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Below I describe two research projects I am actively working on at the moment.
The first is about equivalence relations on the set of permutations Sn and pattern
avoidance, and the second is about the interaction between algebraic geometry and
algebraic combinatorics through Schubert varieties.

A section is devoted to each of the projects below. Each section is divided into
an introduction and a more detailed description.

We start with a few basic definitions that we will need below.

Patterns in Permutations. We use one-line notation for all permutations, so we
write π = 132 for the permutation that satisfies π(1) = 1, π(2) = 3 and π(3) = 2.

A pattern p is also a permutation, but we are interested in when and how a
pattern is contained in a permutation π. An occurrence (or an embedding) of a
pattern p in a permutation π is classically defined as a subsequence in π, of the
same length as p, whose letters are in the same relative order (with respect to
size) as those in p. For example, the pattern 1−2−3 corresponds to a increasing
subsequence of three letters in a permutation, that need not be adjacent. If we use
the notation 1π for the first, 2π for the second and 3π for the third letter in an
occurrence, then we are simply requiring that 1π < 2π < 3π. If a permutation has
no occurrence of a pattern p we say that π avoids p.

Example 1. The permutation 32415 contains two occurrences of the pattern 1−2−3
corresponding to the sub-words 345 and 245. It avoids the pattern 1−3−2.

In a vincular pattern1 two adjacent letters may or may not have a dash be-
tween them. The absence of a dash means that the corresponding letters in the
permutation π must be adjacent.

Example 2. The permutation 32415 contains one occurrence of the pattern 12−3
corresponding to the sub-word 245. It avoids the pattern 1−23.

These types of patterns have been studied sporadically for a very long time but
were not defined in full generality until Babson and Steingŕımsson (2000).

This notion was generalized further in Bousquet-Mélou et al. (2008): In a bivin-
cular pattern we are also allowed to put restrictions on the values that occur in an
embedding of a pattern. The notation used for these patterns is (p,X, Y ) where p is
the pattern and the sets X and Y tell us which letters are supposed to be adjacent
in position and value. This is best described by an example:

Example 3. An occurrence of the pattern (123, {1}, {2}) in a permutation π is an
increasing subsequence of three letters. Since we have 1 ∈ X we must have the first
and the second letters adjacent in position and since we have 2 ∈ Y we must have
the second and third letters adjacent in values. The permutation 32415 contains
one occurrence of this bivincular pattern corresponding to the sub-word 245. The
permutation avoids the bivincular pattern (123, {1}, {1}).

Date: March 2, 2010.
1Also called a generalized pattern, Babson-Steingŕımsson pattern or a dashed pattern.
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Young Tableaux. For a positive integer m we define a partition of it as a weakly
decreasing sequence of positive integers m1,m2, . . . ,mr that sum to m. Note that
0 is not allowed in the sum. A partition can be depicted with a Young diagram
(or Ferrers diagram) which has r rows of length m1,m2, . . . ,mr, For example, the
partition 13 = 6 + 3 + 2 + 2 can be depicted with the diagram below.

The diagram is sometimes referred to as the shape of the partition. There is a very
rich theory of Young diagrams where the boxes are labeled with integers according
to specific rules. The diagrams are then referred to as Young tableaux and they
have many applications in combinatorics, algebraic geometry and representation
theory, Fulton (1997); Fulton and Harris (1991).

1. Equivalence Relations on Permutations and Patterns

Introduction. This project, which in its original form was suggested to me by
Claesson and Steingŕımsson, started as an investigation of the properties of per-
mutations that avoid the pattern 2−3−1, especially which Young tableaux they
correspond to under the RSK-correspondence. This correspondence gives a bijec-
tion between permutations and pairs of standard Young tableaux of the same shape.
It is well known that permutations avoiding 1−2−3 correspond to pairs of tableaux
with two or less columns and it was the objective to find a simple description for
the other pattern as well.

