3.6. An occurrence of j3 in a permutation π will become an occurrence of W2 in
S(π).

We leave the proof to the reader. We rename the pattern J3 and note that it can also
be expanded into a mesh pattern.

J3 = 1 =

Proposition 3.7. An occurrence of j2 in a permutation π becomes an occurrence of W2

in S(π) if and only if it is part of one of the patterns below, where elements that have been

8 CLAESSON AND ÚLFARSSON

added to j2 are circled.

J2,1 = J2,2 = J2,3 = J2,4 =

J2,5 = J2,6 = J2,7 = J2,8 =

J2,9 = J2,10 = J2,11 = J2,12 =

Proof. To ensure that there are no elements in the shaded box in W2 we must look at the
element that pops 3 in j2. There are four different possibilities.

j2,1 = j2,2 = j2,3 = j2,4 =

We explain the shadings and the decoration of the pattern j2,2 as the others are similar.
For this pattern, the size of the element that popped 3 from the stack was in-between
4 and 5. Since this was the element that popped 3 there can be no elements in boxes
(1, 3), . . . , (1, 6). The boxes (2, 5) and (2, 6) cannot contain an element, since that would
pop the element we just added (the 5 in j2,2) and this element would land in the shaded
box in W2. Now consider the decorated box (2, 4). It can contain elements, but none of
them are allowed to leave the stack prior to 4 being pushed on, since any one of them
would then land in the shaded box in W2. Elements in this region must then be in
descending order.

We must make sure that elements that arrived on the stack prior to 3 are not popped
into the shaded box in W2. We only consider the pattern j2,2 here. If there are elements
from box (0, 4) still on the stack when 3 is put on they will be popped by 5 and will
land in the shaded box in W2. We must therefore have this box empty, or an element in
box (0, 5) or (0, 6) that pops everything before 3 is pushed on. We get the three patterns
J2,7, J2,8, J2,9. �

We now consider what constraints must be imposed on the pattern j1 to get W2 after
sorting.

Proposition 3.8. An occurrence of j1 in a permutation π becomes an occurrence of W2

in S(π) if and only if it is part of one of the patterns below, where elements that have been

SORTING AND PREIMAGES OF PATTERN CLASSES 9

added to j1 are circled.

J1,1 = J1,2 = J1,3 = J1,4 =

J1,5 = J1,6 = J1,7 = J1,8 =

J1,9 = J1,10 = J1,11 =

Proof. The proof of this proposition is similar to the proof of Proposition 3.7 and therefore
omitted. �

Taken together, Lemmas 3.4 and 3.6, with Propositions 3.7 and 3.8 produce a list of
29 patterns describing permutations that are not West-3-stack-sortable. We can simplify
this list considerably by observing that the patterns J1,1, . . . , J1,6 all imply containment
of I1 so we can remove them. Further simplifications of this sort can be made. Also,
by considering what happens with the decorated patterns when they contain a certain
number of elements in the decorated region the list can be simplified even further. See
[Ú11a, Theorem 4.6] for the details.

Theorem 3.9. A permutation is West-3-stack-sortable if and only if it avoids the deco-
rated patterns

Note that each of the decorated patterns in the theorem is equivalent to an infinite family
of mesh patterns.

4. An algorithm

We shall now automate proving statements such as Theorem 3.2. More precisely we shall
provide an algorithm that, given a classical pattern p, produces a finite list of (marked)

10 CLAESSON AND ÚLFARSSON

mesh patterns P such that
S−1(Av(p)) = Av(P).

The algorithm can be modified for the bubble-sort operator to prove statements such as
Proposition 3.3. Given the classical pattern p we identify what orderings of the letters in
p are possible prior to sorting, and produce a list, denoted cand(p), of candidates which
themselves are classical patterns.

Proposition 4.1. Let p be a permutation of a finite set of integers, and let the largest
letter of p be m = max(p). Write p = αmβ and α = a1a2 · · · ai. Then

cand(p) =
i⋃

j=0

{ γmδ : γ ∈ cand(a1a2 · · · aj), δ ∈ cand(aj+1 · · · aiβ) }

contains all classical patterns that can become p after one pass of stack-sort.

This proposition gives a recursive algorithm for computing cand(p). Recall that an
inversion in a permutation is an occurrence of the classical pattern 21, while a non-
inversion is an occurrence of 12. Note that if two elements in p are part of an inversion,
they must also be part of an inversion in all patterns in cand(p). Non-inversion in p place
no restrictions on the patterns in cand(p).