The project changed course when I discovered that if we put an equivalence
relation, called Knuth-equivalence, Knuth (1970), on the set of permutations, and
look at entire equivalence classes that avoid the pattern 2−3−1, then a very simple
description can be arrived at. This description allows one to count both the number
of avoiding classes as well as the size of each class.

The project then grew considerably when I started trying other equivalence rela-
tions and I have now tried about 20 different equivalence relations from conjugacy
to the location of recoils, and almost all of them give known sequences in The On-
Line Encyclopedia of Integer Sequences, Sloane (2010). The way I have studied
these equivalences is by running experiments in the computer algebra system Sage
(2010) and searching the database of Sloane (2010). These methods have gener-
ated a database of empirical evidence for many conjectures which I have only just
started working on.

Below I will describe two of these equivalence relations, cycle type and toric
equivalence Eriksson et al. (2001), and some conjectures related to them, as well as
some propositions that I have verified.

The second equivalence, toric equivalence, gives sequences that relate pattern
avoidance to common functions in number theory, such as Euler’s totient function
and to the sum-of-divisors function. This has a fun consequence, as it allows us to
state the Riemann Hypothesis in terms of pattern avoidance (Conjecture 19).

Details.

Knuth-equivalence. We will first describe the equivalence relation known as Knuth-
equivalence which was first defined by Knuth (1970). We say that two permutations
are Knuth-equivalent if and only if they can be connected by a sequence of elemen-
tary transformations. Here an elementary transformation corresponds to swapping
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neighbors if an adjacent entry is between them in values,

· · ·xyz · · · 7→ · · · yxz · · · , if z ∈ [x, y],

· · · zxy · · · 7→ · · · zyx · · · , if z ∈ [x, y].

We write π ≡ π′ if the permutations π and π′ are Knuth-equivalent. For example
41523 ≡ 14253 because 41523 ≡ 41253 (since 2 < 3 < 5) and then 41253 ≡ 14253
(since 1 < 2 < 4). It then turns out that two permutations are Knuth-equivalent
if and only if they have the same insertion tableaux (the first tableaux in the pair)
under the RSK-correspondence.

We say that an equivalence class avoids a pattern p if every member of the class
avoids p. The equivalence classes that avoid the pattern 2−3−1 correspond to
very simple tableaux that are shaped like a hook and labeled by reading the rows
from left to right. Here are the tableaux corresponding to the avoiding equivalence
classes in S5.

1 2 3 4 5
1 2 3 4
5

1 2 3
4
5

1 2
3
4
5

1
2
3
4
5

Since the avoiding classes correspond to such easily described tableaux it becomes
easy to count how many classes there are: n classes in Sn, and the number of
permutations in each class2:

(
n−1
k

)
in the k-th class. If we put these two facts

together we see that the union of the classes has exactly 2n−1 permutations in Sn.
It then turns out that this union of avoiding classes can also be described in

terms of pattern avoidance without using an equivalence relation. The union is
exactly Sn(2−3−1, 2−1−3), the permutations in Sn avoiding the patterns 2−3−1
and 2−1−3. One should notice here that these two patterns make up an equivalence
class in S3. The pattern 2−3−1 is therefore an example of a stable pattern, one
that satisfies

{π ∈ Sn |π, and every equivalent permutation, avoids the pattern p}
=

{π ∈ Sn |π avoids the pattern p and every equivalent pattern}
So by considering Knuth-equivalence we get a new proof of the fact that

#Sn(2−3−1, 2−1−3) = 2n−1.

This is well known (Simion and Schmidt (1985)), but this new proof can potentially
be applied to other patterns whose avoiding classes have nice descriptions in terms
of Young tableaux. Before we move on to other equivalence relations, let me point
out that there are some unstable patterns, although you must go up to S4 to find
them. Here’s one: 3−4−1−2.

Everything mentioned above is proven in the preprint Úlfarsson (2009a). I’m
currently working on incorporating some of the material below into this preprint.