Proof. The idea behind the proof is that letters can only be moved to the left and small
letters are stopped by larger letters. This implies that after the largest letter, m, has been
moved to a particular location we can recurse on what is remaining to the left and the
right. �

Note that cand(132) = {321, 312, 132}. However, it is easy to check that there is no
way that 321 can become 132 after sorting. Candidates like this one are removed in lines
9–11 in Algorithm 1 below.

Example 4.2. For the pattern p = 3241, considered in Lemma 3.5, we have m = 4,
α = 32, β = 1 and i = 2. When j = 0, γ is the empty word and we get the set
{4δ : δ ∈ cand(321)}. It is easy to verify that cand(321) = {321}, so we get the pattern
4321. When j = 1 we get the set {γ4δ : γ ∈ cand(3), δ ∈ cand(21)}. Again it is easy to
check that cand(21) = {21} so we get the pattern 3421. Finally, when i = 2 we get the set
{γ4δ : γ ∈ cand(32), δ ∈ cand(1)} which gives us the pattern 3241. In total we have the
patterns 4321,3421, and 3241, which are the underlying classical patterns in Lemma 3.5.

Before we state the algorithm note that

(1) if u > v is an inversion in p′ that becomes a non-inversion in p = S(p′), then u
must stay on the stack until v arrives, and therefore we must shade all the boxes
above u and between u and v. Thus there can be no elements of p′ in this shaded
region. This is handled by line 3 in Algorithm 1;

(2) if u > v is an inversion in p′ that becomes an inversion in p = S(p′), then there
must be another element c > u that pops u before v is pushed onto the stack,
thus maintaining the inversion. If such an element is present in p′ we need not

SORTING AND PREIMAGES OF PATTERN CLASSES 11

do anything. If there is no such element we need to mark the region above u and
between u and v with a “1”. This is handled by lines 4–16 in Algorithm 1.

Algorithm 1 ShadeAndMark

Input: λ ∈ cand(p)

1: n := |p|
2: marks := ∅
3: shades :=

⋃
{ Jλ−1(v), λ−1(u)− 1K× Jv, nK : (u, v) ∈ ninv(p) }

4: for (u, v) ∈ inv(p) do

5: i := λ−1(u)
6: j := λ−1(v)

7: if λ(`) < u for all ` ∈ Ji+ 1, jK then

8: M := Ji, j − 1K× Ju, nK \ shades

9: if M = ∅ then
10: return This candidate cannot be marked properly
11: end if

12: if m 6⊆M for all m ∈ marks then
13: add M to marks and remove all supersets of M
14: end if

15: end if

16: end for

17: return (λ, shades,marks)

Here ninv(p) is the set of non-inversions in p, and inv(p) is the set of inversions in p.

Example 4.3. For the pattern p = 3241 in Lemma 3.5 we have ninv(p) = {(3, 4), (2, 4)}
and inv(p) = {(3, 2), (3, 1), (2, 1), (4, 1)}. We saw in Example 4.2 that there are three
candidates. We only consider λ = 4321, for which λ−1 = λ. The shading is the union of
the sets {1} × {4} and J1, 2K× {4} which is {(1, 4), (2, 4)}. The for-loop in the algorithm
proceeds as follows.

• (u, v) = (3, 2): M = {(2, 3)} is added to marks,
• (u, v) = (3, 1): M = {(2, 3), (3, 3), (3, 4)} is a superset of {(2, 3)}, so it is not

added to marks,
• (u, v) = (2, 1): M = {(3, 2), (3, 3), (3, 4)} is added to marks,
• (u, v) = (4, 1): M = {(3, 4)} is added to marks and the superset {(3, 2), (3, 3), (3, 4)}

is removed.

This leaves us with the marking {{(2, 3)}, {(3, 4)}} which is consistent with Lemma 3.5.

12 CLAESSON AND ÚLFARSSON

The full algorithm calls ShadeAndMark for all classical patterns in cand(p). Below is
the result of applying this algorithm to all classical patterns of length 3.