Other equivalence relations. It is now very natural to consider other equivalence
relations on Sn. To date I have tried about 20 different equivalence relations and
in most3 cases there have appeared known sequences from Sloane (2010).

2Here one can use the hook-length formula of Frame et al. (1954), but in this simple case it is
not really necessary. The formula might be needed for other patterns whose avoiding classes are
not as simple.

3The only equivalence relation that has not given any interesting sequences so far is entropy.
The entropy of a permutation is defined as the sum

∑
(πi− i)2 and we say that two permutations
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The way I have looked for sequences is by running the computer algebra system
Sage (2010) to test avoidance up to about S10 and then used Sloane (2010) to see
if known sequences are produced. This has generated a lot of interesting data that
I am only starting to go through and proving the conjectures that the empirical
evidence suggest. Below I will describe two of these equivalence relations, conjugacy
and toric equivalence. First we fix the following symbol,

S̃n(p) = {π ∈ Sn |π, and every equivalent permutation, avoids the pattern p}.

Note that this is the union of the avoiding classes.

Conjugacy. With this relation we say that two permutations are equivalent if they
are conjugate, that is, if they have the same cycle type. An example of two conjugate
permutations from S4 is 2143 = (12)(34) and 4321 = (14)(23) because both have
the cycle type (2, 2). A fun aspect of this equivalence relation is that it gives non-
trivial counts even when we consider conjugacy classes avoiding a pattern of length
1:

Proposition 4.

S̃n(1, {0}, {0}) = derangements in Sn.

Here a derangement is a permutation with no fixed points. This gives the sequence
A000166 in Sloane (2010).

Next we consider three bivincular versions of the classical pattern 2−1:

Proposition 5.

#S̃n(21, {1}, {0, 2}) =

(
n

2

)
+ 1, n ≥ 3.

The enumeration is explained by the fact that the set on the left contains only
permutations with cycle type (1, 1, . . . , 1) or (2, 1, . . . , 1). This gives the sequence
A134869 in Sloane (2010).

Proposition 6.

S̃n(21, {0, 1}, {0, 1})
= permutations whose cycle decomposition has no transposition.

The enumeration is given by the expansion of e−x2/2

1−x . This gives the sequence

A000266 in Sloane (2010).

Proposition 7.

S̃n(21, {0, 1}, {0, 2}) = involutions in Sn.

Here an involution is a permutation π with the property that π ◦ π = 123 · · ·n, the
identity. This gives the sequence A000085 in Sloane (2010).

There are plenty of other interesting sequences that we get by considering pat-
terns of length 3 and 4 but I have not proven any of them, so this is all I will say
about conjugacy.

are entropy-equivalent if they have the same entropy. If we instead use the sum
∑
|πi− i| (this is

called the sum-of-distances of π) then we do get some interesting sequences.
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Toric Equivalence. Before we get to toric equivalence we need a preliminary defi-
nition: If λ is a circular permutation of J0, nK then λ◦ denotes the permutation in
Sn we get by reading λ from 0.

Our definition of toric equivalence follows Eriksson et al. (2001), but an equiv-
alent class of objects was studied by Steggall (1907). Here the equivalence can be
roughly viewed as declaring two permutations to be equivalent if their permutation
matrices become equal when they are wrapped around a torus. More precisely,
given a permutation π of Sn we define π◦ as the circular permutation 0π of J0, nK.
Then for any m = 0, 1, . . . , n we define a new circular permutation

π◦ ⊕m = (0 +m)(π1 +m)(π2 +m) · · · (πn +m) mod (n+ 1).

(Here every letter is reduced modulo n + 1). Then the toric class of the original
permutation π is defined as the set

π◦◦ = {(π◦ ⊕m)◦ |m = 0, 1, . . . , n}.

Example 8. Let π = 1243. Then π◦ = 01243 and

π◦ ⊕ 0 = 01243, π◦ ⊕ 1 = 12304, π◦ ⊕ 2 = 23410,

π◦ ⊕ 3 = 34021, π◦ ⊕ 4 = 40132.

The toric class is π◦◦ = {1243, 4123, 2341, 2143, 1324}.

This equivalence relation behaves well with respect to the basic symmetries of
the permutations Sn. For example it is not to hard too see that for any circular
permutation λ of J0, nK we have

λi ⊕ x ≡ (λ⊕ 1)i,

where x is the distance (counter-clock-wise) from n to 0 in λ.
Now, onto some pattern avoidances. We start by looking at the connections

between toric equivalence and modular sequences in circular permutations.

Proposition 9.

(1) The set S̃n(1, {0}, {0}) is equinumerous with the set of circular permu-
tations of J0, nK that have no modular 2-sequences. Here a modular 2-
sequence is a substring of the form i(i + 1) mod (n + 1). This gives the
sequence A000757 in Sloane (2010).

(2) The set S̃n(12, {0, 1}, {0, 1}) is equinumerous with the set of circular per-
mutations of J0, nK that have no modular 3-sequences. Here a modular
3-sequence is a substring of the form i(i + 1)(i + 2) mod (n + 1). This
gives the sequence A165962 in Sloane (2010).

It then turns out that you can keep going:

Proposition 10. The set S̃n(12 · · ·n, {0, 1, 2, . . . , n − 1}, {0, 1, 2, . . . , n − 1}) is
equinumerous with the set of circular permutations of J0, nK that have no modular
(n + 1)-sequences. Here a modular (n + 1)-sequence is a substring of the form
i(i+ 1) · · · (i+ n) mod (n+ 1).

Now we turn to some conjectures about bivincular versions of the classical pat-
tern 2−1−3 and the avoiding classes. The conjectures have been verified up to S9,
and while I have a strategy on how to prove them I haven’t completed the proofs.

Conjecture 11. For n ≥ 2

#S̃n(213,∅,∅) = 2.
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Conjecture 12. For n ≥ 1

#S̃n(213,∅, {1}) = d(n),

where d(n) counts the number of divisors of n. This gives the sequence A000005 in
Sloane (2010).

Conjecture 13. For n ≥ 1

#S̃n(213,∅, {1, 3}) = φ(n+ 1),

where φ(n+ 1) is the Euler totient function, which counts the numbers less than or
equal to n+ 1 that are prime to n+ 1. This gives the sequence A000010 in Sloane
(2010)

I should note here that the bivincular patterns that appear in these three con-
jectures can be replaced by their inverses without changing the enumeration since
toric equivalence interacts well with the three basic symmetries of Sn. Then we
would instead have the patterns 2−1−3, 21−3 and 21−3| (an occurrence of the last
pattern must end at the end of the permutation). The reason I do not use these
easier to describe patterns is that it is easier to describe the permutations that
avoid the original patterns.

In trying to prove the conjectures above one is lead to defining two classes of
permutations (one inside the other).

Definition 14. Let n ≥ 1 be fixed.

(1) For any k prime to n+1 we define a permutation νk,n first by constructing a
circular permutation λk,n of J0, nK as follows: Place 0 anywhere, then place
1 by moving k steps from 0 (so there are k − 1 empty positions between
0 and 1), then place 2 by moving k steps from 1 and keep going until you
place n. Then define νk,n = (λk,n)◦. We call the permutation constructed
in this way a natural permutation (corresponding to k) in Sn.

(2) If k is a divisor of n we write δk|n = νk,n and call δk|n a divisor permutation
(corresponding to k|n) in Sn.

The condition that k be prime to n + 1 is a necessary and sufficient condition
for constructing νk,n. The reason for calling these permutations natural is that the
permutation νk,n behaves like the natural number k when multiplied with other
natural permutations (see Property 3 below).