S−1(Av(123)) = Av

(
, , , ,

)

S−1(Av(132)) = Av

(
1

,
1
)

= Av

(
,

)

S−1(Av(213)) = Av

(
1

, , 1

)
= Av

(
, , ,

)
S−1(Av(231)) = See Theorem 3.2

S−1(Av(312)) = Av

(
1

,
1

)
= Av

(
,

)

S−1(Av(321)) = Av

(
1

1

)
= Av

(
, ,

)
Bouvel and Guibert [BG11] have found a bijection between S−1(Av(312)) and the set
of Baxter permutations; they have also found a bijection between S−1(Av(231)) and
S−1(Av(132)).

We note that the algorithm can easily be extended to accept a finite list of classical
patterns. We also note that a slight modification of algorithm ShadeAndMark has been
shown to work with the bubble-sort operator [CU11]; this algorithm can for example be
used to prove Proposition 3.3.

5. Open problems

The algorithm above describes the preimage of any set Av(p) where p is a classical
pattern. Can the algorithm be extended to cover the case where p is a mesh pattern,
or even a decorated pattern? Solving this problem would automate the description of
West-3-stack-sortable permutations. More generally, is there a pattern definition that is
stable under S−1?

West [Wes90] conjectured, and Zeilberger [Zei92] proved, that the number of West-
2-stack-sortable permutations is given by 2(3n)!/((n+ 1)!(2n+ 1)!). Later Dulucq, Gire
and West [DGW96] found these permutations to be in bijection with rooted non-separable
planar maps. The enumeration of West-3-stack-sortable permutations is completely open,
but knowing the patterns in Theorem 3.9 could provide some insight.

6. Acknowledgements

We were supported by grant no. 090038013 from the Icelandic Research Fund. We would
like to thank the anonymous referees for detailed and constructive comments. The first

SORTING AND PREIMAGES OF PATTERN CLASSES 13

author also wishes the express his gratitude to Michael Albert, Mike Atkinson, Mathilde
Bouvel and Mark Dukes for many interesting and valuable discussions on the topic of
sorting operators.

References

[AAB+11] M. H. Albert, M. D. Atkinson, M. Bouvel, A. Claesson, and M. Dukes. On the inverse image
of pattern classes under bubble sort. Journal of Combinatorics, 2:231–243, 2011.

[BC11] P. Brändén and A. Claesson. Mesh patterns and the expansion of permutation statistics as
sums of permutation patterns. Electron. J. Combin., 18(2), 2011.

[BG11] M. Bouvel and O. Guibert. Enumeration of permutations sorted with two passes in a stack
and D8 symmetries. Work in progress, 2011.

[Bón03] M. Bóna. A survey of stack-sorting disciplines. Electron. J. Combin., 9(2):Article 1, 16,
2002/03. Permutation patterns (Otago, 2003).

[CU11] A. Claesson and H. Úlfarsson. Preimages of pattern classes under bubble and stack sort. In
preparation, 2011.

[DGW96] G. Dulucq, S. Gire, and J. West. Permutations with forbidden subsequences and nonseparable
planar maps. Disc. Math., 153(1-3):85–103, 1996.

[HJS+11] Í. Hilmarsson, I. Jónsdóttir, S. Sigurdardóttir, S. Vidarsdóttir, and H. Úlfarsson. Wilf-
classification of mesh patterns of short length. In preparation, 2011.

[Knu75] D. E. Knuth. The art of computer programming. Addison-Wesley Publishing Co., Read-
ing, Mass.-London-Amsterdam, second edition, 1975. Volume 1: Fundamental algorithms,
Addison-Wesley Series in Computer Science and Information Processing.

[Ú11a] H. Úlfarsson. Describing West-3-stack-sortable permutations with permutation patterns.
arXiv:1110.1219v2 [math.CO], 2011.

[Ú11b] H. Úlfarsson. A unification of permutation patterns related to Schubert varieties. Pure Math.
Appl. to appear, 2011.

[Wes90] J. West. Permutations with forbidden subsequences and stack-sortable permutations. PhD the-
sis, MIT, 1990.

[Zei92] D. Zeilberger. A proof of Julian West’s conjecture that the number of two-stack-sortable
permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!). Disc. Math., 102:85–93, 1992.

(Claesson) Department of Computer and Information Sciences, University of Strath-
clyde, Glasgow G1 1XH, UK

(Úlfarsson) School of Computer Science, Reykjav́ık University, Menntavegi 1, 101 Reyk-
jav́ık, Iceland

E-mail address: anders.claesson@cis.strath.ac.uk, henningu@ru.is