Example 15. Let n = 6. Then the prime integers to n+ 1 = 7 are 1, 2, 3, 4, 5 and
6. We construct λ1,6 as follows:

0 = 01 = 012 = · · · = 0123456,

so ν1,6 = 123456 = δ1|6. Next we construct λ2,6:

0 = 0 1 = 0 1 2 = 0 1 2 3 = 041 2 3 = 04152 3 = 0415263,

so ν2,6 = 415263 = δ2|6. Similarly we get

ν3,6 = 531642 = δ3|6,

ν4,6 = 246135,

ν5,6 = 362514,

ν6,6 = 123456 = δ6|6.

I now claim that these permutations are exactly the ones we are counting in
Conjectures 12 and 13:

Conjecture 16 (Refinement of Conjecture 12). The set S̃n(213,∅, {1}) consists
of the divisor permutations in Sn.
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Conjecture 17 (Refinement of Conjecture 13). The set S̃n(213,∅, {1, 3}) consists
of the natural permutations in Sn.

The natural and divisor permutations seem to have many nice properties:

(1) By definition the location of 1 in νk,n and δk|n is k, or equivalently, the first
letter of inverse of these permutations is k.

(2) They are the unique permutation in their toric class.
(3) They multiply like the natural numbers modulo n+ 1. For example

δ2|6 ◦ δ2|6 = ν4,6 and ν4,6 ◦ ν5,6 = δ6|6.

(4) The the last letter in the divisor permutation δk|n is n/k, the complementary
divisor.

Property (1) combined with Conjecture 16 gives us a way to write the sum-of-
divisors function σ(n) as

σ(n) =
∑

δ∈S̃n(213,∅,{1})

(location of 1 in δ).

Now consider the following theorem due to Robin (1984).

Theorem 18 (Robin’s theorem). Let σ(n) denote the sum of the divisors of n.
The Riemann Hypothesis is true if and only if

σ(n) < eγ log log n,

holds for all n larger than some constant. Here γ is Euler’s constant.

This allows us to state the Riemann Hypothesis in terms of pattern avoidance:

Conjecture 19 (Equivalent to RH modulo Conjecture 16). The Riemann Hypoth-
esis is true if and only if∑

δ∈S̃n(213,∅,{1})

(location of 1 in δ) < eγ log log n,

holds for all n larger than some constant.

The largest known n for which the inequality in Robin’s theorem is violated is
5040, so it suffices to start exploring in S5041. I should mention that permutations
have been shown before to have connections with the Riemann Hypothesis, for
example using the Redheffer matrix in Wilf (2004/06), probabilistic methods in
Aldous and Diaconis (1999) (see also Stopple), and group theory in Massias et al.
(1988).

Like I mentioned above I have a strategy for proving Conjectures (16), (17) and
I’m optimistic that I will be able to produce proofs soon. I’m not as optimistic
about proving the inequality in Conjecture (19).

Further questions and sub-projects.

(1) Given an equivalence relation, what patterns are stable? If we are working
with Knuth-equivalence every classical pattern in S3 is stable, but there
are unstable patterns in S4 and so far I have been unable to find a general
characterization of the stable patterns. For other equivalence relations, like
circular equivalence (permutations are equivalent if they are the same up
to cyclic shifts) it is easy to see that every pattern (classical or bivincular)
is stable.
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(2) In all of these equivalence relations we almost always get non-interesting
results (see Conjecture 11), when we restrict to classical patterns. We
start getting more interesting sequences when we generalize to bivincu-
lar patterns. Kitaev and Remmel (2010) have a further generalization of
bivincular patterns, called place-difference-value patterns (trivincular?). It
would be very interesting to see what new sequences these patterns would
produce.

(3) Given an equivalence relation, what can be said about the number of equiv-
alence classes in Sn?

(4) What is the interplay between these relations and the basic symmetries.
When the equivalence relation behaves nicely with respect to the sym-
metries it reduces the number of patterns one needs to look at. I have
considered this question only for the toric equivalence and it turns out to
respect all the basic symmetries as well as a new symmetry which produces
non-trivial Wilf-equivalences for bivincular patterns.

(5) What other equivalence relations can one try? Like I have mentioned above
I have tried about 20 relations and most of them hint at some interesting
conjectures. An interesting option that I want to look at is to construct
equivalence relations between permutations by using the properties of the
Schubert varieties that they correspond to. See more about the relation
between these varieties and permutations in the other project description.

2. Permutation Patterns and Schubert Varieties

Introduction. The goal of this project is to introduce bivincular patterns into the
description of the smoothness properties of Schubert varieties. Schubert varieties
are a very nice class of varieties and are often used as a test case for conjectures
about more general varieties. These varieties are indexed by permutations and
many properties of the varieties are encoded in the patterns that the permutations
either contain or avoid. In particular the variety Xπ, indexed by the permuta-
tion π, is non-singular if and only if π avoids 1−3−2−4 and 2−1−4−3 (Ryan
(1987), Wolper (1989) and Lakshmibai and Sandhya (1990)). A weakening of non-
singularity, called factoriality was then described in terms of so-called barred pat-
terns. This project started when I noticed that this description would be greatly
simplified by using bivincular patterns, which shows that weakening smoothness
to factoriality corresponds to removing a dash, see Table 1. A further weakening
called Gorensteinness can also be described in terms of bivincular patterns. This
new description of factoriality and Gorensteinness in terms of bivincular patterns
are described in detail in Úlfarsson (2009b).

Details. Not many Schubert varieties are non-singular and, in fact, the first result
in this area, independently discovered by Ryan (1987), Wolper (1989) and Lak-
shmibai and Sandhya (1990) showed that the Schubert variety Xπ is non-singular
if and only if π avoids the patterns 1−3−2−4 and 2−1−4−3.4 A weakening of
non-singularity is the notion of a variety being factorial, this means that the local
rings are unique factorization domains. Now, Bousquet-Mélou and Butler (2007)
proved a conjecture by Yong and Woo (Bousquet-Mélou et al. (2005)) that factorial
Schubert varieties are those that correspond to permutations avoiding 1−3−2−4
and bar-avoiding 2−1−3−5−4. In the terminology of Woo and Yong (2006) the
bar-avoidance of the latter pattern corresponds to avoiding 2−1−4−3 with Bruhat

4It should be noted that the correspondence between the permutation π and the Schubert-

variety Xπ differs between authors, and in Lakshmibai and Sandhya (1990) the avoidance is in

terms of the complements of the patterns we gave in the text. We have tried to convert everything
here into a coherent notation.
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condition (1 ↔ 4), or equivalently, interval avoiding [2−4−1−3, 2−1−4−3] in the
terminology of Woo and Yong (2008). But, as remarked in Steingŕımsson (2007),
bar-avoiding 2−1−3−5−4 is equivalent to avoiding the bivincular pattern 2−14−3.
If we summarize this in terms of bivincular patterns a striking thing becomes ap-
parent; see Table 1.

Singularity property of Xπ The permutation π avoids the patterns
Non-singular 1−3−2−4 and 2−1−4−3
Factorial 1−3−2−4 and 2−14−3
Gorenstein Description given below

Table 1. Connection between singularity properties and bivincu-
lar patterns.

By considering bivincular patterns we do not need to consider the more com-
plicated barred pattern, Bruhat condition or the interval avoidance, because it
becomes obvious that weakening non-singularity to factoriality corresponds to re-
moving a dash from one of the patterns.

Woo and Yong (2006, 2008) also characterized Gorensteinness in terms of Bruhat
conditions and interval avoidance and as I had hoped that Gorensteinness would
correspond to removing more dashes from the classical patterns it turned out not to
be the case. There are in fact two conditions for a Schubert variety being Gorenstein
in terms of bivincular patterns:

Theorem 20 (Úlfarsson (2009b)). Let π ∈ Sn. Then the Schubert variety Xπ is
Gorenstein if and only if

(1) π is balanced; and
(2) the permutation π avoids the bivincular patterns

(31524, {2}, {3}) and (24153, {3}, {2}).

This new description of factoriality and Gorensteinness in terms of patterns are
described in detail in Úlfarsson (2009b).

I recently started a related project in this area with Woo, with the purpose of
finding a description of local complete intersection varieties (whose definition I will
omit) in terms of patterns. The project is still getting started but we have some
conjectures that we are working on. Currently it seems that classical patterns might
suffice to describe this property, but it will be a long list of patterns. It might then
be possible to reduce that list to fewer bivincular patterns.

Further questions and sub-projects.

(1) While Gorensteinness can not be described by the removal of dashes from
the original classical patterns 1−3−2−4 and 2−1−4−3 one can still ask
what the removal of the individual dashes corresponds to on the geometry
side. Could they give new singularity properties of Schubert varieties?

(2) Like I mentioned above I am starting to explore the local complete inter-
section property with Woo in terms of patterns. If we are successful then
we would answer a question asked independently by Hasset, Joshua and
Sturmfels.

(3) The Schubert varieties I have studied up to this point have all been algebraic
subsets of the complete flag variety Flags(Cn). There are results relating
classical patterns to more general semi-simple simply-connected Lie groups
via root systems, Billey and Postnikov (2005). When results on classical
patterns are generalized to this setting they often become very complicated
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or many patterns need to be used. It is likely that bivincular patterns play
some role in this more general situation as well, and can hopefully be used
to simplify the results as has happened with factoriality in the complete
flag variety. A particular example is that a permutation in Sn is vexillary
if it avoids the pattern 2−1−4−3, Lascoux and Schützenberger (1985) but
vexillary permutations in the hyperoctahedral group Bn are permutations
that bar-avoid 18 different patterns, Billey and Lam (1998). It would be
interesting to find a simpler description in terms of bivincular patterns.
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ing a bridge hand. Discrete Math., 241(1-3):289–300, 2001. ISSN 0012-
365X. doi: 10.1016/S0012-365X(01)00150-9. URL http://dx.doi.org/10.

1016/S0012-365X(01)00150-9. Selected papers in honor of Helge Tverberg.
J. S. Frame, G. d. B. Robinson, and R. M. Thrall. The hook graphs of the symmetric

groups. Canadian J. Math., 6:316–324, 1954. ISSN 0008-414X.
W. Fulton. Young tableaux, volume 35 of London Mathematical Society Student

Texts. Cambridge University Press, Cambridge, 1997. ISBN 0-521-56144-2; 0-
521-56724-6. With applications to representation theory and geometry.

W. Fulton and J. Harris. Representation theory, volume 129 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1991. ISBN 0-387-97527-6; 0-387-
97495-4. A first course, Readings in Mathematics.

S. Kitaev and J. Remmel. Place-difference-value patterns: A generalization of
generalized permutation and word patterns. To appear, 2010.

D. E. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific J.
Math., 34:709–727, 1970. ISSN 0030-8730.

V. Lakshmibai and B. Sandhya. Criterion for smoothness of Schubert varieties in
Sl(n)/B. Proc. Indian Acad. Sci. Math. Sci., 100(1):45–52, 1990. ISSN 0253-4142.

A. Lascoux and M.-P. Schützenberger. Schubert polynomials and the Littlewood-
Richardson rule. Lett. Math. Phys., 10(2-3):111–124, 1985. ISSN 0377-9017.

J.-P. Massias, J.-L. Nicolas, and G. Robin. Évaluation asymptotique de l’ordre
maximum d’un élément du groupe symétrique. Acta Arith., 50(3):221–242, 1988.
ISSN 0065-1036.

http://dx.doi.org/10.1090/S0273-0979-99-00796-X
http://arxiv.org/abs/0806.0666
http://dx.doi.org/10.1016/S0012-365X(01)00150-9
http://dx.doi.org/10.1016/S0012-365X(01)00150-9


RESEARCH STATEMENT 11

G. Robin. Grandes valeurs de la fonction somme des diviseurs et hypothèse de
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